A comprehensive survey of dual-generalized complex Fibonacci and Lucas numbers
dc.authorid | http://orcid.org/0000-0001-8407-854X | en_US |
dc.authorid | http://orcid.org/0000-0002-8647-1801 | en_US |
dc.authorid | http://orcid.org/0000-0002-8296-6495 | en_US |
dc.contributor.author | Gürses, Nurten | |
dc.contributor.author | Şentürk, Gülsüm Yeliz | |
dc.contributor.author | Yüce, Salim | |
dc.date.accessioned | 2023-10-11T17:48:31Z | |
dc.date.available | 2023-10-11T17:48:31Z | |
dc.date.issued | 2022 | en_US |
dc.department | Mühendislik ve Mimarlık Fakültesi | en_US |
dc.description.abstract | This paper aims to develop dual-generalized complex Fibonacci and Lucas numbers and obtain recurrence relations. Fibonacci and Lucas’s approach to dual-generalized complex numbers contains dual-complex, hyper-dual and dual-hyperbolic situations as special cases and allows general contributions to the literature for all real number p. For this purpose, Binet’s formulas along with Tagiuri’s, Hornsberger’s, D’Ocagne’s, Cassini’s and Catalan’s identities, are calculated for dual-generalized complex Fibonacci and Lucas numbers. Finally, the results are given, and the special cases for this unification are classified. | en_US |
dc.identifier.doi | 10.14744/sigma.2022.00014 | en_US |
dc.identifier.endpage | 187 | en_US |
dc.identifier.issn | 1304-7205 | |
dc.identifier.issn | 1304-7191 | |
dc.identifier.issue | 1 | en_US |
dc.identifier.scopus | 2-s2.0-85145682278 | en_US |
dc.identifier.scopusquality | N/A | en_US |
dc.identifier.startpage | 179 | en_US |
dc.identifier.uri | https://hdl.handle.net/11363/5839 | |
dc.identifier.uri | https://doi.org/ | |
dc.identifier.volume | 40 | en_US |
dc.identifier.wos | WOS:000777898300012 | en_US |
dc.identifier.wosquality | N/A | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.institutionauthor | Şentürk, Gülsüm Yeliz | |
dc.language.iso | en | en_US |
dc.publisher | Yıldız Teknik Üniversitesi | en_US |
dc.relation.ispartof | Sigma Journal of Engineering and Natural Sciences - Sigma Mühendislik ve Fen Bilimleri Dergisi | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 United States | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.subject | Dual-generalized complex numbers | en_US |
dc.subject | Fibonacci numbers | en_US |
dc.subject | Lucas numbers MSC 2010 | en_US |
dc.subject | 11B39 | en_US |
dc.subject | 11B83 | en_US |
dc.title | A comprehensive survey of dual-generalized complex Fibonacci and Lucas numbers | en_US |
dc.type | Article | en_US |