A comprehensive survey of dual-generalized complex Fibonacci and Lucas numbers
Yükleniyor...
Dosyalar
Tarih
2022
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Yıldız Teknik Üniversitesi
Erişim Hakkı
info:eu-repo/semantics/openAccess
Attribution-NonCommercial-NoDerivs 3.0 United States
Attribution-NonCommercial-NoDerivs 3.0 United States
Özet
This paper aims to develop dual-generalized complex Fibonacci and Lucas numbers and obtain recurrence relations. Fibonacci and Lucas’s approach to dual-generalized complex numbers contains dual-complex, hyper-dual and dual-hyperbolic situations as special cases and allows general contributions to the literature for all real number p. For this purpose, Binet’s formulas along with Tagiuri’s, Hornsberger’s, D’Ocagne’s, Cassini’s and Catalan’s identities, are calculated for dual-generalized complex Fibonacci and Lucas numbers. Finally, the results are given, and the special cases for this unification are classified.
Açıklama
Anahtar Kelimeler
Dual-generalized complex numbers, Fibonacci numbers, Lucas numbers MSC 2010, 11B39, 11B83
Kaynak
Sigma Journal of Engineering and Natural Sciences - Sigma Mühendislik ve Fen Bilimleri Dergisi
WoS Q Değeri
N/A
Scopus Q Değeri
N/A
Cilt
40
Sayı
1