A comprehensive survey of dual-generalized complex Fibonacci and Lucas numbers

Yükleniyor...
Küçük Resim

Tarih

2022

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Yıldız Teknik Üniversitesi

Erişim Hakkı

info:eu-repo/semantics/openAccess
Attribution-NonCommercial-NoDerivs 3.0 United States

Özet

This paper aims to develop dual-generalized complex Fibonacci and Lucas numbers and obtain recurrence relations. Fibonacci and Lucas’s approach to dual-generalized complex numbers contains dual-complex, hyper-dual and dual-hyperbolic situations as special cases and allows general contributions to the literature for all real number p. For this purpose, Binet’s formulas along with Tagiuri’s, Hornsberger’s, D’Ocagne’s, Cassini’s and Catalan’s identities, are calculated for dual-generalized complex Fibonacci and Lucas numbers. Finally, the results are given, and the special cases for this unification are classified.

Açıklama

Anahtar Kelimeler

Dual-generalized complex numbers, Fibonacci numbers, Lucas numbers MSC 2010, 11B39, 11B83

Kaynak

Sigma Journal of Engineering and Natural Sciences - Sigma Mühendislik ve Fen Bilimleri Dergisi

WoS Q Değeri

N/A

Scopus Q Değeri

N/A

Cilt

40

Sayı

1

Künye