Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorAl-Rousan, Nadia
dc.contributor.authorAl-Najjar, Hazem
dc.contributor.authorAlomari, Osama
dc.date.accessioned2023-07-11T07:05:51Z
dc.date.available2023-07-11T07:05:51Z
dc.date.issued2021en_US
dc.identifier.issn2213-1388
dc.identifier.issn2213-1396
dc.identifier.urihttps://hdl.handle.net/11363/4989
dc.description.abstractNowadays, predicting solar radiation is widely increased to maximize the efficiency of solar systems globally. Meteorological data from metrological stations is used to implement the intelligent prediction systems. Unfortunately, uncertainty in the used solar variables and the selected prediction models would increase the difficulties in using intelligent models to predict solar radiation. Several studies perfectly estimated solar radiation using only time and date variables. The main objective of this study is to review different prediction methods in predicting the solar radiation of Jordan. To achieve this target, five main methods including Rules, Trees, Meta, Lazy and Function Methods are selected, and then the most important and used algorithms in each method are selected to build a prediction model. The study shows that M5Rule, Random forest, Random committee, Instance Based Learning with Parameter K and multi-layer perceptron are the best algorithms in Rules, Trees, Meta, Lazy, and Function Methods respectively. Random forest algorithm performed better than other algorithms in predicting global solar radiation. The results of the analysis found that the accuracy of prediction depends on the used category, training algorithm and variables combinations.en_US
dc.language.isoengen_US
dc.publisherELSEVIER, RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDSen_US
dc.relation.isversionof10.1016/j.seta.2020.100923en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectSolar radiationen_US
dc.subjectHourly predictionen_US
dc.subjectRulesen_US
dc.subjectTreesen_US
dc.subjectMetaen_US
dc.subjectLazyen_US
dc.subjectFunctionsen_US
dc.titleAssessment of predicting hourly global solar radiation in Jordan based on Rules, Trees, Meta, Lazy and Function prediction methodsen_US
dc.typearticleen_US
dc.relation.ispartofSustainable Energy Technologies and Assessmentsen_US
dc.departmentMühendislik ve Mimarlık Fakültesien_US
dc.identifier.volume44en_US
dc.identifier.startpage1en_US
dc.identifier.endpage14en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.institutionauthorAl-Rousan, Nadia
dc.institutionauthorAl-Najjar, Hazem
dc.institutionauthorAlomari, Osama


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster

info:eu-repo/semantics/openAccess
Aksi belirtilmediği sürece bu öğenin lisansı: info:eu-repo/semantics/openAccess