Oscillatory behavior of solutions of certain fractional difference equations
Yükleniyor...
Dosyalar
Tarih
2018
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Springer
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
In this paper, we consider the oscillation behavior of solutions of the following fractional difference equation: (c(t) (a(t) (r(t) ax(t)))) + q(t) G(t) = 0, where t. Nt0+ 1-a, G(t) = t-1+ a s= t0 (t -s -1)-ax(s), and a denotes a Riemann-Liouville fractional difference operator of order 0 < a = 1. By using the generalized Riccati transformation technique, we obtain some oscillation criteria. Finally we give an example.
Açıklama
Anahtar Kelimeler
Oscillation, Oscillation criteria, Fractional difference operator, Riemann-Liouville, Fractional difference equations, Riccati technique, Hardy inequalities
Kaynak
Advances In Difference Equations
WoS Q Değeri
Q1