Gene Selection for Cancer Classification using a New Hybrid of Binary Black Hole Algorithm

dc.authoridPASHAEI, ELNAZ/0000-0001-9391-9785
dc.authoridPashaei, Elham/0000-0001-7401-4964
dc.contributor.authorPashaei, Elnaz
dc.contributor.authorPashaei, Elham
dc.date.accessioned2024-09-11T19:51:57Z
dc.date.available2024-09-11T19:51:57Z
dc.date.issued2020
dc.departmentİstanbul Gelişim Üniversitesien_US
dc.description28th Signal Processing and Communications Applications Conference (SIU) -- OCT 05-07, 2020 -- ELECTR NETWORKen_US
dc.description.abstractThis paper proposes a new hybrid approach for solving gene selection problems in cancer microarray data, which is one of the most challenging tasks in bioinformatics. Minimum-redundancy-maximum-relevance (mRMR) filter approach is combined with the binary black hole optimization algorithm (BBHA) to pick out extremely discriminative genes from cancer datasets. The support vector machine (SVM) is employed as a fitness function to accurately diagnose cancer. The experimental results prove that the suggested method exhibits better classification accuracy with the smallest gene subset compared to existing state-of-art methods.en_US
dc.description.sponsorshipIstanbul Medipol Univen_US
dc.identifier.doi10.1109/siu49456.2020.9302351
dc.identifier.isbn978-1-7281-7206-4
dc.identifier.issn2165-0608
dc.identifier.scopusqualityN/Aen_US
dc.identifier.urihttps://doi.org/10.1109/siu49456.2020.9302351
dc.identifier.urihttps://hdl.handle.net/11363/7874
dc.identifier.wosWOS:000653136100324en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartof2020 28th Signal Processing And Communications Applications Conference (Siu)en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.snmz20240903_Gen_US
dc.subjectgene selectionen_US
dc.subjectbinary black hole algorithmen_US
dc.subjectminimal-redundancy-maximal-relevanceen_US
dc.subjectsupport vector machineen_US
dc.titleGene Selection for Cancer Classification using a New Hybrid of Binary Black Hole Algorithmen_US
dc.typeConference Objecten_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Makale / Article
Boyut:
286.76 KB
Biçim:
Adobe Portable Document Format