Thermal properties of cellulose nanofibrils and nickel-titanium alloy-reinforced sustainable smart composites

dc.authoridYildirim, Mert/0000-0003-4605-607X
dc.contributor.authorYıldırım, Mert
dc.contributor.authorMutlu, Ilven
dc.contributor.authorCandan, Zeki
dc.date.accessioned2024-09-11T19:51:36Z
dc.date.available2024-09-11T19:51:36Z
dc.date.issued2024
dc.departmentİstanbul Gelişim Üniversitesien_US
dc.description.abstractThe study focused on the synergistic effect of cellulose nanofibrils (CNFs) as a lignocellulosic bionanomaterial and nickel-titanium (NiTi) alloy as a shape memory smart metallic material reinforcer on the thermal properties of sustainable smart composites. The casting process was used to produce composites with CNF loadings of 1%, 3%, and 5% and NiTi loadings of 3% into epoxy resin. Thermal properties were evaluated using thermogravimetric (TGA), derivative thermogravimetric (DTG), differential scanning calorimetry (DSC), and dynamic mechanical thermal (DMTA) analysis. The TGA results revealed that the CNF/NiTi-reinforced groups have considerable higher degradation temperatures and thermal stability than the control group. Also, at 800 degrees C, CNF/NiTi-reinforced groups had a higher residual content than the control group. DTG results showed that the addition of CNFs decreased the degradation speed. Although the NiTi loading was constant, it was determined that the addition of CNFs increases the storage modulus (E '), loss modulus (E ''), tan delta (Tan delta), and glass transition temperature (Tg). Overall, it can be concluded that CNF/NiTi-reinforced composites indicated significantly improved thermal stability, decomposition temperature, residual content, elastic, and viscous properties. These smart composites can be used for advanced material applications requiring thermal stability.en_US
dc.description.sponsorshipTurkish Academy of Sciences (TUBA)en_US
dc.description.sponsorshipThe authors would like to thank the Turkish Academy of Sciences (TUBA) for its financial support throughout the PhD thesis process. The authors would also like to thank the Biomaterials and Nanotechnology Research Group & BioNanoTeam for their valuable contributions during the PhD thesis work.en_US
dc.identifier.doi10.1080/17480272.2023.2267513
dc.identifier.endpage563en_US
dc.identifier.issn1748-0272
dc.identifier.issn1748-0280
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-85174273562en_US
dc.identifier.startpage557en_US
dc.identifier.urihttps://doi.org/10.1080/17480272.2023.2267513
dc.identifier.urihttps://hdl.handle.net/11363/7822
dc.identifier.volume19en_US
dc.identifier.wosWOS:001085808400001en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.language.isoenen_US
dc.publisherTaylor & Francis Ltden_US
dc.relation.ispartofWood Material Science & Engineeringen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.snmz20240903_Gen_US
dc.subjectAlloyen_US
dc.subjectlignocellulosic bionanomaterialsen_US
dc.subjectsmart compositesen_US
dc.subjectthermal propertiesen_US
dc.titleThermal properties of cellulose nanofibrils and nickel-titanium alloy-reinforced sustainable smart compositesen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Makale / Article
Boyut:
1.54 MB
Biçim:
Adobe Portable Document Format