A classifier prediction model to predict the status of Coronavirus CoVID-19 patients in South Korea

dc.contributor.authorAl-Najjar, Hazem
dc.contributor.authorAl-Rousan, Nadia
dc.date.accessioned2020-05-02T01:08:38Z
dc.date.available2020-05-02T01:08:38Z
dc.date.issued2020en_US
dc.departmentMühendislik ve Mimarlık Fakültesien_US
dc.descriptionDocument Information Language:English Accession Number: WOS:000525326200064 PubMed ID: 32271458en_US
dc.description.abstractOBJECTIVE: Coronavirus COVID-19 further transmitted to several countries globally. The status of the infected cases can be determined basing on the treatment process along with several other factors. This research aims to build a classifier prediction model to predict the status of recovered and death coronavirus CovID-19 patients in South Korea. MATERIALS AND METHODS: Artificial neural network principle is used to classify the collected data between February 20, 2020 and March 9, 2020. The proposed classifier used different seven variables, namely, country, infection reason, sex, group, confirmation date, birth year, and region. The most effective variables on recovered and fatal cases are analyzed based on the neural network model. RESULTS: The results found that the proposed predictive classifier efficiently predicted recovered and death cases. Besides, it is found that discovering the infection reason would increase the probability to recover the patient. This indicates that the virus might be controllable based on infection reasons. In addition, the earlier discovery of the disease affords better control and a higher probability of being recovered. CONCLUSIONS: Our recommendation is to use this model to predict the status of the patients globally.en_US
dc.identifier.doi10.26355/eurrev_202003_20709en_US
dc.identifier.endpage3403en_US
dc.identifier.issn1128-3602
dc.identifier.issue6en_US
dc.identifier.pmid32271458en_US
dc.identifier.scopus2-s2.0-85082940568en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.startpage3400en_US
dc.identifier.urihttps://hdl.handle.net/11363/2120
dc.identifier.urihttps://doi.org/
dc.identifier.volume24en_US
dc.identifier.wosWOS:000525326200064en_US
dc.identifier.wosqualityQ2en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.indekslendigikaynakPubMeden_US
dc.language.isoenen_US
dc.publisherVERDUCI PUBLISHER, VIA GREGORIO VII, ROME, 186-00165, ITALYen_US
dc.relation.ispartofEUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCESen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectEpidemiologyen_US
dc.subjectEngineering and technologyen_US
dc.subjectInfectionen_US
dc.subjectSouth Koreaen_US
dc.titleA classifier prediction model to predict the status of Coronavirus CoVID-19 patients in South Koreaen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
3400-3403.pdf
Boyut:
467.88 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Makale / Article
Lisans paketi
Listeleniyor 1 - 1 / 1
[ N/A ]
İsim:
license.txt
Boyut:
1.56 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: