Improved Object Detection Using a Robotic Sensing Antenna with Vibration Damping Control
dc.authorid | Yaşar, Claudia Fernanda/0000-0002-8760-2359 | |
dc.authorid | Feliu-Talegon, Daniel/0000-0003-1206-0644 | |
dc.authorid | Feliu-Batlle, Vicente/0000-0002-3578-7910 | |
dc.contributor.author | Feliu-Batlle, Vicente | |
dc.contributor.author | Feliu-Talegon, Daniel | |
dc.contributor.author | Fernanda Castillo-Berrio, Claudia | |
dc.date.accessioned | 2024-09-11T19:53:10Z | |
dc.date.available | 2024-09-11T19:53:10Z | |
dc.date.issued | 2017 | |
dc.department | İstanbul Gelişim Üniversitesi | en_US |
dc.description.abstract | Some insects or mammals use antennae or whiskers to detect by the sense of touch obstacles or recognize objects in environments in which other senses like vision cannot work. Artificial flexible antennae can be used in robotics to mimic this sense of touch in these recognition tasks. We have designed and built a two-degree of freedom (2DOF) flexible antenna sensor device to perform robot navigation tasks. This device is composed of a flexible beam, two servomotors that drive the beam and a load cell sensor that detects the contact of the beam with an object. It is found that the efficiency of such a device strongly depends on the speed and accuracy achieved by the antenna positioning system. These issues are severely impaired by the vibrations that appear in the antenna during its movement. However, these antennae are usually moved without taking care of these undesired vibrations. This article proposes a new closed-loop control schema that cancels vibrations and improves the free movements of the antenna. Moreover, algorithms to estimate the 3D beam position and the instant and point of contact with an object are proposed. Experiments are reported that illustrate the efficiency of these proposed algorithms and the improvements achieved in object detection tasks using a control system that cancels beam vibrations. | en_US |
dc.description.sponsorship | Spanish Agencia Estatal de Investigacion (AEI) [DPI2016-80547-R]; European Social Fund (FEDER, EU); Ministerio de Educacion, Cultura y Deporte [FPU14/02256] | en_US |
dc.description.sponsorship | This work has been supported in part by the Spanish Agencia Estatal de Investigacion (AEI) under Project DPI2016-80547-R (Ministerio de Economia y Competitividad), in part by the European Social Fund (FEDER, EU) and in part by the Spanish scholarship FPU14/02256 of the FPUProgram of the Ministerio de Educacion, Cultura y Deporte. | en_US |
dc.identifier.doi | 10.3390/s17040852 | |
dc.identifier.issn | 1424-8220 | |
dc.identifier.issue | 4 | en_US |
dc.identifier.pmid | 28406449 | en_US |
dc.identifier.scopus | 2-s2.0-85018480398 | en_US |
dc.identifier.uri | https://doi.org/10.3390/s17040852 | |
dc.identifier.uri | https://hdl.handle.net/11363/8086 | |
dc.identifier.volume | 17 | en_US |
dc.identifier.wos | WOS:000400822900193 | en_US |
dc.identifier.wosquality | Q2 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.language.iso | en | en_US |
dc.publisher | Mdpi | en_US |
dc.relation.ispartof | Sensors | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.snmz | 20240903_G | en_US |
dc.subject | robotic sensor | en_US |
dc.subject | obstacle recognition | en_US |
dc.subject | sensing antenna | en_US |
dc.subject | flexible robot | en_US |
dc.subject | motion control | en_US |
dc.subject | active vibration damping | en_US |
dc.subject | impact detection | en_US |
dc.title | Improved Object Detection Using a Robotic Sensing Antenna with Vibration Damping Control | en_US |
dc.type | Article | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1