Dual quaternion theory over HGC numbers
dc.authorid | Gürses, Nurten/0000-0001-8407-854X | |
dc.authorid | Saçlı (Şentürk), Gülsüm Yeliz/0000-0002-8647-1801 | |
dc.contributor.author | Şentürk, Gülsüm Yeliz | |
dc.contributor.author | Gürses, Nurten | |
dc.date.accessioned | 2024-09-11T19:53:20Z | |
dc.date.available | 2024-09-11T19:53:20Z | |
dc.date.issued | 2024 | |
dc.department | İstanbul Gelişim Üniversitesi | en_US |
dc.description.abstract | Knowing the applications of quaternions in various fields, such as robotics, navigation, computer visualization and animation, in this study, we give the theory of dual quaternions considering Hyperbolic-Generalized Complex (HGC) numbers as coefficients via generalized complex and hyperbolic numbers. We account for how HGC number theory can extend dual quaternions to HGC dual quaternions. Some related theoretical results with HGC Fibonacci/Lucas numbers are established, including their dual quaternions. Given HGC Fibonacci/Lucas numbers, their special matrix correspondences have been identified and these are carried out to HGC Fibonacci/Lucas dual quaternions. Furthermore, we provide a more accurate way to quickly calculate HGC Fibonacci numbers and associate this with HGC generalized Fibonacci numbers. For implementation, we produce an algorithm in Maple. Lastly, we put the theory into practice. | en_US |
dc.description.sponsorship | Istanbul Gelisim University Scientific Research Projects Application and Research Center [DUP-210720-GYS] | en_US |
dc.description.sponsorship | This study has been funded by Istanbul Gelisim University Scientific Research Projects Application and Research Center. Project number: DUP-210720-GYS. | en_US |
dc.identifier.doi | 10.47974/JDMSC-1611 | |
dc.identifier.endpage | 142 | en_US |
dc.identifier.issn | 0972-0529 | |
dc.identifier.issn | 2169-0065 | |
dc.identifier.issue | 1 | en_US |
dc.identifier.scopus | 2-s2.0-85183836218 | en_US |
dc.identifier.startpage | 117 | en_US |
dc.identifier.uri | https://doi.org/10.47974/JDMSC-1611 | |
dc.identifier.uri | https://hdl.handle.net/11363/8120 | |
dc.identifier.volume | 27 | en_US |
dc.identifier.wos | WOS:001195203500007 | en_US |
dc.identifier.wosquality | Q2 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.language.iso | en | en_US |
dc.publisher | Taru Publications | en_US |
dc.relation.ispartof | Journal of Discrete Mathematical Sciences & Cryptography | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.snmz | 20240903_G | en_US |
dc.subject | Hyperbolic-generalized complex number | en_US |
dc.subject | Dual quaternion | en_US |
dc.subject | Fibonacci number | en_US |
dc.subject | Lucas number | en_US |
dc.subject | Q-matrix | en_US |
dc.title | Dual quaternion theory over HGC numbers | en_US |
dc.type | Article | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1