Entropy generation minimization of hybrid nanofluid mixed convection flow in lid-driven square enclosure with heat-generating porous layer on inner walls

dc.authoridÇiçek, Oktay/0000-0002-4229-5543
dc.contributor.authorCicek, Oktay
dc.contributor.authorBaytas, A. Filiz
dc.contributor.authorBaytas, A. Cihat
dc.date.accessioned2024-09-11T19:51:45Z
dc.date.available2024-09-11T19:51:45Z
dc.date.issued2024
dc.departmentİstanbul Gelişim Üniversitesien_US
dc.description.abstractPurposeThis study aims to numerically scrutinize the entropy generation minimization and mixed convective heat transfer of multi-walled carbon nanotubes-Fe3O4/water hybrid nanofluid flow in a lid-driven square enclosure with heat generation in the presence of a porous layer on inner surfaces, considering local thermal non-equilibrium (LTNE) approach and the non-Darcy flow model.Design/methodology/approachThe dimensionless governing equations for hybrid nanofluid and solid phases are solved by applying the finite volume method and semi-implicit method for pressure-linked equations algorithm.FindingsThe roles of the internal heat generation in the porous layer, LTNE model and nanoparticles volume fraction on mixed convection phenomenon and entropy generation are introduced for lid-driven cavity hybrid nanofluid flow. Based on the investigation of entropy generation and heat transfer, the minimum total entropy generation and average Nusselt numbers are found at 1 <= Ri <= 10 where the effect of the forced and free convection flow directions being opposite each other is very significant. When considering various nanoparticle volume fractions, it becomes evident that the minimum entropy generation occurs in the case of phi = 0.1%. The outcomes of LTNE number reveal the operating parameters in which thermal equilibrium occurs between hybrid nanofluid and solid phases.Originality/valueThe analysis of entropy generation under various shear and buoyancy forces plays a significant role in the suitable thermal design and optimization of mixed convective heat transfer applications. This research significantly contributes to the optimization of design and the advancement of innovative solutions across diverse engineering disciplines, such as packed-bed thermal energy storage and thermal insulation.en_US
dc.identifier.doi10.1108/HFF-05-2023-0281
dc.identifier.endpage665en_US
dc.identifier.issn0961-5539
dc.identifier.issn1758-6585
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-85175733358en_US
dc.identifier.startpage629en_US
dc.identifier.urihttps://doi.org/10.1108/HFF-05-2023-0281
dc.identifier.urihttps://hdl.handle.net/11363/7846
dc.identifier.volume34en_US
dc.identifier.wosWOS:001093453500001en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.language.isoenen_US
dc.publisherEmerald Group Publishing Ltden_US
dc.relation.ispartofInternational Journal of Numerical Methods For Heat & Fluid Flowen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.snmz20240903_Gen_US
dc.subjectMixed convectionen_US
dc.subjectHybrid nanofluid flowen_US
dc.subjectPorous mediaen_US
dc.subjectThermal non-equilibriumen_US
dc.subjectEntropy generation minimizationen_US
dc.subjectNon-Darcy flowen_US
dc.titleEntropy generation minimization of hybrid nanofluid mixed convection flow in lid-driven square enclosure with heat-generating porous layer on inner wallsen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Makale / Article
Boyut:
10.62 MB
Biçim:
Adobe Portable Document Format