Investigation of soliton solutions to the Peyrard-Bishop-Deoxyribo-Nucleic-Acid dynamic model with beta-derivative

dc.authoridOzdemir, Neslihan/0000-0003-1649-0625
dc.authoridOzdemir, Neslihan/0000-0003-1649-0625
dc.authoridBayram, Mustafa/0000-0002-2994-7201
dc.authoridOzisik, Muslum/0000-0001-6143-5380
dc.authoridSecer, Aydin/0000-0002-8372-2441
dc.authoridCinar, Melih/0000-0002-4684-3631
dc.contributor.authorSecer, Aydin
dc.contributor.authorOzisik, Muslum
dc.contributor.authorBayram, Mustafa
dc.contributor.authorOzdemir, Neslihan
dc.contributor.authorCinar, Melih
dc.date.accessioned2024-09-11T19:52:06Z
dc.date.available2024-09-11T19:52:06Z
dc.date.issued2024
dc.departmentİstanbul Gelişim Üniversitesien_US
dc.description.abstractThis study purposes to extract some fractional analytical solutions of the Peyrard-Bishop-Deoxyribo-Nucleic-Acid (beta-PBDNA) dynamic model with the beta-derivative by the unified Riccati equation expansion method (UREEM). Furthermore, we examine the role of various parameters of the fractional model on the soliton dynamic. The research focuses on computational biophysics and materials science, examining the impact of various parameters on the fractional model. This paper contributes to understanding soliton solutions and the beta-PBDNA dynamic model, demonstrating the applicability of the UREEM method to various fractional models. Some soliton solutions of the model are successfully generated by applying the UREEM. Implementing the UREEM, we take a fractional wave transformation to convert the model into a nonlinear ordinary differential equation. So, a linear equation system is generated. After the system is solved, the soliton solutions are gained for the appropriate solution sets. Finally, 3D, 2D and contour graphs of diverse solutions are depicted at suitable values of parameters. In addition, this paper presents 3D, 2D and contour graphs of various solutions with suitable parameter values. The results are beneficial for interpreting the model in future work and confirm that UREEM is effectively applicable to diverse fractional models, coupled with a comprehensive graphical analysis of how different parameters influence these solutions.en_US
dc.description.sponsorshipYildiz Technical University Scientic Research Projects Coordination Unit [FBA-2022-494]en_US
dc.description.sponsorshipThis work was supported by the Yildiz Technical University Scientic Research Projects Coordination Unit under project number FBA-2022-494en_US
dc.identifier.doi10.1142/S0217984924502634
dc.identifier.issn0217-9849
dc.identifier.issn1793-6640
dc.identifier.issue27en_US
dc.identifier.scopus2-s2.0-85187011378en_US
dc.identifier.urihttps://doi.org/10.1142/S0217984924502634
dc.identifier.urihttps://hdl.handle.net/11363/7908
dc.identifier.volume38en_US
dc.identifier.wosWOS:001179717100001en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.language.isoenen_US
dc.publisherWorld Scientific Publ Co Pte Ltden_US
dc.relation.ispartofModern Physics Letters Ben_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.snmz20240903_Gen_US
dc.subjectNonlinear dynamics in DNAen_US
dc.subjectbeta-derivativeen_US
dc.subjectRiccati equationen_US
dc.subjectsolitonic behavior in biomoleculesen_US
dc.subjectparameter effecten_US
dc.titleInvestigation of soliton solutions to the Peyrard-Bishop-Deoxyribo-Nucleic-Acid dynamic model with beta-derivativeen_US
dc.typeArticleen_US

Dosyalar