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1. INTRODUCTION
FGM beams are extensively applied in many practical app-
lications of engineering. Moreover, straight beams made by 
using FG materials are mainly used in the construction of 
modern engineering structures. Because of their extensive 
usage, there are many papers dealing with the static and 
dynamic analysis of the FG beams. Several numerical and 
analytical methods are applied by engineers and scientists in 
order to investigate the behavior of those important structu-
res. Some of those studies are summarized as follows:

A shear deformable finite element (FE) was developed by 
[1] for static and dynamic analysis of beams with FGM la-
yers. They considered FSDT in their study. [2] presented an 
analytical solution for a cantilever FG beam. Solutions are 
obtained for several loading cases. They assumed the varia-
tion of the material properties in the thickness direction of 
the beam. [3] carried out the FE for static equilibrium equa-
tions of FG beams. They obtained two stiffness matrices by 
considering the influence of rotation and shear deformation.  
[4] presented a unified approach to study the static and dy-
namic analysis of FG beams by including the effects of shear 
deformation.  They extended the Timoshenko beam theory 
to study FG beams.

The static response of FG beams was examined by [5] with 
the aid of the Ritz method. The beams were considered that 

their material is FG through the thickness direction.  [6] de-
rived the governing equation for static and dynamic respon-
ses of FG beams by considering the influence of shear de-
formation. They extended the Levinson beam theory to FG 
beams. A refined shear deformation theory was developed 
by  [7] for the static and dynamic analysis of FG beams. The-
ir developed theory doesn’t need any shear correction factor.

Several deformation theories for static and dynamic respon-
se of FG beams were presented by [8]. They also examined 
the effects of the material gradient index on the bending be-
havior of the considered structures. A refined exponential 
shear deformation theory was suggested by [9] to study the 
bending behavior of FG beams. [10] developed an analytical 
relationship between the static response of Euler Bernoulli 
and Timoshenko FG beams. They investigated the effects of 
material inhomogeneity and shear deformation on the static 
behavior of FG beams. An efficient approach was suggested 
by [11] to study the static response of FG beams with the aid 
of the finite volume method and Timoshenko’s beam theory. 
[12] presented a one-dimensional FE based on zig-zag theo-
ry to carry out the static behavior and natural frequencies of 
FG beams. They used linear interpolation for axial displace-
ments and deflections. A FE model was presented by [13] to 
examine the behavior of homogenous and FG beams. She-
ar deformation was considered in their formulations. They 
built a FORTRAN code to predict the static response. The 
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CFM is successfully applied previously in structural mecha-
nics problems by [14-20]

The main aim of this study is to suggest an accurate and ef-
fective numerical approach for the bending analysis of FG 
straight beams. The mechanical properties of the material 
are assumed to vary continuously in the thickness direction 
of the beam according to a power law form. We studied the 
static response of FG straight beams made of metal alloy and 
ceramic for several boundary conditions. The influence of 
the material properties on the static response of the con-
sidered beams is carried out. The equations which govern 
the static response of the considered structure are obtained 
with the aid of minimum total potential energy based on 
the Timoshenko’s beam theory. For numerical calculations, 
the fifth-order Runge –Kutta (RK5) algorithm is applied. To 
predict the static response of FG beams by the presented 
procedure a computer program is prepared in Fortran. To 
demonstrate the validity and applicability of the current ap-
proach, some of the present results are compared with the 
results of the literature. Accuracy and good agreement are 
observed.

2. MATERIAL AND THEORY

2.1 Functionally Graded Materials
Consider a FG straight beam as given in Figure 1. The 
Young’s modulus of this beam is considered to vary continu-
ously only in the thickness direction of the beam by Eq. (1). 
The Poisson’s ratio (υ) is considered to be constant.  

Figure 1. FG beam
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where, Et and Eb are the modulus of elasticity of the top and 
bottom of the beam. nz is a constant defining the variation 
of modulus of elasticity along the thickness direction of the 
considered beam. It can be clearly seen that when z = -h/2 
the E(z)=Eb and z = +h/2 the E(z)=Et. When the nz =0 the 
material of the beam is isotropic homogeneous material. 

2.2 Governing Equations
The displacement field for the considered beam based on 
FSDT can be given as follows:

U u x z xx i= +] ]g g  (2)
U w xz = ] g   (3)

where u is the axial displacement, w is the vertical deflection 
and θ is the rotating angle along the mid-plane of the beam 
(z=0). The relationship between the displacements and stra-
ins can be given by Eqs. (4-5). 
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The relations of stress-strain for the considered FG straight 
beam are:
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where G(z) is the shear modulus. The relationships between 
internal forces(axial force Nx, moment of the bending Mx, 
and shear force Qz) and stresses are given in the integral 
form as follows.
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where ks is the shear correction factor. Constitutive equati-
ons of the considered beam can be given as follows:

N A u Ax 11 12i= +l l  (11)
Q A wz 33 i= + l] g  (12)
M A u Ax 12 22i= +l l  (13)

where
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The minimum total potential energy principle is used to ob-
tain the governing equations of the FG beams as follows:

p u p w dA dx2
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The minimum total potential energy is
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By defining the canonically conjugate momentums and their 
derivatives to the coordinates (𝑢,w,θ) the set of canonical 
ordinary differential equations can be obtained as follows:
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The bending response of the considered beam is examined 
using the CFM. The RK5 algorithm is used to carry out the 
initial value problem based on the CFM. The obtained first 
order 6 sets of ordinary differential equations can be expres-
sed in matrix form as follows.

Fdx
d x

x x xZ
A Z= +

] ] ] ]g g g g6 @" " ", , ,  (26)
For the solution of the initial-value problem based on the 
CFM see [14]. Using this method does not calculate only the 
unknown function itself (displacement) but also calculates 
its derivatives (rotations, internal forces and moments). This 
method can be applied for any arbitrary continues functi-
ons. To obtain the general solution of the governing equati-
on, boundary conditions are required. Boundary conditions 
are as follows:

Simply supported beam (S-S)

; ;u w M at x0 0 0 0x= = = =  (27)
; ;w N M at x L0 0 0x x= = = =  (28)

Cantilever beam (C)

; ;u w at x0 0 0 0i= = = =  (29)
; ;N Q M at x L0 0 0x z x= = = =  (30)

Clamped-clamped supported beam (C-C)

; ;u w at x0 0 0 0i= = = =  (31)
; ;u w at x L0 0 0i= = = =  (32)

3. NUMERICAL EXAMPLES AND DISCUSSION 
In this study, a computer program is coded in Fortran prog-
raming language which examines the bending analysis of FG 
beams. The static response of FG beams is investigated for 
various boundary conditions and several material gradient 
indices.  In this section, numerical results are carried out to 
verify the accuracy of the presented approach and to investi-
gate the displacements of FG beams. As the shear correction 
factor, a value of ks = 5/6 is used. To obtain non-dimensional 
vertical displacements of the considered structure under the 
uniformly distributed load, the following terms are used. 
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where pz is uniformly distributed load (see Figure 1), EAl is 
Young’s modulus of Aluminum,  is the vertical displacement 
(z=0), L is the beam length, b is the width and h is the height 
of the beam cross-section. When the literature is reviewed 
it can be seen that Eq. (33) has been published incorrectly in 

Table 1. Non-dimensional maximum vertical displacements of S-S FG beams subjected a uniformly distributed load.

L/h References
Material Gradient Index, nz 

Full Metal 0.5 1 2 5 Full Ceramic

4

Ref. [5] (ks =1) 1.13002 0.71482 0.62936 0.56165 0.49176 0.39550

Ref. [21](ks =1) 1.13000 0.71472 0.62933 0.56163 0.49175 0.39550

Ref. [21] (ks =5/6) 1.15600 0.73078 0.64281 0.57325 0.50196 0.40460

Present Study  (ks =1) 1.13000 0.71517 0.62935 0.56164 0.49176 0.39550

Present Study (ks =5/6) 1.15600 0.73123 0.64283 0.57326 0.50196 0.40460

Relative Error (ks =5/6) 3.24E-08 6.17E-04 3.35E-05 1.87E-05 4.20E-06 2.74E-16

16

Ref. [5] (ks =1) 1.00812 0.63953 0.56615 0.50718 0.44391 0.35284

Ref. [21](ks =1) 1.00810 0.63944 0.56613 0.50717 0.44391 0.35284

Ref. [21] (ks =5/6) 1.00980 0.64045 0.56698 0.50790 0.44455 0.35341

Present Study (ks =1) 1.00813 0.63989 0.56616 0.50719 0.44392 0.35284

Present Study (ks =5/6) 1.00975 0.64090 0.56700 0.50791 0.44456 0.35341

Relative Error (ks =5/6) 4.95E-05 6.98E-04 3.19E-05 2.94E-05 1.24E-05 7.07E-06

Table 2. Non-dimensional maximum vertical displacements of FG beams subjected a uniformly distributed load.

L/h Theory
Material Gradient Index, nz

Full Ceramic 1 2 5 Full Metal

4

S-S Beam

FSDT 0.40460 0.64283 0.73519 0.82403 1.15600

C Beam

FSDT 0.37275 0.59565 0.67899 0.75454 1.06500

C-C Beam

FSDT 0.62300 0.96639 1.12061 1.30054 1.78000

16

S-S Beam

FSDT 0.35341 0.56700 0.64486 0.71235 1.00975

C Beam

FSDT 0.35142 0.56405 0.64135 0.70801 1.00407

C-C Beam

FSDT 0.36706 0.58722 0.66895 0.74213 1.04875



4  European Mechanical Science, March 2020, 4(1): 1-6 
 doi: https://doi.org/10.26701/ems.590864

Static Analysis of FG Beams via Complementary Functions Method

[5] due to some typos errors.

Firstly, the static responses of two S-S FG beams with L/h ra-
tios of 4 and 16 under uniform load are investigated. FGMs 
are composed of Aluminum (Al: Et = EAl=70 GPa; υAl =0.3) 
in the top surface and Zirconia (ZnO2: Eb = Ezr=200 GPa; 
υzr =0.3) in the bottom surface. To confirm the presented 
results, comparisons were made with those of [5] and [21]. 
The solutions are calculated at 11 collocation points through 
the length of the beam (10 divisions). The maximum dimen-
sionless vertical displacements for various values of material 
gradient index are tabulated in Table 1. It must be noted, 
that even though it is reported in [5] that the shear correc-
tion has been taken as ks=5/6 but it must be 1 in [5] so that 
their reported results can be obtained. It can be seen clear-
ly in Table 1 that current results are in excellent agreement 
with previous studies. Relative error is defined as Ref

Ref CFM

21

21 -5
5
?
?  

and is calculated for maximum displacements. It can be ob-
served in this table that displacement results decrease with 
increasing the value of material gradient index. It should be 
emphasized that as the material gradient index nz increases, 
the FG beams approach to full ceramic beam.

The maximum non-dimensional vertical displacements for 
various boundary conditions and several material gradient 
index are listed in Table 2. Unless expressly provided ot-
herwise, the bottom surface of the beams is always assumed 
to be Aluminum (Al: Eb = EAl=70 GPa; υAl =0.3)  and the 
top surface of the beam is always considered to be Zirconia 
(ZnO2: Ebt = Ezr=200 GPa; υzr =0.3)  in the given examples. In 
sharp contrast to the previous case, in this example, maxi-
mum non-dimensional vertical displacements increase as 
the material gradient index increase (Table 2).

Axial displacement, transverse deflection, and rotation 
along the axis of the beam are given in Figures. (2-4). All 
of those quantities increase with increasing the value of the 
material gradient index. When the beam is homogenous, 
axial displacement doesn’t occur. Heterogeneity of the ma-
terial causes axial displacement in those FG beams which 
are only subjected to vertical loads. Figures (2- 4) are plotted 
for a clamped-clamped FG beam, with L = 0.4 m, b = 0.1 m, 
h = 0.1 m subjected to a uniform distributed load of  pz= 100 
N/m. 

Figure 2. Axial displacement of C-C FG beam.

Figure 3. Vertical displacement of C-C FG beam.

Figure 4. Rotation of C-C FG beam.

The axial and vertical displacements, rotations and bending 
moment values of FG beams are illustrated in Figures (5-8) 
for several kinds of support types to show the effect of vari-
ous boundary conditions on the static response of the pre-
sent class problem. The geometric properties of the beam 
and the loading are assumed to be the same as the previous 
example. The material gradient index, nz, is taken to be 1. 

Figure 5. Axial displacement of FG beams.

Figure 6. Vertical displacement of FG beams.
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Figure 7. Rotation of FG beams.

Figure 8. Bending moment of FG beams.

It can be seen in Figure 5, that the axial displacement values 
of S-S and C-C FG beams are the same. Figure 6-7 demons-
trate that C-C beam has the smallest vertical deflection and 
rotation while S-S beam has the highest transverse deflecti-
on and rotation. It is clear in Figure 8 that the internal ben-
ding moment values are higher in beams with C-S and S-C 
supports than those of C-C supported beams. 

4. CONCLUSION

The main purpose of this paper is the application of the 
CFM to static response of FG beams. Governing equations 
of FG beams are carried out by the principle of minimum 
total potential energy based on the Timoshenko’s beam the-
ory. By applying the current procedure, the static response 
of FG beams subjected to arbitrary axial and vertical loads 
can be examined for various boundary conditions. Results 
of the suggested model have been validated for several types 
of FG beams. A computer program is coded in Fortran. In 
the solution process the effect of shear deformation is consi-
dered. The results obtained from the program are compared 
with the results of available literature in tabular form and 
excellent agreement is observed. Besides, the effects of ma-
terial gradient index and boundary conditions on the static 
response of FG beams are investigated in detail. Given tab-
les and Figures evinced that change of the material gradient 
index has a remarkable influence on the static response of 
FG beams. 
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