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A B S T R A C T 

Optimization is a widely used phenomenon in various problems and fields. Because 
time and resources are very limited in today's world, it can be said that the usage 

area of the optimization process will be expanded and spread in all areas of life. Alt-

hough different methods are used in the realization of the optimization process, the 

performance of metaheuristic algorithms in solving problems has led to an increase 

in research on these methods. As in other fields, the application examples of these 

algorithms are diversifying and increasing in the field of structural engineering. In 
this study, the performance comparison of five different algorithms for the optimum 

design of an axisymmetric cylindrical wall with a dome is investigated. These algo-

rithms are Jaya (JA), Flower pollination (FPA), teaching-learning-based optimization 

(TLBO) algorithms and two hybrid versions of these algorithms. ACI 318 regulation 

was used in reinforced concrete design with a flexibility method-based approach in 

the analyses. In the analyzes with five different situations of the wall height, some 

statistical values , and data of analysis numbers were obtained by running the algo-

rithms a large number of times. According to the analysis results, Jaya algorithm is 

slightly better in terms of the speed of reaching the optimum result, but also all algo-

rithms are quite effective and reliable in solving the problem. 
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1. Introduction 

In almost all of the natural events that take place in 
the world, it is seen that the events operate in the most 
appropriate order under various conditions such as 
time, situation, and environmental conditions, and the 
operation is updated to maintain the most appropriate 
order in the face of changing situations. 

These events, which take place for various reasons 
such as migration, hunting, movement in a hierarchical 
order, usually take place to survive in the balance of na-
ture. For this reason, the process must be in the most ap-
propriate way according to environmental factors. The 
most appropriate order seen in the behavior of other 
living things can be observed in the design and pro-
cesses of civilizations established by humans, such as 
the locations of cities, road routes, tools used, city in-
frastructure systems, structural designs, defense sys-
tems. However, the main difference between humans 

and other living things is that while other creatures man-
age the processes with their intuition, people's intuitions 
and their minds, which include various processes such 
as observation, experience, and thinking, evaluate the 
situation and act. Today, many engineering designs have 
been developed as a result of these observations of na-
ture by scientists, and have been presented to humanity 
in many different ways, directly or indirectly. Metaheu-
ristic algorithms can be given as an example of this situ-
ation. 

Metaheuristic algorithms are methods developed as a 
result of mathematical equations expressing the heuris-
tic behaviors of living things to maintain processes such 
as movement, migration, feeding in the most appropriate 
way possible as a result of nature observations, and are 
generally used for optimization purposes. Examples of 
metaheuristic algorithms, the variety and number of 
which have increased with the development of computer 
processor technology, are presented in Table 1. 
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Table 1. Metaheuristic algorithms and origins. 

Name Developer Observation  

Genetic Algorithm Holland (1975) Nature evolutionary mechanisms 

Simulated Annealing  Kirkpatrick et al. (1983) Metal heating-cooling process 

Particle Swarm Optimization  Kennedy and Ebarhart (1995) Social behavior during  the movement of organisms 

Differential Evaluation  Storn and Price (1997) Evolutionary process 

Harmony Search  Geem et al. (2001) Musical processes 

Big bang-big Crunch Erol and Eksin (2006) Big-bang big-crunch theory of universe evolution 

Artificial Bee Colony Algorithm (ABC) Karaboga and Basturk (2007) Foraging intelligence of bee 

Cuckoo Search Algorithm Yang and Deb (2009) The parasitic process in the cuckoo brood 

Firefly Algorithm Yang (2009) Flashing light behavior of fireflies 

Bat Algorithm Yang (2010) Bats echolocation behaviour used  for search directions and location 

Teaching-learning based Optimization Rao et al. (2011) Teacher and learner roles during education  

Flower Pollination Algorithm Yang (2012) Pollination process of flowers 

Krill Herd Gandomi and Alavi (2012) Herding behavior of krill’s  

Grey Wolf Optimizer Mirjalili et al. (2014) The hierarchy between grey wolf packs  

Jaya Algorithm  Rao (2016) Victory means in Sanskrit  

Today, metaheuristic algorithms of optimization 
problems are frequently used in many engineering 
fields. One of them is the field of structural engineering, 
which is one of the sub-branches of civil engineering, 
where studies are carried out within the scope of struc-
tural design. Examples of optimization problems in 
which metaheuristic algorithms are used in structural 
engineering are beams (Coello et al., 1997; Rafiq and 
Southcombe, 1998; Govindaraj and Ramasamy, 2005; 
Akın and Saka, 2010; Fedghouche and Tiliouine, 2012; 
Bekdaş and Nigdeli, 2013; Kayabekir et al., 2019; Zhao et 
al., 2021), columns (Bekdaş and Nigdeli, 2014; 2016a; 
2016b; de Medeiros and Kripta, 2014; Nigdeli et al., 
2015; Cakiroglu et al., 2021), frames (Bekdaş and 
Nigdeli, 2017; Nigdeli and Bekdaş, 2016; Ghatte, 2021), 
foundations (Nigdeli et al., 2018; Kashani et al., 2021), 
retaining walls (Ceranic et al., 2001; Yepes et al., 2008; 
Camp and Akin, 2011; Kayabekir et al., 2020; Yücel et al., 
2021; Martínez-Muñoz et al., 2021; Shalchi Tousi et al., 
2021), Carbon Fiber Reinforced Polymer retrofit (Kay-
abekir et al., 2017; 2018) and cylindrical walls (Bekdaş, 
2014; 2015; 2018; 2019; Kayabekir, 2021).  

In this study, the optimum design of axially symmet-
rical cylindrical reinforced concrete walls with a dome 
on top has been investigated. In the optimization prob-
lem, the objective function is defined as the minimization 
of the total cost of the cylindrical wall consisting of steel 
and concrete. Long cylindrical walls were assumed in the 
analyzes and the flexibility method was used to calculate 
the internal forces. Hybrid algorithms of Flower Pollina-
tion Algorithm, Jaya Algorithm and Teaching Learning-
Based Optimization have been proposed for optimiza-
tion. The performance of the hybrid algorithm was 
tested under various conditions of the cylindrical wall. 
Then, these analysis results were also compared with the 

Flower pollination algorithm, teaching learning-based 
algorithm, and Jaya, which are known to be effective in 
the literature in optimization. 

 

2. Optimum Design Methodology 

In this section, the methodology including the details of 
the application of metaheuristic algorithms to the optimi-
zation problem is presented. In the literature, in optimiza-
tion problems in which metaheuristic algorithms are used 
in general, the methodology is collected in five main steps. 
The operations performed in steps 1, 2, 3, and 5 of these 
five steps are similar in almost all algorithms. Only the op-
eration performed in step 4 includes some algorithm-spe-
cific mathematical expressions. These five steps and the 
operations performed in each step are summarized below. 

In the first step, the data entry of the problem is done. 
These data are design constants, ranges of design varia-
bles and special parameters of the optimization algo-
rithm, number of solution vectors (vn), and stopping cri-
teria (sc). Information about the design constants and 
design variables used in optimization are given in Tables 
2 and 3, respectively. 

Some of the algorithms, especially those developed in 
recent years, are parameter-free, that is, they do not 
have algorithm-specific parameters. Except for FPA, this 
study is parameter-free in the algorithms used. FPA al-
gorithm has a parameter called switch probability (sp). 

The stopping criterion, which stops the optimization 
process, is used in different ways in the literature. One of 
these, perhaps the most common, is to set a maximum 
value for iterations. This approach was also applied in 
this study. In this study, vn, sp, and sc values were taken 
as 20, 0.5, and 20000, respectively.  
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Table 2. The design constants of the optimization problem. 

Description Symbol Unit Value 

Radius of wall R m 18 

Height of the wall H m 5-7 

Height of the dome Hd m 3 

The thickness of the dome hd m 0.25 

Yield strength of steel fy MPa 420 

Concrete cover cc mm 50 

Compressive strength of concrete f΄c MPa 30 

The elasticity modulus of concrete Ec MPa 4700(f΄c)1/2 

Poisson ratio of concrete ν - 0.2 

Density of liquid γ kN/m3 10 

Minimum reinforcement ratio min - 0.008 

Unit concrete cost Cc TL/m3 290 

Unit steel cost Cs TL/ton 7400 

Table 3. The design variables and ranges of the optimization problem. 

Description Symbol Unit Range 

The thickness of the wall hw m 0.2-2.0 

Diameter of the steel bars R mm 8-60 

Spacing between the steel bars S mm Smin* ≤ Sh ≤ Smax# 

*Smin=max(25, ϕ) and #Smax=max(450, 5hw) 

In the second step, the initial solution matrix is con-
structed. This matrix contains randomly generated de-
sign variables within the range for each solution vector 
(Table 3). Each design variable is generated between the 
lower and upper limits as in Eq. (1) and stored in the cor-
responding row of the solution vector.  

𝑋𝑖 = 𝑋𝑖(min) + rand(𝑋𝑖(max) − 𝑋𝑖(min)) (1) 

In the equation, Xi (min) and Xi (max) represent the lower 
and upper limits of the ith design variable, respectively, 
and the rand is a function that produces a single uni-
formly distributed random number in the interval 
(0,1). 

The third step includes the analysis and design 
phases. In this step, analysis and design are done for each 
solution vector, and then the objective function is calcu-
lated. In this study, the sum of the steel and concrete 
costs of the cylindrical wall design is defined as the ob-
jective function (Eq. (2)).  

𝑓(𝑥) = 𝐶𝑐𝑉𝑐 + 𝐶𝑠𝑊𝑠 (2) 

In the equation, Vc and Ws represent the total concrete 
volume and steel weight, respectively. 

Analyzes were done using the flexibility theory (see in 
Section 3) according to the assumption of a long cylindri-
cal wall, and the design was done by the requirements of 
ACI 318-Building code requirements for structural con-
crete. Accordingly, the constraints controlled during the 
design process are presented in Table 4. 
 

Table 4. The design constraints of the  
optimization problem. 

Description Symbol 

Flexural strength capacity, Md Md ≥Mu 

Shear strength capacity, Vd Vd ≥ Vu 

Minimum steel ratio, ρmin As≥ Asmin 

Maximum steel bars spacing, Smax S ≤ Smax 

Minimum steel bars spacing, Smin S ≥ Smin 

Minimum concrete cover, ccmin ccmin ≥ 40 mm 

 

If these constraints are not satisfied in any solution 
vector, the process called punishment is applied. It is 
known that there are different types of punishment in 
the literature. In this study, punishment is done by 
equating the objective function to a very large value. 

Since the target in optimization is to obtain the lowest 
cost design, this penalty in the objective functions en-
sures that these solutions are eliminated in the following 
steps, thus convergence to the lowest solutions. In the 
study, this penalty value was taken as 106. 

The fourth step is the step in which new solution vec-
tors are obtained according to the algorithm rules. As 
mentioned before, this step is unique in algorithms be-
cause each algorithm applies its own rules. 

In this study, JA, TLBO, FPA, and two hybrid algo-
rithms were applied to the problem and the perfor-
mances of the algorithms were compared. These algo-
rithms were proved as effective ones in structural engi-
neering problems and include unique features. The use 
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of Levy distribution, being a user-defined specific pa-
rameter-free algorithm and being a single-phase method 
using both of best and worst solutions in an equation are 
the unique features of FPA, TLBO and JA, respectively. 
These unique features provide differentiation of these 
algorithms. To reach a better solution sensitively, the 
classical algorithms need to be improved and hybrid al-
gorithms are constructed via these algorithms. The 
equations used to generate a new solution matrix for 
these algorithms are given below. 

The Jaya algorithm is a parameter-free algorithm us-
ing a single equation. In the algorithm, each solution (for 
example Xti,j is the ith solution) is tried to be improved by 
using the best (g*) and worst (gw) solutions in terms of 
the objective function. Accordingly, a new solution 
(Xt+1i,j) can be found as follows  

𝑋𝑖,𝑗
𝑡+1 = 𝑋𝑖,𝑗

𝑡 + rand(𝑔∗ − 𝑋𝑖,𝑗
𝑡 ) −  rand(𝑔𝑤 − 𝑋𝑖,𝑗

𝑡 ) (3) 

In the TLBO algorithm, two different equations such 
as FPA are used in new solutions. These are called the 
teacher and student phases, respectively. However, un-
like the choice done depending on the sp value in FPA, 
these two equations are applied sequentially in TLBO.  

The teacher role is the person who has the best 
knowledge in the classroom and teaches the others. In 
the teacher phase of the algorithm, this corresponds to 
the solution with the best objective function among the 
solution vectors. According to this, the teacher phase can 
be written as  

𝑋𝑖,𝑗
𝑡+1 = 𝑋𝑖,𝑗

𝑡 + rand(𝑔∗ − 𝑇𝐹 𝑋mean,𝑗
𝑡 ) (4) 

In this equation, Xtmean,j is the mean value of the design 
variables, and TF, called the teaching factor, is a coeffi-
cient calculated according to Eq. (5).  

𝑇𝐹 =  round (1 + rand ( )) (5) 

The student phase, on the other hand, stimulates the 
learning of students as a result of their interaction. This 
situation, which shows the interaction of randomly se-
lected solutions (Xtm,j and Xtn,j) is seen in Eq. (6).  

𝑋𝑖,𝑗
𝑡+1 = {

𝑓(𝑋)𝑛 < 𝑓(𝑋)𝑚 ,     𝑋𝑖,𝑗
𝑡 + rand(𝑋𝑚,𝑗

𝑡 − 𝑋𝑛,𝑗
𝑡 )

𝑓(𝑋)𝑛 > 𝑓(𝑋)𝑚 ,     𝑋𝑖,𝑗
𝑡 + rand(𝑋𝑛,𝑗

𝑡 − 𝑋𝑚,𝑗
𝑡 )

 (6) 

According to the FPA, new solutions can be produced 
according to two different equations. These equations 
simulate global and local pollination, respectively. The 
equation to be used in generating a new value is decided 
according to the switch probability (sp) value. Accord-
ingly, a random value is generated with the rand function 
and compared with sp. If the rand value is less than sp, 
global pollination is applied (Eq. (7)), otherwise, local 
pollination is applied (Eq. (8)). Levy flight, which is the 
value simulating the flight of pollen in the global pollina-
tion equation, is defined by the letter L.  

𝑋𝑖,𝑗
𝑡+1 = 𝑋𝑖,𝑗

𝑡 + 𝐿(𝑔∗ − 𝑋𝑖,𝑗
𝑡 ) (7) 

𝑋𝑖,𝑗
𝑡+1 = 𝑋𝑖,𝑗

𝑡 + rand(𝑋𝑚,𝑗
𝑡 − 𝑋𝑛,𝑗

𝑡 ) (8) 

The hybrid algorithms used in the study consist of the 
student phase/local pollination phase with Jaya. In addi-
tion, a modification was done to the Jaya equation by us-
ing L instead of the rand function as given in Eq. (9).  

𝑋𝑖,𝑗
𝑡+1 = 𝑋𝑖,𝑗

𝑡 + 𝐿(𝑔∗ − 𝑋𝑖,𝑗
𝑡 ) − 𝐿(𝑔𝑤 − 𝑋𝑖,𝑗

𝑡 ) (9) 

During the optimization, for the first hybrid algorithm 
called JALS, one of the Eq. (8) and Eq. (9) is used to gen-
erate new solutions according to the switch probability 
value defined in FPA.  

The second hybrid algorithm, JALS2 is used two 
phases consecutively like TLBO. In these phases, both Eq. 
(8) and Eq. (9) in the generation of new solutions. In 
these phases, the production of new solutions is done ac-
cording to Eq. (8) and Eq. (9), respectively. 

In the last step, new solutions are compared with ex-
isting solutions. If objective function value of new solu-
tions better than existing ones, existing solution matrix 
is updated with new solutions. Otherwise no change is 
done. The last step and the fourth step are continued as 
satisfied stopping criteria of the optimization. The opti-
mization process defined in five steps is also summa-
rized with the pseudo code in Fig. 1.

 
Step 1: Data entering process 

Enter design constants (Table 2), ultimate limit of design variables (Table 3), algorithm parameters, number of solution vectors (vn) and stop-
ping criteria (sc). 

Step 2: Initial solution matrix generation process 
Generate total vn solution vectors according to Eq. (1), including randomly generated design variables and save the vectors in the initial solution 

matrix. 

Step 3: Analysis and design process 
Analyze and design the system using each solution vector. Then, calculate the objective function (Eq. (2)) for each solution vector and stored in 

the objective function vector. 

  while iteration number <stopping criteria (sc) 

Step 4: Initial solution matrix generation process 
Generate new solution vectors according to the algorithm rules. 

Step 5: Comparing of solution matrices 
      if objective function value of new solutions better than existing ones  
         Modify the existing solution matrix  
      end (if) 

  end (while) 

Fig. 1. Pseudo code of optimization process.  



184 Kayabekir / Challenge Journal of Structural Mechanics 7 (4) (2021) 180–187  

 
 

3. Analysis of Axially Symmetrical Cylindrical Shells 

A small piece of the shell shown in Fig. 2 can be taken 
to obtain the general solution for cylindrical shells. Con-
sidering the equilibrium condition by taking into ac-
count symmetry and some constant forces, Eq. (10) can 
be written.  

𝑑𝑁𝑥

𝑑𝑥
𝑟𝑑𝑥𝑑𝜑 = 0  

𝑑𝑄𝑥

𝑑𝑥
𝑟𝑑𝑥𝑑𝜑 + 𝑁𝜑𝑑𝑥𝑑𝜑 + 𝑞𝑟𝑑𝑥𝑑𝜑 = 0  

𝑑𝑀𝑥

𝑑𝑥
𝑟𝑑𝑥𝑑𝜑 − 𝑄𝑥𝑟𝑑𝑥𝑑𝜑 = 0 (10) 

From the solution of these equations to the axially 
symmetrical cylindrical shell conditions with appropri-
ate assumptions, the general solution can be defined as  

𝑤 = 𝑒𝛽𝑥(𝐶1 cos𝛽𝑥 + 𝐶2 sin𝛽𝑥)+𝑒−𝛽𝑥(𝐶3 cos𝛽𝑥 +

𝐶4 sin𝛽𝑥) + 𝑓(𝑥) (11) 

where C1-4 are integration constants that depend on sup-
port conditions, f(x) is a particular solution. β is a nota-
tion used in differential equation solutions and is given 
in Eq. (12).   

𝛽4 =
𝐸ℎ

4𝑟2𝐷
=

3(1−𝜈2)

𝑟2ℎ2  (12) 

In the equation, E, h, r, D, and ν are elasticity modulus, 
thickness, radius, rigidity (Eq. (13)), and Poisson’s ratio, 
respectively.   

𝐷 =
𝐸ℎ3

12−(1−𝜈2)
 (13) 

When the structure of this equation is examined, it is 
seen that the effects on the wall decrease rapidly as you 
move away from the point where the load affects, and 
converge to zero after a certain point. In this case, it 
means that the cylindrical wall of a certain length and the 
wall of infinite length give approximately the same re-
sults. This approach greatly simplifies the general equa-
tion whose solution includes assumptions and complex 
mathematical operations. The solution equation of this 
situation, which is called the long wall, can be written as  

𝑤 = 𝑒−𝛽𝑥  (𝐶3 cos𝛽𝑥 + 𝐶4 sin𝛽𝑥) (14) 

Detailed information about this situation can be found 
in several books (Billington, 1965; Timoshenko and Woi-
nowsky-Krieger, 1984).

 
Fig. 2. A small element of circular cylindrical shell.

4. Analysis of Cylindrical Wall with Flexibility 
Theory 

In Fig. 3, a cylindrical wall under the water loading 
with a fixed base supported and the unknown forces in 
the equivalent isostatic system can be seen. 

The compatibility equations for the structure can be 
written as  

𝐷10 + 𝐹11𝑋1 + 𝐹12𝑋2 = 0  

𝐷20 + 𝐹22𝑋2 + 𝐹21𝑋2 = 0 (15) 

In the equation, D10, D20 are displacement terms; F11, 
F12, F21, and F22 are flexibility coefficients. The equations 
of these terms are as follows  

𝐷10 = −
𝛾𝑟2𝐻

𝐸ℎ
   𝑎𝑛𝑑    𝐷20 =

𝛾𝑟2

𝐸ℎ
 (16) 

𝐹11 =
1

2𝛽3𝐷
  ,   𝐹22 =

1

𝛽𝐷
    𝑎𝑛𝑑    𝐹12 = 𝐹21 = −

1

2𝛽2𝐷
 (17) 

where γ is liquid density and H is height of the wall. By 
implementing Eqs. (16-17) to Eq. (15), redundant forces 
can be obtained as  
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[
𝑋1

𝑋2
] =  𝐹−1 [

−
𝛾∙𝑟2∙𝐻

𝐸∙ℎ

𝛾∙𝑟2

𝐸∙ℎ
 

] (18) 

These two forces are those that only occur in the case 
of a cylindrical wall. In the case of a dome on the wall, the 
displacement (Eq. (19)) and flexibility (Eq. (20)) terms 
of the dome can be added to the wall terms and the result 
can be obtained easily.  

𝐷10𝑑 =
𝑟𝑑

2𝑞

𝐸𝑑ℎ𝑑
(

1+𝜈𝑑

1+cos𝛼
− cos𝛼) sin𝛼    

𝐷20𝑑 =
𝑟𝑑𝑞

𝐸𝑑ℎ𝑑
(2 + 𝜈𝑑) sin𝛼 (19) 

𝐹11𝑑 =
2𝑟𝑑𝜆𝑑sin2𝛼

𝐸𝑑ℎ𝑑
    ,  𝐹12𝑑 = 𝐹21𝑑 =

2𝜆𝑑
2 sin𝛼

𝐸𝑑ℎ𝑑
    ,   

and   𝐹22𝑑 =   
4𝜆𝑑

3

𝐸𝑑ℎ𝑑𝑟𝑑
  (20) 

In these equations, rd, 𝜈d, α, Ed, λd, and hd are radius, 
Poisson’s ratio, starting angle, elasticity modulus, a term 
that contains several properties of dome and thickness 
of the dome, respectively. After the values in the equa-
tion are calculated and added to the wall terms (Fs, D10s 
and D20s), the unknown forces at the top of the wall can 
be calculated as  

[
𝑋3

𝑋4
] =  𝐹𝑠

−1 [
𝐷10𝑠

𝐷20𝑠
] (21) 

A further explanation for this application can be found 
in Billington (1965) and Kayabekir (2021).

 

Fig. 3. a) A Fixed based wall; b) Equivalent statically determinate system.

5. Numerical Examples 

In this section, optimization via metaheuristic-based 
optimization methodologies JA, JALS, JALS2, FPA, and 
TLBO are performed for 5 cases including different wall 
heights, from 5m to 7m with 0.5m increments. The opti-
mization process of each case was done for 20 runs.  

The optimum thickness of the wall (hw) and statistical 
values of the objective function are given in Table 5. Ta-
ble “Min. cost”, “Ave. cost”, “SD” and “Analyses num.” 
show minimum cost, average cost, standard deviation, 
and the average analysis number for which the optimum 
result is found respectively. 

It can be seen from Table 5 that the optimum wall 
thickness increases as the wall height increases. There-
fore, as the height increases, the cost also increases. This 
increase between two consecutive cases was approxi-
mately 12.43% - 16.28% for hw and 21.88% - 26.85% for 
minimum cost. In addition, as the wall height increases, 
the differences between successive cases decrease. 

Considering the hw and minimum cost values calcu-
lated for each case, it is seen that the algorithms find ap-
proximately the same results.   

According to statistical data, the standard deviation 
value for each algorithm is very close to zero. This situa-
tion shows that the algorithms find the nearly same min-
imum cost value in each run for a cylindrical wall prob-
lem having one design variable, that is, the algorithms 
provide stable results. For that reason, the average cost 
values are also similar. 

Although the algorithms provide similar results, they 
reach optimum results at different analysis numbers. For 
all cases, JA reaches the optimum result very quickly 
with a 56.2-58.4 average analysis number. Hybrid algo-
rithms, JALS (analyses number 177.45-206.2) and JALS2 
(analyses number 178.3-201.3) have similar perfor-
mance with FPA (analyses number 179.15-197.1). TLBO 
shows the lowest performance with 322.4-367 analyses 
number. 

 
 

X1

X2

X1

X2  

(a) (b) 
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Table 5. Optimum results for 5 cases. 

Cases Results                        JA JALS JALS2 FPA TLBO 

Case 1 
(H=5m) 

hw (m) 0.4747 0.4747 0.4747 0.4747 0.4747 

Min. cost (TL) 131082.69 131082.69 131082.69 131082.69 131082.69 

Ave. cost (TL) 131082.69 131082.69 131082.69 131082.69 131082.69 

SD (TL) 3E-11 3E-11 3E-11 3E-11 3E-11 

Analyses num. 56.2 188.45 190 191.7 344.3 

Case 2 
(H=5.5m) 

hw (m) 0.5520 0.5520 0.5520 0.5520 0.5520 

Min. cost (TL) 166280.09 166280.09 166280.09 166280.09 166280.09 

Ave. cost (TL) 166280.09 166280.09 166280.09 166280.09 166280.09 

SD (TL) 3E-11 3E-11 3E-11 3E-11 3E-11 

Analyses num. 56.2 190.4 192.4 185.85 355 

Case 3 
(H=6m) 

hw (m) 0.6346 0.6346 0.6346 0.6346 0.6346 

Min. cost (TL) 207784.58 207784.58 207784.58 207784.58 207784.58 

Ave. cost (TL) 207784.58 207784.58 207784.58 207784.58 207784.58 

SD (TL) 3E-11 3E-11 3E-11 3E-11 3E-11 

Analyses num. 56.85 177.45 178.3 179.15 322.4 

Case 4 
(H=6.5m) 

hw (m) 0.7188 0.7188 0.7188 0.7188 0.7188 

Min. cost (TL) 254704.58 254704.58 254704.58 254704.58 254704.58 

Ave. cost (TL) 254704.58 254704.58 254704.58 254704.58 254704.58 

SD (TL) 4E-10 3E-11 3E-11 3E-11 3E-11 

Analyses num. 58.4 206.2 196.2 197.1 367 

Case 5 
(H=7m) 

hw (m) 0.8082 0.8082 0.8082 0.8082 0.8082 

Min. cost (TL) 310424.16 310424.16 310424.16 310424.16 310424.16 

Ave. cost (TL) 310424.16 310424.16 310424.16 310424.16 310424.16 

SD (TL) 3E-10 1E-10 1E-10 1E-10 1E-10 

Analyses num. 57.55 192.4 201.3 193.35 350.8 

6. Conclusions 

In the present study, the performances of several clas-
sical and hybrid metaheuristic algorithms are compared 
on the optimum design of axially symmetrical cylindrical 
reinforced concrete walls with a dome on top. In the 
analysis, five different situations, three of which are clas-
sical and two of which are hybrid, of five different algo-
rithms and different wall heights were examined. Algo-
rithm performances were compared in terms of mini-
mum, average, standard deviation values , and the num-
ber of analyzes in which optimum results were achieved 
by running the algorithms in large numbers for each 
case. 

According to the analysis results, it is understood that 
all algorithms reach the optimum result. In addition, it is 
seen from the mean and standard deviation values of the 
repeated run results that the algorithms successfully 
perform the optimization process each time. According 
to these data, it can be said that all algorithms are used 
to give reliable and appropriate results for the optimiza-
tion problem. 

According to another comparison parameter, the 
number of analysis values, it is seen that the Jaya algo-
rithm is the fastest in all cases. In addition, it is under-
stood that the slowest algorithm is TLBO, although other 
algorithms are close to each other, the JALS algorithm is 

slightly faster in 3 out of 5 cases. These results show that 
the use of the Jaya equation for both the global equation 
of the FPA algorithm and the teacher phase of the TLBO 
algorithm contributes to the improvement of the perfor-
mance of both algorithms. 

In future studies, it will be useful to demonstrate the 
effectiveness of the methods by researching with a vari-
ety of problem and design variants. 
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