An approximate solution of fractional cable equation by homotopy analysis method

dc.contributor.authorİnç, Mustafa
dc.contributor.authorCavlak, Ebru
dc.contributor.authorBayram, Mustafa
dc.date.accessioned2019-01-04T13:11:19Z
dc.date.available2019-01-04T13:11:19Z
dc.date.issued2014-03-16
dc.departmentİstanbul Gelişim Üniversitesien_US
dc.description.abstractIn this article, the homotopy analysis method (HAM) is applied to solve the fractional cable equation by the Riemann-Liouville fractional partial derivative. This method includes an auxiliary parameter h which provides a convenient way of adjusting and controlling the convergence region of the series solution. In this study, approximate solutions of the fractional cable equation are obtained by HAM. We also give a convergence theorem for this equation. A suitable value for the auxiliary parameter h is determined and results obtained are presented by tables and figures.en_US
dc.identifier.doi10.1186/1687-2770en_US
dc.identifier.issn1687-2762
dc.identifier.issn1687-2770
dc.identifier.issue58en_US
dc.identifier.urihttps://hdl.handle.net/11363/796
dc.identifier.urihttps://doi.org/
dc.identifier.volume2014en_US
dc.language.isoenen_US
dc.publisherSpringerOpenen_US
dc.relation.ispartofBoundary Value Problemsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectResearch Subject Categories::TECHNOLOGYen_US
dc.titleAn approximate solution of fractional cable equation by homotopy analysis methoden_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
1687-2770-2014-58.pdf
Boyut:
410.77 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Makale / Article
Lisans paketi
Listeleniyor 1 - 1 / 1
[ N/A ]
İsim:
license.txt
Boyut:
1.56 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: