Machine learning-based estimation of occupational radiation dose in interventional cardiology

dc.contributor.authorHisiroglu, Kevser A.
dc.contributor.authorToker, Ozan
dc.contributor.authorToker Özşahin, Melis
dc.contributor.authorİçelli, Orhan
dc.date.accessioned2025-08-18T11:41:17Z
dc.date.available2025-08-18T11:41:17Z
dc.date.issued2025
dc.departmentMühendislik ve Mimarlık Fakültesi
dc.description.abstractIn interventional cardiology, occupational radiation exposure for medical personnel can reach high levels, underscoring the critical need for effective radiation protection and monitoring methods. This study employs machine learning algorithms to estimate radiation doses received by personnel within a virtual 3D angiography room designed to reflect realistic clinical settings. Monte Carlo simulations generated radiation data across various scenarios, accounting for personnel positions, radiation source distance, and exposure angles typical in angiography. The simulation data were used to train five machine-learning algorithms (Gradient Boosting, K-nearest neighbors, Random Forest, Linear Regression, and Decision Tree). Key findings showed that machine learning models, particularly Gradient Boosting, could effectively predict dose levels by utilizing spatial and operational parameters without requiring physical dosemeter. This study provides a framework that could streamline radiation monitoring practices, making dose assessments more accessible and efficient for routine use in clinical environments.
dc.identifier.doi10.1093/rpd/ncaf064
dc.identifier.endpage700
dc.identifier.issn0144-8420
dc.identifier.issn1742-3406
dc.identifier.issue10
dc.identifier.startpage690
dc.identifier.urihttps://hdl.handle.net/11363/10285
dc.identifier.volume201
dc.identifier.wos001518169700001
dc.identifier.wosqualityQ4
dc.indekslendigikaynakWeb of Science
dc.institutionauthorToker Özşahin, Melis
dc.language.isoen
dc.publisherOXFORD UNIV PRESS, GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
dc.relation.ispartofRADIATION PROTECTION DOSIMETRY
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleMachine learning-based estimation of occupational radiation dose in interventional cardiology
dc.typeArticle

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Makale / Article
Boyut:
1.04 MB
Biçim:
Adobe Portable Document Format
Lisans paketi
Listeleniyor 1 - 1 / 1
[ N/A ]
İsim:
license.txt
Boyut:
1.17 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: