An Overview of ANN based MPPT and an Example

dc.authorid0009-0001-4681-1170
dc.authorid0000-0001-9640-1623
dc.contributor.authorRezaee, Mehdi
dc.contributor.authorŞahin, Yusuf Gürcan
dc.date.accessioned2025-07-24T07:47:39Z
dc.date.available2025-07-24T07:47:39Z
dc.date.issued2025
dc.departmentMühendislik ve Mimarlık Fakültesi
dc.description.abstractThe study presents an overview and a simulation of maximum power point tracking (MPPT) for Photovoltaic (PV) systems that uses an artificial neural network (ANN) controller as proof of concept. Solar energy must be harvested with high efficiency as the world turns to renewables. The usual Perturb and Observe (P&O) and Incremental (InC) method loses power by oscillating around the Maximum Power Point (MPP) and reacts slowly to sudden weather changes. The work therefore tests an ANN as a better choice. The authors survey earlier ANN MPPT studies that cover many network types, training schemes and mixed strategies. They then build a MATLAB/Simulink model that runs an ANN controller and a P&O controller on the same PV array. The ANN learns from Istanbul 2020 weather data. The results show the ANN reaches 252 W and 87.9% of efficiency while P&O reaches 241 W and 84.26% of efficiency, and InC reaches 245 W and 78.1% of efficiency. The ANN also tracks the MPP faster and with steadier behaviour when irradiance varies. These outcomes confirm that ANN MPPT can raise the energy output of PV systems
dc.identifier.citationRezaee, M., & Şahin, Y. G. (2025). An Overview of ANN based MPPT and an Example. International Journal of Engineering Technologies IJET, 10(1), 9-22. https://doi.org/10.19072/ijet.1716330
dc.identifier.doihttps://doi.org/10.19072/ijet.1716330
dc.identifier.issn2149-0104
dc.identifier.issn2149-5262
dc.identifier.issue1
dc.identifier.urihttps://hdl.handle.net/11363/10127
dc.identifier.volume10
dc.language.isoen
dc.publisherİstanbul Gelişim Üniversitesi Yayınları / Istanbul Gelisim University Press
dc.relation.ispartofInternational Journal of Engineering Technologies
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectArtificial Neural Network (ANN)
dc.subjectMaximum Power Point Tracking (MPPT)
dc.subjectPhotovoltaics
dc.subjectRenewable energy
dc.titleAn Overview of ANN based MPPT and an Example
dc.typeArticle

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Makale / Article
Boyut:
2.05 MB
Biçim:
Adobe Portable Document Format
Lisans paketi
Listeleniyor 1 - 1 / 1
[ N/A ]
İsim:
license.txt
Boyut:
1.17 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: