Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Zontul, Metin" seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Enhancing GPS Accuracy with Machine Learning: A Comparative Analysis of Algorithms
    (Int Information & Engineering Technology Assoc, 2024) Zontul, Metin; Ersan, Ziya Gokalp; Yelmen, Ilkay; Cevik, Taner; Anka, Ferzat; Gesoglu, Kevser
    In the realm of wireless communications, the Global Positioning System (GPS), integral to Global Navigation Satellite Systems (GNSS), finds extensive applications ranging from vehicle navigation to military operations, aircraft tracking, and Geographic Information Systems (GIS). The reliability of GPS is often compromised by errors particularly prevalent in dense and structurally complex environments, where signal attenuation by environmental obstacles like mountains and buildings is common. These challenges necessitate the deployment of high -cost, precision GPS receivers capable of enhanced signal tracking and acquisition. This study investigates the reduction of GPS positioning errors by implementing a machine learning framework, utilizing a dataset from vehicle tracking devices equipped with Novatel and Ublox technologies. Ten machine learning prediction algorithms were evaluated, focusing on techniques that introduce randomness for stability, employ proximity for predictions, incorporate regularization to prevent overfitting, and leverage both single and ensemble methods to refine analyses. Among the evaluated algorithms, the Extra Trees algorithm was distinguished by its superior performance, achieving a coefficient of determination (R-2) of 99.6%, with the lowest error rates compared to its counterparts. The errors were quantified as Root Mean Square Error (RMSE) at 1.01E-4, Mean Absolute Error (MAE) at 4.14E-5, and Mean Square Error (MSE) at 1.03E+0 for normalized data. A comparative assessment across ten scenarios demonstrated that the machine learningenhanced approach deviated by approximately 6.8 meters on average, markedly improving accuracy over traditional GPS methods and reducing positional deviations to a scale of meters. This advance represents a significant stride towards minimizing GPS inaccuracies in complex environments, providing a robust framework for enhancing navigational precision in critical applications.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Forecast Analysis of Renewable Solar Energy Production Using Meteorological Data with Machine Learning Methods
    (Journal of Aeronautics and Space Technologies, 2024) Macit Sezikli, Naciye; Alkan, Ümit; Zontul, Metin; Elabiad, Zeynep
    Solar energy power plants play a significant role in meeting the demand for sustainable and clean energy. However, variable weather conditions, seasonal effects, and similar factors can result in the need for energy overproduction to be stored or lead to costs associated with energy deficiency. These situations can result in inefficiencies in solar energy production. The objective of this study is to predict energy production, increase efficiency, and develop more sustainable energy strategies by using machine learning methods with data obtained from meteorological and solar energy panels. This study aims to assess the results achieved by existing models and compare their successes. The Random Forest algorithm, which achieved the highest R2 score, also obtained significantly lower values for MSE, RMSE, and MAE. This indicates that the Random Forest algorithm performs the best among the algorithms used in this study. This ranking of success is followed by Decision Trees and KNearest neighbors.

| İstanbul Gelişim Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Cihangir Mahallesi, Şehit Jandarma Komando Er Hakan Öner Sokak, No:1, Avcılar, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim