Yazar "Khalil, Adem" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Exploring Synthetic Noise Algorithms for Real-World Similar Data Generation: A Case Study on Digitally Twining Hybrid Turbo-Shaft Engines in UAV/UAS Applications(Springer Science and Business Media Deutschland GmbH, 2024) Aghazadeh Ardebili, Ali; Longo, Antonella; Ficarella, Antonio; Khalil, Adem; Khalil, SabriAn emerging technology for automating Unmanned aircraft is digitally twining the system, and employing AI-based data-driven solutions. Digital Twin (DT) enables real-time information flow between physical assets and a virtual model, creating a fully autonomous and resilient transport system. A key challenge in DT as a Service (DTaaS) is the lack of Real-world data for training algorithms and verifying DT functionality. This article focuses on data augmentation using Real-world Similar Synthetic Data Generation (RSSDG) to facilitate DT development in the absence of training data for Machine Learning (ML) algorithms. The main focus is on the noise generation step of the RSSDG for a common Hybrid turbo-shaft engine because there is a significant gap in transforming synthetic data to Real-world similar data. Therefore we generate noise through 6 different noise generation algorithms before Rolling Linear Regression and Filtering the noisy predictions through Kalman Filter. The primary objective is to investigate the sensitivity of the RSSDG process concerning the algorithm that is used for noise generation. The study’s results support the potential capacity of RSSDG for digitally twining the engine in a Real-world operational lifecycle. However, noise generation through Weibull and Von Mises distribution showed low efficiency in general. In the case of Normal Distribution, for both thermal and hybrid models, the corresponding DT model has shown high efficiency in noise filtration and a certain amount of predictions with a lower error rate on all engine parameters, except the engine torque; however, Students-T, Laplace, and log-normal show better performance for engine torque RSSDG. © 2024, The Author(s), under exclusive license to Springer Nature Switzerland AG.Öğe Hybrid Turbo-Shaft Engine Digital Twinning for Autonomous Aircraft via AI and Synthetic Data Generation(Mdpi, 2023) Ardebili, Ali Aghazadeh; Ficarella, Antonio; Longo, Antonella; Khalil, Adem; Khalil, SabriAutonomous aircraft are the key enablers of future urban services, such as postal and transportation systems. Digital twins (DTs) are promising cutting-edge technologies that can transform the future transport ecosystem into an autonomous and resilient system. However, since DT is a data-driven solution based on AI, proper data management is essential in implementing DT as a service (DTaaS). One of the challenges in DT development is the availability of real-life data, particularly for training algorithms and verifying the functionality of DT. The current article focuses on data augmentation through synthetic data generation. This approach can facilitate the development of DT in case the developers do not have enough data to train the machine learning (ML) algorithm. The current twinning approach provides a prospective ideal state of the engine used for proactive monitoring of the engine's health as an anomaly detection service. In line with the track of unmanned aircraft vehicles (UAVs) for urban air mobility in smart city applications, this paper focuses specifically on the common hybrid turbo-shaft in drones/helicopters. However, there is a significant gap in real-life similar synthetic data generation in the UAV domain literature. Therefore, rolling linear regression and Kalman filter algorithms were implemented on noise-added data, which simulate the data measured from the engine in a real-life operational life cycle. For both thermal and hybrid models, the corresponding DT model has shown high efficiency in noise filtration and a certain amount of predictions with a lower error rate on all engine parameters except the engine torque.