Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Ataş, Kubilay" seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    LiDAR-Tabanlı toplam değişinti kısıtlı negatif-olmayan tensör faktörizasyonu ile hiperspektral karışım giderimi
    (Pamukkale Üniversitesi, 2023) Ataş, Kubilay; Kaya, Atakan; Kahraman, Sevcan
    Spektral karışım giderimi hiperspektral görüntülemenin temel araştırma alanlarından birisidir. Son yıllarda Negatif-olmayan Tensör Faktörizasyonuna dayalı yaklaşımlar, bilgi kaybına uğratmadığı ve hiperspektral görüntüleri daha iyi temsil edebildiği için uzaktan algılamada büyük bir önem kazanmıştır. Toplam Değişinti yaklaşımı ise, parçalı pürüzsüzlüğü sağlarken kenar bilgisini de korumaktadır. Öte yandan, kızılötesi algılayıcısı gözlemlenen sahne hakkında yükseklik bilgisini veren Dijital Yüzey Modeli verisini sağlamaktadır. Bu çalışmada, LiDAR Dijital Yüzey Modeli bilgisiyle Toplam Değişinti kısıtı birleştirilerek hiperspektral görüntülerin uzamsal çözünürlüğünü artırmak için tensör faktörizasyonuna dayalı karışım giderimi gerçekleştirilmiştir. Deneysel çalışmalar simülasyon ve gerçek veri setleri üzerinde denenmiş ve uzamsal çözünürlüğü artırılmış hiperspektral görüntüler elde edilmiştir. Elde edilen sonuçlar, literatürdeki en yakın çalışma olan Toplam Değişinti kısıtlı Negatifolmayan Matris-Vektör Tensor Faktörüzasyonu yöntemi ile karşılaştırılmış ve önerilen yöntemin daha iyi performans sergilediği gözlemlenmiştir.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Yapay Sinir Ağı Tabanlı Model ile X-ray Görüntülerinden Covid-19 Teşhisi
    (Gazi Üniversitesi, 2023) Ataş, Kubilay; Kaya, Atakan; Myderrizi, Indrit
    Dünyadaki koronavirüs hasta sayısı her geçen gün artmaktadır. Hastalığın ortaya çıkışının üzerinden bir seneden fazla zaman geçmesine rağmen istatistiklere göre henüz hasta sayısındaki zirve görülmemiştir. Hasta sayısındaki artışın zamana yayılması hastane doluluk oranlarının tehlikeli boyutlara ulaşmasını önlemek için önemlidir. Bu nedenle virüsü taşıyan bireylerin hızlıca teşhis edilerek hastalık geçene kadar toplumdan soyutlanmaları gerekmektedir. Bu çalışmada X-ray görüntüsü kullanılarak yapılabilecek hızlı hastalık teşhisi için kapsamlı bir yapay sinir ağı tabanlı model önerilmiştir. Koronavirüsün akciğerler dokularında yarattığı tahribattan yararlanılarak teşhis işlemi saniyeler içerisinde yapılabilmektedir. Çalışmaya konu olan model, X-ray görüntülerini ön-işlemlerden geçirerek iyileştirmekte ve çoğullamaktadır. DenseNet201, ResNeXt-101(32×8d), VGG-19bn ve Wide-ResNet101-2 ağları kullanılarak eğitim yapıldıktan sonra görüntüden Covid-19 pozitif veya negatif olarak teşhis konulmasını sağlamaktadır. Çalışmada elde edilen en iyi sonuç %94.79 genel doğruluk oranıyla ResNeXt-101(32×8d) ağı kullanılarak gerçekleştirilmiştir.

| İstanbul Gelişim Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Cihangir Mahallesi, Şehit Jandarma Komando Er Hakan Öner Sokak, No:1, Avcılar, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim