Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Al-Najjar, H." seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Evaluation of the prediction of CoVID-19 recovered and unrecovered cases using symptoms and patient's meta data based on support vector machine, neural network, CHAID and QUEST Models
    (Verduci Publisher, 2021) Al-Najjar, D.; Al-Najjar, H.; Al-Rousan, Nadia
    OBJECTIVE: This paper aims to develop four prediction models for recovered and unrecovered cases using descriptive data of patients and symptoms of CoVID-19 patients. The developed prediction models aim to extract the important variables in predicting recovered cases by using the binary values for recovered cases. MATERIALS AND METHODS: The data were collected from different countries all over the world. The input of the prediction model contains 28 symptoms and four variables of the patient's information. Symptoms of COVID-19 include a high fever, low fever, sore throat, cough, and so on, where patient metadata includes Province, county, sex, and age. The dataset contains 1254 patients with 664 recovered cases. To develop prediction models, four models are used including neural network, support vector machine, CHAID, and QUEST models. To develop prediction models, the dataset is divided into train and test datasets with splitting ratios equal to 70%, and 30%, respectively. RESULTS: The results showed that the neural network model is the most effective model in developing COVID-19 prediction with the highest performance metrics using train and test datasets. The results found that recovered cases are associated with the place of the patients mainly, province of the patient. Besides the results showed that high fever is not strongly associated with recovered cases, where cough and low fever are strongly associated with recovered cases. In addition, the country, sex, and age of the patients have higher importance than other patient's symptoms in COVID-19 development. CONCLUSIONS: The results revealed that the prediction models of the recovered COVID-19 cases can be effectively predicted using patient characteristics and symptoms, besides the neural network model is the most effective model to create a COVID -19 prediction model. Finally, the research provides empirical evidence that recovered cases of COVID-19 are closely related to patients' provinces.

| İstanbul Gelişim Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Cihangir Mahallesi, Şehit Jandarma Komando Er Hakan Öner Sokak, No:1, Avcılar, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim