Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorÇolak, İlhami
dc.contributor.authorYeşilbudak, Mehmet
dc.contributor.authorGenç, Naci
dc.contributor.authorBayındır, Ramazan
dc.date.accessioned2019-01-09T20:03:46Z
dc.date.available2019-01-09T20:03:46Z
dc.date.issued2015-12-09
dc.identifier.isbn978-1-5090-0287-0
dc.identifier.urihttp://hdl.handle.net/11363/827
dc.description.abstractDue to the variations in weather conditions, solar power integration to the electricity grid at a high penetration rate can cause a threat for the grid stability. Therefore, it is required to predict the solar radiation parameter in order to ensure the quality and the security of the grid. In this study, initially, a 1-h time series model belong to the solar radiation parameter is created for multi-period predictions. Afterwards, autoregressive moving average (ARMA) and autoregressive integrated moving average (ARIMA) models are compared in terms of the goodness-of-fit value produced by the log-likelihood function. As a result of determining the best statistical models in multi-period predictions, one-period, two-period and three-period ahead predictions are carried out for the solar radiation parameter in a comprehensive way. Many feasible comparisons have been made for the solar radiation prediction.en_US
dc.language.isoengen_US
dc.publisherELSEVIER SCIENCE BV, SARA BURGERHARTSTRAAT 25, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDSen_US
dc.relation.isversionof10.1109/ICMLA.2015.33en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectResearch Subject Categories::TECHNOLOGY::Engineering mechanics::Mechanical and thermal engineering::Mechanical energy engineeringen_US
dc.subjectResearch Subject Categories::TECHNOLOGY::Electrical engineering, electronics and photonicsen_US
dc.titleMulti-Period Prediction of Solar Radiation Using ARMA and ARIMA Modelsen_US
dc.typeconferenceObjecten_US
dc.relation.ispartof2015 IEEE 14TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA)en_US
dc.departmentİstanbul Gelişim Üniversitesien_US
dc.identifier.startpage1045en_US
dc.identifier.endpage1049en_US
dc.relation.publicationcategoryKategori Yoken_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster

info:eu-repo/semantics/openAccess
Aksi belirtilmediği sürece bu öğenin lisansı: info:eu-repo/semantics/openAccess