dc.contributor.author | Kılıçman, Adem | |
dc.contributor.author | Sadhasivam, Vadivel | |
dc.contributor.author | Deepa, Muthusamy | |
dc.contributor.author | Nagajothi, Nagamanickam | |
dc.date.accessioned | 2024-03-17T23:37:25Z | |
dc.date.available | 2024-03-17T23:37:25Z | |
dc.date.issued | 2018 | en_US |
dc.identifier.issn | 2073-8994 | |
dc.identifier.uri | https://hdl.handle.net/11363/7212 | |
dc.description.abstract | In the present work we study the oscillatory behavior of three dimensional α-fractional
nonlinear delay differential system. We establish some sufficient conditions that will ensure all
solutions are either oscillatory or converges to zero, by using the inequality technique and generalized
Riccati transformation. The newly derived criterion are also used to establish a new class of systems
with delay which are not covered in the existing study of literature. Further, we constructed some
suitable illustrations. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | MDPIST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND | en_US |
dc.relation.isversionof | 10.3390/sym10120769 | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | oscillation | en_US |
dc.subject | nonlinear differential system | en_US |
dc.subject | delay differential system | en_US |
dc.subject | α-fractional derivative | en_US |
dc.title | Oscillatory Behavior of Three Dimensional α-Fractional Delay Differential Systems | en_US |
dc.type | article | en_US |
dc.relation.ispartof | SYMMETRY-BASEL | en_US |
dc.department | Mühendislik ve Mimarlık Fakültesi | en_US |
dc.authorid | https://orcid.org/0000-0002-1217-963X | en_US |
dc.identifier.volume | 10 | en_US |
dc.identifier.issue | 12 | en_US |
dc.identifier.startpage | 1 | en_US |
dc.identifier.endpage | 15 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.institutionauthor | Kılıçman, Adem | |