dc.contributor.author | Yamaç Akbıyık, Seda | |
dc.contributor.author | Akbıyık, Mücahit | |
dc.date.accessioned | 2023-10-31T14:39:36Z | |
dc.date.available | 2023-10-31T14:39:36Z | |
dc.date.issued | 2021 | en_US |
dc.identifier.issn | 2148-1830 | |
dc.identifier.uri | https://hdl.handle.net/11363/6141 | |
dc.description.abstract | This paper aims to present a method for constructing the second order Pell and Pell-Lucas numbers and
the third order Pell and Pell-Lucas numbers. Moreover, we obtain the De Moivre-type identities for these numbers.
In addition, we define a Pell sequence with new initial conditions and give some identities for these third order Pell
numbers such as Binet’s formulas, generating functions, sums. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Matematikçiler Derneği | en_US |
dc.relation.isversionof | 10.47000/tjmcs.835237 | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 United States | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.subject | Pell numbers | en_US |
dc.subject | Pell-Lucas numbers | en_US |
dc.subject | De Moivre-type identity | en_US |
dc.subject | Binet’s formula | en_US |
dc.title | De Moivre-Type Identities for the Pell Numbers | en_US |
dc.type | article | en_US |
dc.relation.ispartof | Turkish Journal of Mathematics and Computer Science | en_US |
dc.department | Mühendislik ve Mimarlık Fakültesi | en_US |
dc.authorid | https://orcid.org/0000-0003-1797-674X | en_US |
dc.authorid | https://orcid.org/0000-0002-0256-1472 | en_US |
dc.identifier.volume | 13 | en_US |
dc.identifier.issue | 2 | en_US |
dc.identifier.startpage | 63 | en_US |
dc.identifier.endpage | 67 | en_US |
dc.relation.publicationcategory | Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.institutionauthor | Yamaç Akbıyık, Seda | |