Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorAygörmez, Yurdakul
dc.contributor.authorCanpolat, Orhan
dc.contributor.authorAl-Mashhadani, Mukhallad M.
dc.contributor.authorUysal, Mücteba
dc.date.accessioned2023-08-20T05:12:19Z
dc.date.available2023-08-20T05:12:19Z
dc.date.issued2020en_US
dc.identifier.issn0950-0618
dc.identifier.issn1879-0526
dc.identifier.urihttps://hdl.handle.net/11363/5384
dc.description.abstractIn this study, metakaolin-based geopolymer samples produced by substitution of silica fume and colemanite waste up to 20% were subjected to high-temperature effects at 300, 600, 900 C, the wettingdrying effect of 5, 15 and 25 cycles and freezing-thawing effect of 56 and 300 cycles. At the end of the tests, compressive and flexural strengths, ultrasonic pulse velocity and weight changes’ results were examined. In addition to these, micro-computed tomography (CT), XRD and SEM analyses were performed to examine the microstructure properties as well as visual inspection. 5 series produced for high temperature and wetting-drying effects were also produced with polypropylene fiber. It has been observed that samples exposed to 900 C maintained their stability. Polypropylene fiber has been shown to increase the samples’ flexural strength results compared to the non-fiber samples after exposing to high temperatures. For the freezing-thawing effect, air-entraining admixture was added to 5 series. An increase for compressive strength was seen after 56 cycles but a decrease was seen after 300 cycles. The geopolymer samples thus began to suffer the real distortion effect in subsequent cycles after the freezing-thawing effect, which contributed to geopolimerization in a sense occurring in the first 56 cycles. During the wetting-drying cycles, fluctuations were observed in the results and an increase in the compressive strength, UPV and weight changes’ results after 5 cycles, a decrease in the results after 15 cycles and an increase again in the results after 25 cycles were seen.en_US
dc.language.isoengen_US
dc.publisherELSEVIER SCI LTD, THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLANDen_US
dc.relation.isversionof10.1016/j.conbuildmat.2019.117502en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectGeopolymeren_US
dc.subjectMetakaolinen_US
dc.subjectSilica fumeen_US
dc.subjectColemanite wasteen_US
dc.subjectHigh temperatureen_US
dc.subjectFreezing-thawingen_US
dc.subjectWetting-dryingen_US
dc.subjectPolypropylene fiberen_US
dc.subjectAir entraining admixtureen_US
dc.titleElevated temperature, freezing-thawing and wetting-drying effects on polypropylene fiber reinforced metakaolin based geopolymer compositesen_US
dc.typearticleen_US
dc.relation.ispartofConstruction and Building Materialsen_US
dc.departmentMühendislik ve Mimarlık Fakültesien_US
dc.authoridhttps://orcid.org/0000-0001-7405-2450en_US
dc.authoridhttps://orcid.org/0000-0003-2744-7876en_US
dc.identifier.volume235en_US
dc.identifier.startpage1en_US
dc.identifier.endpage32en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.institutionauthorAl-Mashhadani, Mukhallad M.


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster

info:eu-repo/semantics/openAccess
Aksi belirtilmediği sürece bu öğenin lisansı: info:eu-repo/semantics/openAccess