Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorBalcılar, Mehmet
dc.contributor.authorDemirer, Rıza
dc.contributor.authorBekun, Festus Victor
dc.date.accessioned2023-07-14T14:04:01Z
dc.date.available2023-07-14T14:04:01Z
dc.date.issued2021en_US
dc.identifier.issn2227-7390
dc.identifier.urihttps://hdl.handle.net/11363/5037
dc.description.abstractThis paper introduces a new methodology to estimate time-varying alphas and betas in conditional factor models, which allows substantial flexibility in a time-varying framework. To circumvent problems associated with the previous approaches, we introduce a Bayesian timevarying parameter model where innovations of the state equation have a spike-and-slab mixture distribution. The mixture distribution specifies two states with a specific probability. In the first state, the innovation variance is set close to zero with a certain probability and parameters stay relatively constant. In the second state, the innovation variance is large and the change in parameters is normally distributed with mean zero and a given variance. The latent state is specified with a threshold that governs the state change. We allow a separate threshold for each parameter; thus, the parameters may shift in an unsynchronized manner such that the model moves from one state to another when the change in the parameter exceeds the threshold and vice versa. This approach offers great flexibility and nests a plethora of other time-varying model specifications, allowing us to assess whether the betas of conditional factor models evolve gradually over time or display infrequent, but large, shifts. We apply the proposed methodology to industry portfolios within a five-factor model setting and show that the threshold Capital Asset Pricing Model (CAPM) provides robust beta estimates coupled with smaller pricing errors compared to the alternative approaches. The results have significant implications for the implementation of smart beta strategies that rely heavily on the accuracy and stability of factor betas and yields.en_US
dc.language.isoengen_US
dc.publisherMDPI, ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLANDen_US
dc.relation.isversionof10.3390/math9080915en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjecttime-varying betaen_US
dc.subjectrisk premiumen_US
dc.subjectasset pricingen_US
dc.subjectbayesian estimationen_US
dc.subjectthresholdsen_US
dc.titleFlexible Time-Varying Betas in a Novel Mixture Innovation Factor Model with Latent Thresholden_US
dc.typearticleen_US
dc.relation.ispartofMathematicsen_US
dc.departmentİktisadi İdari ve Sosyal Bilimler Fakültesien_US
dc.authoridhttps://orcid.org/0000-0001-9694-5196en_US
dc.authoridhttps://orcid.org/0000-0002-1840-8085en_US
dc.authoridhttps://orcid.org/0000-0003-4948-6905en_US
dc.identifier.volume9en_US
dc.identifier.issue8en_US
dc.identifier.startpage1en_US
dc.identifier.endpage20en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.institutionauthorBekun, Festus Victor


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster

info:eu-repo/semantics/openAccess
Aksi belirtilmediği sürece bu öğenin lisansı: info:eu-repo/semantics/openAccess