dc.contributor.author | Hashemi, Mir Sajjad | |
dc.contributor.author | İnç, Mustafa | |
dc.contributor.author | Bayram, Mustafa | |
dc.date.accessioned | 2019-09-28T20:41:37Z | |
dc.date.available | 2019-09-28T20:41:37Z | |
dc.date.issued | 2019 | en_US |
dc.identifier.issn | 0035-001X | |
dc.identifier.uri | https://hdl.handle.net/11363/1465 | |
dc.description.abstract | In this paper, the time fractional Kolmogorov-Petrovskii-Piskunov (TFKPP) equation is analyzed by means of Lie symmetry approach. The TFKPP is reduced to ordinary differential equation of fractional order via the attained point symmetries. Moreover, the simplest equation method is used in construct the exact solutions of underlying equation with recently introduced conformable fractional derivative. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | SOC MEXICANA FISICA, APARTADO POSTAL 70-348, COYOACAN 04511, MEXICO | en_US |
dc.relation.isversionof | 10.31349/RevMexFis.65.529 | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 United States | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.subject | Time fractional Kolmogorov-Petrovskii-Piskunov equation | en_US |
dc.subject | Lie symmetry analysis | en_US |
dc.subject | Erdelyi-Kober fractional derivative | en_US |
dc.subject | Riemann-Liouville derivative | en_US |
dc.subject | conformable fractional derivative | en_US |
dc.subject | simplest equation method | en_US |
dc.title | Symmetry Properties and Exact Solutions of the Time Fractional Kolmogorov-Petrovskii-Piskunov Equation | en_US |
dc.type | article | en_US |
dc.relation.ispartof | Revista Mexicana de Fisica | en_US |
dc.department | Mühendislik ve Mimarlık Fakültesi | en_US |
dc.identifier.volume | 65 | en_US |
dc.identifier.issue | 5 | en_US |
dc.identifier.startpage | 529 | en_US |
dc.identifier.endpage | 535 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |