Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorDamage, Faten H.
dc.contributor.authorKılıçman, Adem
dc.contributor.authorIbrahim, Rabha W.
dc.date.accessioned2019-08-31T23:10:02Z
dc.date.available2019-08-31T23:10:02Z
dc.date.issued2019en_US
dc.identifier.issn1995-0802
dc.identifier.issn1818-9962
dc.identifier.urihttps://hdl.handle.net/11363/1429
dc.description.abstractIn this present work we concern with mathematical modelling of biological experiments. The fractional hybrid iterative differential equations are suitable for mathematical modelling of biology and also interesting equations since the structure are rich with particular properties. The solution technique is based on the Dhage fixed point theorem that describes the mixed solutions by monotone iterative technique in the nonlinear analysis. In this method we combine two solutions, namely, lower and upper solutions. It is shown an approximate result for the hybrid fractional differential equations in the closed assembly formed by the lower and upper solutions.en_US
dc.language.isoengen_US
dc.publisherMAIK NAUKA/INTERPERIODICA/SPRINGER, 233 SPRING ST, NEW YORK, NY 10013-1578 USAen_US
dc.relation.isversionof10.1134/S1995080219020069en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectFractional differential equationsen_US
dc.subjectfractional operatorsen_US
dc.subjectmonotone sequencesen_US
dc.subjectmixed solutionsen_US
dc.subjectEXISTENCEen_US
dc.subjectResearch Subject Categories::MATHEMATICSen_US
dc.titleMixed Solutions of Monotone Iterative Technique for Hybrid Fractional Differential Equationsen_US
dc.typearticleen_US
dc.relation.ispartofLOBACHEVSKII JOURNAL OF MATHEMATICSen_US
dc.departmentMühendislik ve Mimarlık Fakültesien_US
dc.identifier.volume40en_US
dc.identifier.issue2en_US
dc.identifier.startpage156en_US
dc.identifier.endpage165en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster

info:eu-repo/semantics/openAccess
Aksi belirtilmediği sürece bu öğenin lisansı: info:eu-repo/semantics/openAccess