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Abstract For the first time, we intend to scrutinize both the bright optical soliton solutions of the perturbed Schrödinger–Hirota
equation with cubic–quintic–septic law having the spatiotemporal dispersion and the influences of the considered equation parameters
on the soliton structure. The simple version of the new extended auxiliary equation method is utilized to carry out the aims. Taking the
suitable complex wave transformation, the investigated equation becomes a nonlinear ordinary differential equation. Then, a system
consisting of equations in polynomial structure utilizing the technique was able to produce. The bright optical solution is generated
by utilizing the presented method. Finally, numerous projections of the bright soliton are indicated to explain the propagation of
optical pulses in optic fibers. Furthermore, some depictions describing the effect of the model parameter were added.

1 Introduction

The nonlinear Schrödinger equation (NLSE) introduced by Erwin Schrödinger in 1927 has great importance for soliton dynam-
ics in optical fibers. So, numerous models based on NLSE that explain various physical phenomena have been improved and
examined in the literature. So, miscellaneous optical soliton solutions of NLSE have been derived by combining varied analytical
and numerical techniques, such as Radhakrishnan–Kundu–Lakshmanan having various nonlinearity [1–7], Chen–Lee–Liu [8–11],
Lakshmanan–Porsezian–Daniel model [12, 13], the Fokas–Lenells model [14–16], the Schrödinger–Hirota (SH) equation [17–23],
Biswas–Milovic [24–28], various forms of Maxwell–Bloch model [29, 30]. Especially, the SH model, which was derived from the
NLSE with the help of the Lie transform [31], forms a substantial class of the NLSE and has been intensely developed in the last
decades utilizing different computational methods. The SH equation also governs the propagation of optical pulses in dispersive
optical fibers. Moreover, deriving diverse kinds of optical soliton solutions to NLSEs helps both interpret their physical properties
and update or develop the mathematical model or helps to collect the knowledge of the mechanism of this application in the medium
it expresses. So, a number of effective analytical and numerical procedures were developed to generate various optical soliton
solutions. Some of such methods are the extended Jacobi’s elliptic expansion function approach [32], the enhanced Kudryashov’s
scheme [33], the Sardar sub-equation procedure [34], the improved Bernoulli sub-equation function method [35], the improved
tanh approach [36], the extended Fan sub-equation tool [37], the generalized Riccati equation mapping scheme [38], F-expansion
technique [39], the unified Riccati equation expansion approach [40], the Melnikov scheme [41], the generalized G ′/G-expansion
approach [42], the extended trial function method [43], Painleve approach [44], the simplest equation technique [45], Sine-Gordon
equation technique [46], the Riemann–Hilbert technique [47, 48] and more.

The last quarter century has witnessed tremendous developments in terms of both communication and internet technologies. Fiber
optics is an integral part and an outstanding building block for these technologies. Soliton transmission emerges as a substantial
concept, especially when it comes to the transmission of very large volume data packets over very long distances. Although
the Schrödinger equation is a model used in modeling many physical phenomena, the Schrödinger–Hirota equation is particular
from ordinary Schrödinger’s equations and is one of the important models that include soliton propagation in optical fibers. The
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Schrödinger–Hirota equation was created from the Schrödinger equation with the help of Lie transform [49]. One of the main
elements underlying several other models that model soliton transmission in fiber optics, such as the Schrödinger–Hirota equation,
is the investigation of the delicate balance between chromatic dispersion and self-phase modulation. In this context, different forms
related to the term self-phase modulation (Kerr, power, parabolic, dual-power, triple power, anti-cubic, polynomial, generalized
anti-cubic, cubic-quintic-sextic-nonic, log-law, etc.) exist, and each form has a different physical behavior in soliton conduction in
optical fibers. In recent years, the concept of refractive has been added to such nonlinearity forms. This study scrutinizes the situation
of cubic–quintic—septic law nonlinearity form for the Schrödinger–Hirota equation.

The perturbed Schrödinger–Hirota equation [8] with cubic–quintic–septic law in the presence of spatiotemporal dispersion is
presented as:

iUt + αUxx + β Uxt +
(
λ1 |U |2+λ2 |U |4+λ3 |U |6)U + i

(
ηUxxx + μ|U |2Ux

)

� i
(
γUx + a

(|U |2U)
x + b

(|U |2)xU
)
. (1)

Herein,U � U (x , t) is the complex soliton profile. α and β state the group velocity dispersion (GVD) and spatiotemporal dispersion
(STD) terms. Furthermore, λ1, λ2, λ3 are the coefficients of the cubic, quintic, and septic nonlinear terms from self-phase modulation.
The coefficients of γ and a express the inter-modal dispersion, and self-steepening, respectively. Besides b and μ state also for
nonlinear dispersions. Various SH equations have been introduced, and a vast research area has been created. Some of these can be
listed as Kudryashov scrutinized the fourth-order SH equation [17]. SH equation having Kerr law nonlinearity was scrutinized in
[18, 19]. Cakicioglu et al. considered the dispersive SH equation having parabolic law linearity [20]. [50] contains the perturbed
SH equation with the spatiotemporal dispersion. Kaur and Wazwaz gained bright and dark solitons to the SH equation with variable
coefficients in the presence of power law nonlinearity [51]. Koprulu surveyed conformable fractional SH equation [52]. In [53],
Houwe et al. explored diverse soliton structures of the perturbed SH equation. Inc et al. analyzed the modulational instability of
the SH equation with STD having Kerr law nonlinearity [54]. Anjan et al. examined the SH equation with power law nonlinearity
[55]. The coupled nonlinear SH equation was analyzed in detail by Tang [56]. Anwar et al. acquired various solutions for the
perturbed nonlinear SH equation with STD via various schemes [57]. [58] recovers dispersive optical solitons to the SH equation
with differential group delay and white noise, and [59–62] include various structures of the SH equation have been examined in
other studies.

The remainder of the paper is planned as: The nonlinear ordinary differential equation (NLODE) structure is acquired utilizing
a complex transformation in Sect. 2. The simple version of the new extended auxiliary equation method (SAEM26) is summarized,
and its applications are presented in Sect. 3. The derived results are expressed in Sect. 4. The conclusion part is offered in Sect. 5.

2 Extracting the NLODE of eq. (1)

To get the NLODE of eq. (1), we benefit from the following complex transformation:

U (x , t) � U (ξ ) ei(−κx+ωt+ϕ0), ξ � x − νt , (2)

in which U (ξ ) is the soliton pulse profile, ϕ0 is phase constant, and ω, κ , ν are frequency, wave number and velocity. Inserting
eq. (2) to eq. (1), the imaginary and real components of the acquired equation are presented in the following structure, respectively:

ηU ′′′ − (
(3a + 2b − μ)U 2 + (2α − βν)κ + 3κ2η − βω + ν + γ

)
U ′ � 0, (3)

(α − βν + 3ηκ)U ′′ + λ3U
7 + λ2U

5 − ((a − μ)κ − λ1)U
3 − (

ηκ3 + α κ2 + (γ − βω)κ + ω
)
U � 0. (4)

If eq. (3) is integrated and the integration constant is assumed as zero, then we attain,

ηU ′′ + (μ − 3a − 2b)U 3 + 3
(
βκν − 3ηκ2 − 2ακ + βω − γ − ν

)
U � 0. (5)

Equation (5) gives the following constraints:

μ � 3a + 2b, ν � 3κ2η + 2ακ − βω + γ

βκ − 1
, η � 0. (6)

Obtaining as η � 0 in eq. (6) demonstrates that the model presented eq. (1) does not accept the third-order dispersion term. Carrying
out a proper arrangement on the perturbation term, an examination of a model containing this term can be contemplated as the
subject of another study.

In eq. (4), balancing the terms U ′′ and U 7, the balance constant is achieved as 1
3 . Since the balance constant is defined as a

positive integer, we need to perform the following transformation:

U (ξ ) � H1/3(ξ ). (7)
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If eq. (4) is rearranged considering eqs. (6),(7), it gives the following expression:

9(2(a + b)κ + λ1)H
8
3 + 9λ2�H

10
3 − 3H

(
αβκ − β2ω + βγ + α

)
H ′′

+2
(
H ′)2 + 9�H2(H2λ3 − α κ2 + (βω − γ )κ − ω

) � 0, (8)

in which � � (βκ − 1) and  � αβκ − β2ω + βγ + α. For integrability of eq. (8), we must set,

λ1 � −2κ(a + b), λ2 � 0. (9)

As a result, the NODE form in eq. (8) is formed as follows:

−3HH ′′ + 2(H ′)2 + 9�
(
H2λ3 − α κ2 + (βω − γ )κ − ω

)
H2 � 0. (10)

From eqs. (10), (11), and (12), the homogeneous balance constant J is figured out as 2.

3 Application

3.1 SAEM26

The SAEM26 [63] offers that eq. (10) has a solution as the following truncated series form:

H (ξ ) �
J∑

j�0

� jϒ
j (ξ ), �J �� 0, (11)

in which � j are real constants, J is the positive integer balance constant which was computed as 2. The function ϒ(ξ ) states the
solution of the following equation:

(ϒ ′(ξ ))2 � σ 2ϒ2(ξ )
[
1 − χϒ4(ξ )

]
, (12)

in which χ , and σ are nonzero real values. We express one of the solutions for eq. (12) with the following structures:

ϒ(ξ ) �
√

2√
χ

(
e2σξ + e−2σ ξ

) or ϒ(ξ ) �
√

2

e2σξ + χe−2σξ
, (13)

or in the hyperbolic form:

ϒ(ξ ) �
√

sech (2σξ )√
χ

, (14)

which serves the bright soliton. Since J � 2, eq. (11) turns into the following form:

H (ξ ) � �0 + �1ϒ(ξ ) + �2ϒ
2(ξ ), �2 �� 0. (15)

When we insert eqs. (15), (12) into eq. 10, then gather all coefficients of ϒ j and equalize them to zero, we produce:

ϒ0(ξ ) : �1�
2
0 � 0,

ϒ1(ξ ) :
(
�2σ

2 + 6�1
)
�0�1 − 6λ3�

3
0�1 � 0,

ϒ2(ξ ) : �2σ
2(12�0�2 + �2

1) + 9(�1 − λ3�
2
0)

(
2�2�0 + �2

1

) − 36λ3�
2
0�

2
1 � 0,

ϒ3(ξ ) : 7�2σ
2�1�2 − 18�2

0�1�2λ3 − 36�0�1
(
2�2�0 + �2

1

)
λ3 + 18�1�2�1 � 0,

ϒ4(ξ ) : 4�2σ
2�2

2 − 9�2
0�

2
2λ3 − 72�0�

2
1�2λ3 − 9

(
2�2�0 + �2

1

)2
λ3 + 9�2

2�1 � 0,

ϒ5(ξ ) : �2σ
2χ�0�1 + 4λ3�0�1�

2
2 + 4

(
2�2�0 + �2

1

)
�1�2λ3 � 0,

ϒ6(ξ ) : (24�2σ
2χ + 36λ3�

2
2)�0�2 + (7�2σ

2χ + 54�2
2λ3)�2

1 � 0,

ϒ7(ξ ) :
(
25�2σ

2χ + 36λ3�
2
2

)
�1�2 � 0,

ϒ8(ξ ) :
(
16�2σ

2χ + 9λ3�
2
2

)
�2

2 � 0, (16)

where �1 � (
κ2α − κβω − λ3�

2
0 + κγ + ω

)
and �2 �

(
β(2ακ−βω+γ )

βκ−1 − α
)

. The solution of the system in eq. (16) gives the

following set:
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Set-1.
{

σ � −
√

−9
(
α
(
β2κ2 − 1

) − βω(β − 1)2)

2(α(βκ + 1) − βω(β − 1))
, �0 � 0, �1 � 0, �2 � ∓2

√
λ3χ

λ3

}

, (17)

in which  � (
ακ2 + γ κ − βκω + ω

)
. Unifying eq. (15) with eqs. (2), (7), and (13), we derive the following solution:

U1(x , t) �
(

2�2√
χ

(
e2σ(x−νt) + e−2σ(x−νt)

)

) 1
3

ei(−κx+ωt+ψ0). (18)

Herein, σ , �2, ν are found in eqs. (6), (17).

4 Modulation instability analysis

We intend to scrutinize the modulation instability of eq. (1) utilizing the standard linear stability analysis [64–68]. In order to carry
out this aim, assume eq. (1) has the following structure of steady-state (SS) solution:

U (x , t) �
(√

K + �(x , t)
)
ei�, (19)

in which � � τ1K + (τ2 − ε)K 2, ε is a real constant, and K represents the normalized optical power. �(x , t) is also a small
perturbation which satisfies the condition �(x , t) � √

K . Combining eq. (19) with eq. (1) and collecting linear terms, we get

β�xt + α�xx + i
(
β(τ2 − ε)K 2 + (βτ1 − 2 a − b + μ)K − γ

)
�x − i(a + b)K�∗

x + i�t

+K
(
4K 2λ3 + (ε − τ2 + 3λ2)K + (2λ1 − τ1)

)
� + K

(
3K 2λ3 + 2Kλ2 + λ1

)
�∗ � 0, (20)

in which (∗) is the complex conjugate of �(x , t). Presume that the solution of eq. (20) is stated as:

�(x , t) � α1e
i(�x−F t) + α2e

−i(�x−F t),

�∗(x , t) � α1e
−i(�x−F t) + α2e

i(�x−F t), (21)

where α1, α2 are real-valued coefficients, F and � state the frequency of perturbation and normalized wave number. Unifying
eq. (21) with eq. (20), considering separately the coefficients of ei(�x−F t) and e−i(�x−F t), the following system is acquired,

T1α1 + T2α2 � 0,

T3α1 + T4α2 � 0, (22)

in which

T1 � 4K 3λ3 + (β(ε − τ2)� + ε + 3λ2 − τ2)K
2 − �2α + (Fβ + γ )� + F

+ ((2a + b − μ − βτ1)� + 2λ1 − τ1)K , (23)

T2 � 3K 3λ3 + 2K 2λ2 + ((a + b)� + λ1)K , (24)

T3 � 3K 3λ3 + 2K 2λ2 − ((a + b)� + λ1)K , (25)

T4 � 24K 3λ3 + (−β(ε − τ2)� + ε + 3λ2 − τ2)K
2 − �2α + (ϒβ − γ )� − F

((βτ1 − 2a − b + μ)� + 2λ1 − τ1)K . (26)

The system can be written in the matrix form:
(
T1 T2

T3 T4

)
×

(
α1

α2

)
�

(
0
0

)
. (27)

Figuring out the determinant of the matrix in eq. (27) taking into account eqs. (23)–(26) for F , the following relation is gained:

F �
√
G1K 6 + G2K 5 + G3K 4 + G4K 3 + G5K 2 + G6 + G7

�2β2 − 1
(28)

where �2β2 − 1 �� 0, and

G1 � 9�2β2λ2
3 + 7λ2

3,

G2 � −4
(
β2(2ε − 3λ2 − 2τ2)�

2 − 2ε − 3λ2 + 2τ2
)
λ3,

G3 � −2β
((

ε2 + (3λ2 − 2τ2)ε − 3λ1λ3 − 2λ2
2 − 3λ2τ2 − 4λ3τ1 + ρ22) + 4(2a + b − μ)λ3

)
�2
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Fig. 1 Gain spectrum for eq. (29)
for λ1 � −0.4, λ2 � 0.12,
λ3 � 0.2, b � 2, β � 2, μ � 1,
γ � 0.5, a � −2, α � 1,
τ1 � 0.5, ε � 0.7, τ2 � 1

Fig. 2 Some depictions of U1(x , t) when α � 0.2, β � λ3 � χ � γ � 1, κ � −0.75, ω � 0.5, ψ0 � 10

+ β4(ε − τ2)
2�4 + ε2 + (6λ2 − 2τ2)ε + 10λ1λ3 + 5λ2

2 − 6λ2τ2 − 8λ3τ1 + τ 2
2 ,

G4 � 2β3(−βτ1 + a + b − μ)(ε − τ2)�
4 + ((−4λ1 + 4τ1)ε + (6λ2 − 4τ2)τ1 + 4λ1(λ2 + τ2))�

2β2

+ (((−4a − 2b + 2μ)ε + (4a + 2b − 2μ)τ2 + (−12a − 6b + 6μ)λ2 − 8λ3γ )β − 8αλ3)�
2

+ (4λ1 − 2τ1)ε + (−6λ2 + 2τ2)τ1 + 4(2λ2 − τ2)λ1,
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Fig. 3 2D depictions of U1(x , t) when χ � 1, κ � −0.75, ω � 0.5, ψ0 � 10

G5 � β2(β2τ 2
1 + 2(εγ + (−2a − b + μ)τ1 − γ τ2)β + 2αε − 2ατ2 + (a − μ)(3a + 2b − μ)

)
�4

+
((

λ2
1 + 4λ1τ1 − 2τ 2

1

)
β2 + (−2ε(α + γ ) + (4a + 2b − 2μ)(τ1 − 2λ1) + 2γ τ2 − 6λ2γ )β

)
�2

+ (2ατ2 − 6αλ2 + (a + b)2)�2 + 3λ2
1 − 4λ1τ1 + τ 2

1 ,

G6 � 2
(
β(−βτ1 + 2a + b − μ)�2 + 2λ1 − τ1

)
�2(βγ + α)K + �4(βγ + α)2,

G7 � �3αβ +
(−4λ3β K 3 − 3λ2β K 2 + (−2βλ1 + 2a + b − μ)K + γ

)
�.

The SS stability is examined by applying the achieved dispersion term. If there is an imaginary component of F , then the SS
solution changes unstable as the perturbation exponentially enlarges. Thus, it is observed that the modulation instability arises
if G1K 6 + G2K 5 + G3K 4 + G4K 3 + G5K 2 + G6 < 0 in eq. (28). On the contrary, if F is real for each real value, that is,
G1K 6 + G2K 5 + G3K 4 + G4K 3 + G5K 2 + G6 > 0, the SS is stable against small perturbations (Fig. 1).

The gain spectrum of eq. (28) is indicated as:

G(�) � 2Im(F). (29)
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5 Results and discussion

This part consists of some views of the acquired soliton solution. We intend to indicate some sketches of the |U1(x , t)|2 in Fig. 2.
Figure 2 expresses the bright soliton for the values α � −1.5, β � −1, λ3 � γ � 1, ω � 0.25, κ � χ � 0.5, ψ0 � 10. Yellow,
red, and blue waves in Fig. 2d indicate the structure of the soliton for t � 1, 3, 5. Thus, the wave moves to the left preserving the
bright soliton view.

Figure 3 comprises various 2D views of U1(x , t). The figures depict the influences of varied coefficients on the soliton form.
Figure 3a represents the impacts of α on the soliton structure. According to Fig. 3a, when α is positive and increases, the height
of bright soliton positively shifts, whereas the amplitude of bright soliton decreases. But, when α is negative and enlarges, the
amplitude of bright soliton positively shifts, but the height of bright soliton decreases. The effect of β indicates that as β increases,
the height of the bright soliton changes positively, whereas the width of the soliton narrows. According to Fig. 3c, the parameter λ3

has a negative effect on the height of bright soliton for increasing λ3 values. Furthermore, increasing the value of γ has a positive
influence on the dynamics of the soliton in terms of expanding the amplitude of the derived soliton in Fig. 3d, while it has a negative
effect on the elevation of the soliton. Consequently, the charts in Fig. 3 highlight the significance of diverse parameter values in
forming the bright soliton structure of eq.(1).

6 Conclusion

In this paper, the new extended auxiliary equation technique, an effective and powerful technique, has been utilized to produce novel
soliton solutions of the perturbed Schrödinger–Hirota equation with cubic–quintic–septic law having spatiotemporal dispersion.
The model was constructed to include the spatiotemporal dispersion term. But, it was observed that the model did not accept the
third-order nonlinear dispersion term while obtaining the NLODE of the model. Necessary arrangements were made in this direction,
and within the framework of the obtained constraint relations, the coefficient of the quintic law nonlinearity term was acquired as
zero. Thus, the bright solution was generated. Diverse depictions of the derived soliton solution were indicated, and the impacts
of the parameters in the model were analyzed and added physical interprets with 2D graphics as well. The paper will provide to
the literature in terms of both degenerating the model to the cubic–septic law nonlinearity form by not accepting the term quintic
law nonlinearity for the examined form and showing the parameter effects on the bright soliton formed in this case. In the future,
the creation of stochastic, fractional, multi-soliton, and bifurcation analysis forms and the inclusion of other methods in terms of
their ability to produce other soliton types can be counted among some of the goals and may be the focus of attention of those
who do research in this field. Eventually, it is able to extremely observe that the soliton solutions will present sights to a number of
researchers investigating the branch of fiber optics.
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