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SUMMARY 

Hyperspectral imaging has become an indispensable tool for analyzing Earth's surface 

materials and extracting valuable information in various applications, including 

environmental monitoring, agriculture, and remote sensing. One fundamental task in 

hyperspectral analysis is spectral unmixing, which aims to decompose mixed pixel 

spectra into their constituent endmember spectra and corresponding abundances. 

Traditional spectral unmixing methods typically rely on linear models, assuming that 

the mixed pixel spectra are linear combinations of the pure spectral signatures. 

 

 in this thesis, an approach to enhance the spectral resolution of hyperspectral images 

while simultaneously reducing spectral variability is explored by proposing a 

technique called Deep Generative Endmember Modeling (DGEM) applied to 

unsupervised spectral unmixing. 

 

The Linear Mixing Model (LMM) is commonly used for spectral unmixing, which 

aims to decompose the mixed spectral information in an image into individual pure 

spectral signatures called endmembers. However, traditional LMM approaches 

struggle with limited spectral resolution and high spectral variability, which can hinder 

accurate unmixing results. 

 

To address these challenges, a Deep Generative EM is proposed, which leverages deep 

generative models to learn the underlying structure of the endmembers. By employing 

a deep neural network architecture which is capable of capturing intricate relationships 

and generating high-resolution endmembers with reduced spectral variability. 

 

The proposed Model framework enhances the spectral resolution of hyperspectral 

images by estimating high-resolution spectral bands based on the learned endmember 

representations. Additionally, the generated endmembers exhibit reduced spectral 

variability, resulting in improved unmixing performance. 

 

Key Words: hyper spectral images, deep learning, deep neural network, spectral 

resolution, spectral unmixing, endmember, MATLAB  
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ÖZET  

Hiperspektral görüntüleme, Dünya'nın yüzey materyallerini analiz etmek ve çevresel 

izleme, tarım ve uzaktan algılama dahil olmak üzere çeşitli uygulamalarda değerli 

bilgiler elde etmek için vazgeçilmez bir araç haline gelmiştir. Hiperspektral analizdeki 

temel görevlerden biri, karışık piksel spektrumlarını kendilerini oluşturan son üye 

spektrumlarına ve karşılık gelen bolluklara ayrıştırmayı amaçlayan spektral karıştırma 

işlemidir. Geleneksel spektral karıştırma yöntemleri tipik olarak doğrusal modellere 

dayanır ve karışık piksel spektrumlarının saf spektral imzaların doğrusal 

kombinasyonları olduğunu varsayar. 

 

 Bu tezde, hiperspektral görüntülerin spektral çözünürlüğünü artırırken aynı zamanda 

spektral değişkenliği azaltmaya yönelik bir yaklaşım, denetimsiz spektral karıştırmaya 

uygulanan Derin Üretken Uç Üye Modellemesi (DGEM) adı verilen bir teknik 

önerilerek araştırılmıştır. 

 

Doğrusal Karıştırma Modeli (LMM), bir görüntüdeki karışık spektral bilgiyi uç üye 

adı verilen bireysel saf spektral imzalara ayrıştırmayı amaçlayan spektral karıştırma 

için yaygın olarak kullanılmaktadır. Bununla birlikte, geleneksel LMM yaklaşımları 

sınırlı spektral çözünürlük ve yüksek spektral değişkenlik ile mücadele eder ve bu da 

doğru karıştırma sonuçlarını engelleyebilir. 

 

Bu zorlukların üstesinden gelmek için, uç öğelerin altında yatan yapıyı öğrenmek için 

derin üretken modellerden yararlanan bir Derin Üretken EM önerilmiştir. Karmaşık 

ilişkileri yakalayabilen ve azaltılmış spektral değişkenliğe sahip yüksek çözünürlüklü 

uç üyeler üretebilen derin bir sinir ağı mimarisi kullanılarak. 

 

Önerilen Model çerçevesi, öğrenilen uç üye temsillerine dayalı olarak yüksek 

çözünürlüklü spektral bantları tahmin ederek hiperspektral görüntülerin spektral 

çözünürlüğünü artırmaktadır. Buna ek olarak, üretilen uç üyeler daha az spektral 

değişkenlik sergileyerek daha iyi karıştırma performansı sağlar. 

 

Anahtar kelimeler: hiper spektral görüntüler, derin öğrenme, derin sinir ağı, 

spektral çözünürlük, spektral unmixing, Endmember, MATLAB 
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INTRODUCTION 

Human vision is known to extend between 400 and 700nm, in other words, it 

can only see visible light in three bands which are red, green and blue, however in 

scientific inquiry, it is necessary to look far beyond than that, into the infrared ranges 

whereas it can divides the spectrum into several further bands, for this reason a recent 

advances in optical analysis introduced a technology called hyper spectral imaging 

that allows for the detection and identification of objects from a large scale of images 

providing enormous number of wavebands, such imaging is based on the idea that it 

can record underlying processes (e.g., chemical traits, biophysical qualities, etc.) down 

to the pixel level, In other words it is based on the idea of a continuous spectrum, or 

of narrow, contiguous spectral bands, which is crucial and allows for the greatest 

possible use of the information. Thus, by examining their tiny spectrum features, it is 

able to recognize surface objects (or atmosphere gases/particles) and evaluate their 

optical qualities. 

Hyperspectral imaging has transformed a study of Earth's surface substances, allowing 

for exact characterization as well as analysis across several domains such as: 

- remote sensing in which, it enables gathering information about the planet’s 

surface and environment that includes tracking the utilization of land, identifying 

alterations in vegetation’s health and even monitoring coral reef’s health.  

- Agriculture in which hyperspectral imaging can be deployed in maintaining crop 

health, identifying nutritional deficits, insects and diseases. 

- Biotechnology and science such as process control and medical diagnosis which 

can be used to detect cancerous tissue and skin illness.   

This technology relates to a group of methods known as spectrum imaging or 

spectral analyses that has evolved as an effective and adaptable technique which can 

collect and process detailed information from across the electromagnetic spectrum 

with the goal of locating objects, identifying materials, or detecting processes from the 

acquired spectral images. It can be compared to fingerprints but instead of identifying 

a person, it identifies materials. 

However, to attain maximum result’s efficiency hyperspectral imagery must 

overcome numerous conditions and circumstances that reduce the capability to 

interpret and analyze the data which can affect its performance leading to weak 
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spectral Resolution and high spectral variability. These conditions can be as 

atmospheric changes or in some cases, it can occur a lot of materials in the same 

spectral signature as it gets more difficult to correctly define and measure the basic 

substances. 

In order to attain the research problem mentioned above, a proposed models and 

methods are deployed to overcome them, such as: deep generative modeling which is 

a class of machine learning approaches that learns the distribution of endmembers in 

a hyperspectral image using deep neural networks leading in. In other words, this 

approach enables the generation of realistic samples and the learning of what underlies 

the data distribution. 

Moreover, Spectral unmixing which is able to distinguish the endmembers 

present in a hyperspectral image scene and determine their abundance fractions in each 

pixel without any endmember’s knowledge being provided. In this case a well-known 

method in spectral unmixing will be employed, called linear mixing model which is 

able to overcome the unmixing problem by defining how the endmembers are mixed 

in the image. 
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CHAPTER ONE 

LITERATURE REVIEW 

1.1. Hyperspectral imaging 

 

Hyperspectral imaging, also called "spectro-imaging" as opposed to 

"multispectral" or "superspectral" imaging, is a good way to work with materials, 

identify them or define their properties, using the process of capturing a large number 

of spectral bands (generally more than hundred), when employing hundreds (or even 

thousands) of narrowband (≤ 10nm) and contiguous channels (Fig.1 and 2) that cover 

the visible and infrared regions of electromagnetic spectrum and this is done by 

studying how light interacts with them. "Imaging spectrometers" (Goetz et al., 1985) 

is the acquisition of a continuous spectrum in a given range of wavelengths, generally 

corresponding to the visible and near-infrared domains (400 to 2500nm), with a 

sampling step of about 10nm. 

Moreover, it is possible to distinguish and identify the elements of a pixel using 

hyperspectral imaging by analyzing their "spectral signature" that include specific 

absorption peaks' wavelength positions in which they are influenced by their chemical 

make-up, also, the quantity (or concentration) of the elements present will be indicated 

by their amplitude. Finally, the surface's physical characteristics affect the spectrum's 

(or continuum's) overall form (granulometry, roughness, humidity, etc.). Thus, it is 

feasible to determine the different materials present, as well as their concentrations 

and physical features (e.g., minerals, plants, chemical components, etc.). 

 

Figure 1: A hyperspectral satellite's underlying concept. The output of a 

hyperspectral satellite is a data cube and spectrum for each pixel. 
Source: Khan M. S., (2018) 
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Figure 2 : Example of a "hyperspectral cube" - Image of Moffett Field, CA (San 

Francisco Bay Area) acquired on August 20, 1992 by the AVIRIS Spectro-imager 

(NASA/JPL) embarked on an ER-2 stratospheric aircraft. 

 

To understand further, hyperspectral imagery helps in analyzing and evaluating 

of the reflected (also emitted) radiation detected by a high number of narrow, 

contiguous and continuous spectral bands, where instead of merely assigning primary 

colors to each pixel; it can evaluate a broad spectrum of light. This study of light 

interaction with materials is based on spectroscopy which is done by using a 

spectrometer  is an instruments that splits the incoming light into a spectrum and 

measures thousands or hundreds of thousands of spectra by examining how light 

behaves in the target and recognizing materials based on their different spectral 

signatures, a spectrum information also called a reflectance spectrum is collected, this 

imaging spectrometer is called the hyperspectral camera and its goal is to collect full 

spectral and spatial information of the target line by line and as a result a collected 

spectra presented on a scale of intensity and wavelength which is used later to form an 

image of the target in a way that each pixel includes a complete spectrum. 

Hyper spectral imaging is used frequently in a lot of fields which are remote 

sensing field that includes Intelligent farming and environmental monitoring also in 

advanced machine vision that includes food or materials forming and counterfeit 

detection either illustrating various characteristics of the land (such as surface 

temperature, soil moisture, agricultural output, defoliation, biomass, or leaf area 

coverage), the water (such as yellow material, ocean color, suspended particles, or 

chlorophyll content), or the atmosphere (e.g., temperature, moisture, or trace gases), 

moreover a well know field which is Biotechnology and science that includes process 
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control and diagnosis such as using infrared hyperspectral imaging to identify 

infections without labels, also hyper spectral imaging used in defense and security 

which includes situational awareness and surveillance. 

 
Figure 3: (a) The concept of hyperspectral imaging (b) Hyperspectral vectors 

expressed within a lower-dimensional manifold.  
Source: Bioucas-Dias J. M., (2013) 

 

Moreover, one of the main components in hyperspectral imaging is the 

hyperspectral camera also called imaging spectrometer which is a line scan camera 

based on a technology called push-broom technology, this technology gathers the 

target’s whole spectral and spatial data line by line, its key elements are an imaging 

spectrograph, a grayscale camera and an objective. 

 

The objective projects the target to the camera sensor where the image is 

recorded, the second key element in the hyper spectral camera is the imaging 

spectrograph which contains an input split in which the incoming information is 

 

Figure 4: illustration of the hyperspectral camera.  
Source: Dell’Endice, F., (2009)  
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limited so that it passes only from a single line where the objective form an image into 

it, a collimating optics which directs the light from the split to the dispersive unit so 

the incoming light spreads into the spectra, and a dispersive unit as well as a focusing 

lens which is needed to focus the image to the gray scale camera which used to measure 

the intensity of the dispersed light, in case of hyperspectral image acquisition, there 

are various available hyperspectral sensors, each of them has a unique property 

depending on the application.  

The main primary features of these instruments are the type of scanner 

(pushbroom or wiskbroom), coverage and spectral resolution, viewing angle, and 

spatial resolution. 

For the case of acquisition strategies, there are three types: 

a- Spectral scanning techniques that include sequentially capturing every single 

monochromatic spectral picture, as seen in Fig.4. Up until the whole 

hyperspectral cube is collected, each acquisition first records the entire 2D scene 

at a wavelength chosen via a bandpass optical filter. The optical filter is then 

adjusted to capture the next spectral picture. For this technique, very accurate 

optical filters that can filter the required wavelength are needed. However, it 

necessitates that the scene (as well as the sensor) be still for the duration of the 

capture. 

 

 

Figure 5 : Monochromatic spectral pictures. 

 

b- The second category of spectral scanning techniques consist in gathering all of 

the spectral data for one or more pixels at once and the acquisition is done line 

by line using two different techniques: push broom or whiskbroom. 
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c- The third method is snapshot imaging, which enables the simultaneous capture 

of spectral and spatial data without the need for scanning by involving "slicing" 

the image into bands and rearranging these bands into a single line using a 

sophisticated optical apparatus.  

1.2. Spectral resolution 

The accuracy with which the planet surface’s environment is observed can be 

primarily depending on the different characteristics and properties that manage how 

much detail the data about the earth’s surface of the satellite’s sensors can provide in 

which, one of these properties is the spectral resolution that has been a fundamental 

concept that can serve in improving material discrimination, accurate quantitative 

analysis and also feature’s similarities discrimination, it is an information provided by 

the sensor’s ability to distinguish between the ranges of the electromagnetic spectrum 

by detecting precise details that can help in enhanced decision making and effective 

analysis. 

In hyperspectral imaging, spectral resolution is crucial as it’s central key 

component that determines the spectral data's amount of detail and discriminating 

skills in which the hyperspectral sensor is able to record, by distinguishing features 

from the hyperspectral images, it enables to go more deeply within the domain of 

spectral analysis to acquire vital data that is typically hidden in imaging analysis. Thus, 

spectral resolution has several advantages in hyperspectral imaging, two mains of them 

are fine discrimination and detailed analysis, in which, the high spectral resolution can 

 

Figure 6: Hyperspectral acquisition with a whiskbroom sensor (left) and 

a "push broom" sensor (right). 
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capture subtle details and fine spectral variations, making it easier to distinguish 

between different materials and features in the scene as well as is can allow for more 

precise analysis of the spectral properties of objects, which can be useful in various 

applications, such as change detection, material classification, vegetation mapping, 

etc. 

In this context of hyperspectral imaging, the spectral resolution can contain two main 

aspects which are the number of spectral bands and their width.  

 

- Number of spectral bands: 

The term "spectral bands" relates to the total number of distinct wavelength 

ranges or channels used by the hyperspectral sensor to sample the 

electromagnetic spectrum in which the higher of spectral bands, the higher 

ability to analyze and record fine-scale of spectral variations. 

- Width of spectral bands:  

The range of wavelengths covered by each particular band is referred to as the 

width of spectral bands which is defined by the sensor's spectral filter as shown 

in the table 1 or dispersive element, that distinguishes and narrows certain 

wavelengths into distinct sensors, the narrower band widths, the more enhanced 

spectral resolution which is done by reducing the range of wavelengths 

collected within each band, allowing for a more accurate separation and more 

precise discrimination of spectral characteristics.  

 

 

However, regardless of the hyperspectral sensor's capacity to capture a large 

number of spectral bands, the spectral resolution is still generally lower than the spatial 

 

Sensor  Number of  

bands 

Wavelength 

range 

Spectral 

bandwidh 

AVIRIS 224 360-2500nm 9.6nm 

ROSIS 115 430-860nm 4nm 

Hyperion 220 400-2500nm 10-11nm 

HyspIRI 212 380-2500nm 10nm 

 

Table 1: some of the famous hyperspectral sensors. 
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resolution, which can result in significant information loss which refers to the limited 

ability of hyperspectral sensors to capture fine, detailed spectral information leading 

to several challenges in the analysis of hyperspectral data such as: 

- High dimensionality:  

Hyperspectral images with high spectral resolution can have a large number of 

bands, which increases the dimensionality of the data. This poses challenges in 

terms of data storage, processing and analysis. 

- Spectral variability: 

 The presence of spectral variations due to factors such as atmospheric conditions, 

lighting, shadows, etc., can make the interpretation and analysis of hyperspectral 

data more complex. Spectral variability can mask subtle differences between 

materials and affect the accuracy of results. 

- Difficulty distinguishing similar materials:  

The reduced spectral resolution can make it difficult to distinguish between 

materials with similar spectral signatures. This can lead to confusion in classifying 

materials or identifying specific characteristics of a scene. 

- Spectral interference: 

When two or more materials have similar spectral signatures in one or more bands, 

it can be difficult to distinguish them with limited spectral resolution. This can lead 

to errors in identifying and quantifying the materials present in a scene. 

To overcome these spectral resolution problems, several approaches and 

methods have been developed in which the main objective them is to exploit the 

available spectral information as much as possible and to reduce the spectral resolution 

limitations in order to improve the accuracy and quality of the hyperspectral analysis, 

the most known of them are as follows: 

- Atmospheric Processing:  

Atmospheric corrections are intended to remove or reduce the effects of the 

atmosphere on hyperspectral data. This can involve removing atmospheric 

scattering effects, correcting for illumination variations, and restoring reflected 

radiometric values. 

 

- Spatial and Spectral Filtering:  
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Filtering techniques can be used to reduce noise and variability in hyperspectral 

data. Spatial and spectral filters, such as mean filters, median filters, anisotropic filters, 

can be applied to smooth the data and improve image quality. 

- Dimension reduction techniques:  

By projecting the data into a reduced dimensional space, dimension reduction 

algorithms attempt to extract the most relevant characteristics from hyperspectral data 

which minimizes the data's dimensionality and keeps only the most important 

information for analysis. 

- Deep learning approaches:  

Deep neural networks, such as convolutional neural networks (CNNs) and 

variational autoencoders (VAEs), can be used to automatically extract discriminative 

features from hyperspectral data and reduce the variability spectral. 

1.3. Spectral features and its extraction 

Spectral features are the properties or spectral signatures that a material exhibits 

when assessed across different wavelengths in hyperspectral imaging. Every material 

has a unique spectral signature that corresponds to its interactions with light at various 

wavelengths in which a material's spectral properties are often represented as a 

reflectance spectrum or a vector of reflectance values at distinct spectral bands. Each 

reflectance value in the spectrum represents the amount of light reflected by the 

material at a certain wavelength. As a result, spectral properties define how a material's 

reflectance vary with wavelength. 
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Figure 7: feature extraction process. 
Source: Sánchez, S., (2010)  

 

 

In hyperspectral imaging, spectral features play an essential role as they refer to 

the properties of objects and materials that manifest themselves through their unique 

spectral signature. 

As mentioned before, hyperspectral imaging records data in many narrow 

spectral bands, often across the entire electromagnetic spectrum, providing detailed 

information about the reflection or emission of light from objects. Each spectral band 

records the amount of light reflected or emitted at a specific wavelength. Thus, spectral 

characteristics are therefore used to reflect variations in the spectral signatures of 

objects and provide valuable information about their composition, structure and 

physical properties. 

This can be done by preforming several methods independently such as: 

1.3.1. Independent Component Analysis (ICA) 

 ICA is another dimensionality reduction technique that aims to find statistically 

independent components in hyperspectral data. It assumes that the observed spectra 

are linear mixtures of underlying independent sources. By separating these sources, 

relevant features can be extracted. 
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1.3.2. Principal Component Analysis (PCA) 

PCA is a widely used technique for dimensionality reduction as it transforms 

hyperspectral data into a new set of orthogonal variables called principal components. 

The principal components are ranked according to their contribution to the data 

variability, and a subset of these components can be selected as characteristic.  

1.3.3. Non-Negative Matrix Factorization 

NMF is a popular approach for obtaining spectral signatures as it deconstructs 

the hyperspectral data into a set of endmembers and their abundances in which, these 

endmembers, reflect the spectral fingerprints seen in the data, whereas the abundances 

show the relative contributions of each endmember to the observed spectra. 

1.3.4. Deep learning approaches 

To extract spectral signatures, deep learning techniques such as autoencoders, 

convolutional neural networks, and recurrent neural networks can be used which 

enables the extraction of significant spectral signatures as well as capturing 

sophisticated spectral patterns by learning hierarchical representations from 

hyperspectral data. 

1.4. Spectral unmixing 

In hyperspectral imaging, unmixing is particularly important when there are little 

items in the picture where each pixel in a hyperspectral picture may be thought of as 

the reflection spectrum of the region being scanned, and these images are rich in both 

spectral and geographical information in which they are constructed of many 

materials, each of which has a distinct reflectance spectrum and according to these 

materials present in each pixel in which, each pixel carry spectral data, however, it 

sometimes occurs that a single pixel comprises many materials, in this case, the 

observed spectral data is a combination of the various material’s separate spectra. For 

this case, spectral unmixing is an essential approach that comes in an emerging 

between the spare unmixing and deep learning approaches for remotely sensed 

hyperspectral image interpretation. 

 Spectral unmixing involves a series of steps to interpret the measured spectrum 

of a mixed pixel. These steps include dividing the spectrum into constituent spectra 

called endmembers and determining the corresponding fractions or abundances that 
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indicate the proportion of each endmember present in the pixel. In simpler terms, the 

spectral unmixing process expresses each pixel vector, which may be a mixture, as a 

combination of pure spectral signatures (endmembers) and their respective fractional 

abundances. 

1.4.1. Endmember selection 

Endmembers are pure spectral signatures that indicate the spectral features of 

specific components in the scene. Endmember selection enables in finding and 

collecting a group of reference spectra that indicate the components in the 

hyperspectral image. 

1.4.2. Endmember extraction 

Once the endmembers have been determined, the endmember spectra must be 

extracted from the hyperspectral data which is done by through searching to identify 

the optimal linear combination of endmembers which corresponds to the observed 

mixed pixel spectrum. 

In this thesis, endmember extraction is crucial for spectral unmixing as it identify the 

endmembers or spectral signatures from the hyperspectral image, the most famous 

algorithms that have been developed and used are: 

-  N-FINDER (N-dimensional Visual Feature Extraction) 

The N-FINDR (N-dimensional Visual Feature Extraction) algorithm is a commonly 

used method for estimating abundance fractions of constituent materials present in a 

mixed hyperspectral scene, it is based on the assumption that each mixed pixel can be 

represented as a positive linear combination of pure endmembers and the objective is 

to identify the pure endmembers and estimate the corresponding abundance fractions. 

- Pixel Purity Index (PPI) 

The PPI algorithm is also a method in spectral unmixing to identify pure or unmixed 

pixels which operates by evaluating the degree of spectral purity of each pixel in the 

image while calculating a purity index for each pixel using statistical measures such 

as standard deviation, spectral distance, spectral coherence and other characteristics 

leading to facilitating spectral unmixing by providing references for estimating 

abundance fractions of constituent materials in the mixed pixels. 
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- Vertex Component Analysis (VCA) 

In this thesis report the algorithm used will be based on the VCA algorithm, 

Vertex component analysis is a technique used in hyperspectral imaging to extract 

information about spectral mixtures present in a scene which focuses on identifying 

the pure endmembers that represent the constituent materials in hyperspectral data 

(Borsoi et. al., 2018), in other words, it is a method used in the field of spectral 

unmixing to estimate the abundance fractions of pure endmembers in a hyperspectral 

scene and its main objective is to detect the endmembers present in the mixed pixels 

by exploiting the convexity of all the spectra.  

The VCA algorithm works by taking a hyperspectral data matrix as input in 

which each column indicates a pixel in the image and p is the needed number of 

endmembers, then, by using singular value decomposition (SVD) or principal 

component analysis (PCA) the data is then projected into a lower-dimensional 

subspace and normalized in which it can also enables in reducing noises and 

redundancies in the data, The VCA algorithm proceeds in iterations in which, at each 

iteration, it identifies a potential endmember by searching for the spectrum that 

maximizes the angle with the other endmembers already identified and continues this 

iterative process until a predefined stopping criterion is reached, such as a fixed 

number of desired endmembers or sufficient convergence of abundance fraction 

estimates. Once the endmember is selected, the algorithm uses orthogonal projection 

to update the estimated abundance fractions for the mixed pixels. 

- Sequential Maximum Angle Convex Cone (SMACC) 

The SMACC algorithm operates using an iterative approach for estimating abundance 

fractions which is done by starting to select a reference pixel and identifying it as a 

potential endmember, further, it constructs a convex cone from this endmember using 

the other mixed pixels, and then, identify the pixel that forms the maximum angle with 

the existing convex cone which is added as a potential new endmember. By repeating 

this process iteratively, the algorithm searches for the next endmembers that maximize 

the angle between the convex cone and the remaining pixels which allows the 

contribution of the constituent materials in the mixed pixels to be quantified and 

facilitates spectral unmixing. 
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- Minimum Noise Fraction (MNF)  

The MNF algorithm is used in the field of spectral unmixing to reduce noise and 

correlations between spectral bands in a hyperspectral image which is based on a 

Vertex Component Analysis adapted to hyperspectral data where it transforms the data 

into a new space called MNF space where the information is better represented, thus 

facilitating spectral unmixing by reducing the dimensionality of the data while 

preserving the relevant information (Rajabi, 2014). 

1.4.3. Abundance estimation  

Thereafter, it comes the abundance fraction estimation of every single 

endmember in which, in spectral unmixing, refers to the process of estimating the 

abundance fractions of different endmembers present in a hyperspectral scene. In 

hyperspectral imaging, the materials and objects in a scene are often linearly mixed, 

meaning that each pixel in the image is a linear combination of the spectral signatures 

of the endmembers, in this case, abundance estimation involves determining the 

proportions or fractions of each endmember contributing to the spectral signature of a 

given pixel.  

A hyperspectral image may be analyzed as a collection of sampled spectra that 

correspond to the unique spectral signatures of each of the materials in the observed 

image, known as endmembers, as well as the locations of each of these endmembers 

in the image, however, due to insufficient spatial resolution and spatial complexity 

which occurs when a pixel contains many materials, this map, known as an abundance 

map, shows the percentage of each endmember in that pixel. 

Moreover, sometimes when it comes to break down a picture into a list of source 

spectra, known as endmembers, that correspond to the reflection spectra of the scene 

which has many elements on the one hand, and the percentage of each of these source 

spectra in each individual pixel on the other hand, hyperspectral imaging uses the 

unmixing technique in which there are several , however they are less successful when 

there are so-called uncommon source spectra (i.e. spectra present in very few pixels, 

and often at a sub-pixel level). These uncommon spectra may be thought of as 

abnormal whose identification is frequently important for certain applications because 

they correlate to components that are present in the scene in small quantities. 
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To estimate the fractional abundance of endmembers inside mixed pixels, these 

approaches use various assumptions and models. Among the most popular are as 

follows: 

1.4.3.1. Non-negative Matrix Factorization (NMF) 

The Non-negative Matrix Factorization (NMF) technique which is used in the 

field of spectral unmixing for the purpose of breaking a matrix of data into two non-

negative matrices which assumes that the spectral signatures of the pixels can be 

expressed as a positive linear combination of the spectral signatures of the 

endmembers, multiplied by non-negative abundance fractions, leading in representing 

endmembers and abundance fractions respectively by representing the spectral 

mixtures of pixels as a non-negative combination of endmembers, thus providing an 

estimate of the abundance proportions of different materials in a hyperspectral scene. 

1.4.3.2. Sparse Unmixing: 

Sparse unmixing techniques assume that the abundance fractions are sparse, which 

means that only a few endmembers contribute significantly to the spectrum of a mixed 

pixel while the other endmembers have negligible abundance fractions which helps in 

identifying the most dominant endmember and their abundance fraction, and this 

process is done by sparse representation technique which are:  

a- Variable Splitting (SUNS) 

b- Orthogonal Matching Pursuit (OMP) 

c- Sparse Bayesian Unmixing (SBU) 

1.4.3.3. Bayesian-based approaches: 

In the context of spectral unmixing, Bayesian approaches consider the problem 

probabilistically where they use statistical models to represent the data and unknown 

variables, such as modeling uncertainty and incorporating historical endmember and 

abundance fractions. the Bayesian linear unmixing (BLU), Bayesian abundance 

estimation (BAE), and Markov Chain Monte Carlo (MCMC)-based methods are an 

example of such statistical models. 

1.4.3.4. The Mixing models 

- The Linear and Non-Linear Mixing Models 

The primary objection in spectral unmixing is to estimate both the endmembers 

set present in the picture and their abundance map at the same time, for this case 
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unmixing algorithms are based on certain mixing models, which can be classified as 

Linear or Non-Linear. 

The Non-Linear Mixing model assumes that incoming radiation interacts with 

numerous components and is impacted by various scattering effects, and it’s occurred 

when deviations from linearity are caused by interactions between various materials, 

hence, it typically involves previous knowledge of object geometry and physical 

properties of the observed items. 

In the other hand, the combination will be supposed to be linear if the 

endmembers in a pixel appear in spatially separated patterns, in this case, a single 

component on the surface dominates the scattering and absorption of incoming 

electromagnetic radiation in any region of the surface. Linear Mixing Model which is 

the deployed method in this thesis, has a number of practical advantages in which it 

can overcome the unmixing problem by defining how the endmembers are mixed in 

the image, including ease of implementation and adaptability in a variety of 

applications. 

To illustrate more, the observation of multiple materials within a single pixel can have 

two origins: 

The first is due to the spatial resolution of the sensors, and that means that the 

materials are spatially separated but occupy an area of the scene smaller than that 

covered by a pixel which in this case, just one substance of the seen image interacts 

with each incoming light from the image and the measured spectrum is thus a linear 

mixture of the individual surface material spectra, and the mixing coefficients 

correspond to the surface proportions of each component (Fig.6.a). 

In the other case, the observed surface can be composed of a single entity which 

is an intimate mixture of several materials, such as a sand whose grains have various 

chemical compositions. The incoming light can then be reflected several times by 

different materials before being sent back to the measuring instrument. These multiple 

reflections lead to the observation of a spectrum which is a non-linear mixture of the 

pure spectra of the components present (Fig.6.b). 



 18 

 

 

The hyperspectral image is described by the linear equation (Borsoi, 2019):  

𝑥𝑝 =∑ 𝑎𝑝,𝑘𝑠𝑘 + 𝑒𝑝
𝐾

𝑘=1
                 Equation 1 

Thus, the matrix compact version of the LMM may be defined as follows for all pixels: 

                  𝑋 = 𝐴𝑆 + 𝐸                     Equation 2 

With:  

 X is the matrix of the image. 

 A is the abundance matrix obtained by correlating the abundance vectors 

𝑎𝑝. 

 S is the matrix of endmembers. 

 E is the noise matrix which corresponds to the correlation of the noise 

vectors 𝑒𝑝. 

The mixing model must follow specific restrictions in order to be physically 

realistic, as well as the endmembers matrix's coefficients cannot be negative since it 

comprises the precise reflection spectra of each substance in the image being observed, 

moreover, because the abundance matrix A includes the endmember proportions for 

each pixel, its coefficients are thus positive and for each pixel, the sum of the 

abundances constituting it must be equal to 1.  

However, although this assumption results in a well-posed and computationally 

simplified framework, it restricts the LMM's application since it can risk the accuracy 

of predicted abundances in many situations due to EM spectral variability in which, 

for this case, in order to account for nonideally factors like nonlinearity and 

endmember variability, which are frequently observed in actual scenarios, enhanced 

 

Figure 8: Different origins of spectral mixtures (a) Linear Mixing. (b) Non-linear Mixing. 
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unmixing extension of the LMM have been developed which is The Extended Linear 

Mixing Model. 

- Extended Linear Mixing Model (ELMM) 

Various limitations in the LMM are considered which reflect on the accuracy of 

the abundance estimation such as endmember variability which in this case 

endmembers may exhibit variability do to illumination or sensor noise conditions, and 

additional constraints such us nonlinearity behavior or simplicity which is the opposite 

of what the LMM’s assumption (Drumetz, 2020).  

The Extended Linear Mixing Model (ELMM) was developed as an extension of 

the Linear Mixing Model (LMM) to overcome these limitations by considering 

additional factors and constraints that were not accounted for in the LMM, the ELMM 

introduces various improvements to enhance the accuracy of unmixing results. These 

enhancements include addressing nonlinearity by using nonlinearity correction 

approaches, accounting for variations in endmembers, and incorporating additional 

constraints. 

The extended linear mixing method (ELMM) is a technique that is frequently 

used in hyperspectral data analysis to model and analyze the mixtures of materials 

found in a scene. It works under the assumption that the spectrum of an observed pixel 

can be thought of as a linear combination of the pure spectra of the constituent 

materials present in that pixel. 

The two global equations for the Extended Linear Mixing Model are: 

 

𝑥𝑛 =  ∑ 𝑎𝑝𝑛
𝑃
𝑝=1  𝜓𝑝𝑛 𝑠𝑂𝑝 + 𝑒𝑛  =  𝑆0 𝜓𝑛𝑎𝑛 + 𝑒𝑛          Equation 3 

Where: 𝑥𝑛 in the input image, 𝑎𝑛 is the abundance coefficient for pixel n, 𝜓𝑛 is a 

diagonal matrix which contains the scaling factor for each material and 𝜓𝑛 ∈  ℝ
𝑃×𝑃, 

𝑆0 is the reference endmember, and  𝑒𝑛 is the additive noise. 

After recovering the model, the Equation (3) will be written as: 

𝑋 = 𝑆0(Ψ⊙ 𝐴) + 𝐸         Equation 4 

Where ⊙ is the Hadamard product, Ψ is the scaling factor matrix and A is the 

abundance matrix. 
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The fundamental idea of ELMM is that each pixel in a hyperspectral image is 

composed of a mixture of several pure materials, such as soil, vegetation, buildings, 

water, etc. Each pure material has a known characteristic spectrum associated with it. 

Each pure material has a known characteristic spectrum associated with it. ELMM 

aims at estimating the fractions or proportions of each pure material in each pixel of 

the image that enables to find the optimal values for endmembers and abundances that 

can effectively represent the mixed spectra observed in the data. However, this task is 

approached as an optimization problem where the aim is to minimize the difference 

between the observed spectra and the spectra reconstructed using the estimated linear 

combinations of endmembers. 

In this case, ADMM, which stands for Alternating Direction Method of Multipliers, is 

a powerful optimization method used in the ELMM framework. It is an iterative 

algorithm that breaks down a complex optimization problem into smaller, more 

manageable subproblems. By doing so, ADMM simplifies the overall problem by 

applying the following steps: 

To begin with, the ELMM algorithm starts by initializing the values of 

endmembers and abundances and then proceeds with iterative steps until it reaches 

convergence, indicating a satisfactory solution, further, the algorithm modifies the 

endmembers on each iteration by reducing the goal function while holding the 

abundances constant, in which, this particular step aims to improve the accuracy of the 

estimated endmembers by iteratively refining their values. Next, the objective function 

is minimized while maintaining the fixed endmembers which is done by adjusting the 

abundances, and thus, the abundance estimations will be enhanced by this procedure. 

Finally, to ensure the consistency between the updated endmembers and 

abundances throughout the optimization process, a dual variable is updated by 

incorporating a scaled difference between them. This step plays a crucial role in 

aligning the estimates of endmembers and abundances, promoting convergence 

towards a coherent solution. 

Through an iterative process that takes into account the interdependencies 

between the endmembers and abundances, ADMM aims to discover a solution that 

simultaneously fulfills the specified constraints and optimizes the objective function. 

By systematically updating the endmembers and abundances in a coordinated manner, 
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the algorithm strives to converge towards an optimal solution that balances the 

constraints and objectives of the problem. 

- Generalized Linear Mixing Model (GLMM)  

Another unmixing method is proposed which is the Generalized Linear Mixing 

Model which is an approach for estimating the amounts of different materials present 

in mixed pixels and is frequently employed in remote sensing and hyperspectral 

images as it offers a solid theoretical basis for modeling the spectrum mixing process 

and is widely utilized in a variety of applications, including land mapping, 

environmental change detection, and natural resource monitoring (Borsoi et. al.,2018). 

GLMM is founded on the core assumption that the spectral behavior of a mixed 

pixel can be represented by combining the spectral characteristics of individual pure 

materials, known as endmembers. This combination is achieved through a linear 

relationship, where the spectra of the mixed pixels are constructed by multiplying the 

spectra of the endmembers by abundance coefficients that represent their respective 

proportions within the mixture, each pixel 𝑥𝑛 is written as:                     

𝑥𝑛 = (𝑆 ⊙ 𝛹𝑛 )𝛼𝑛 + 𝑒𝑛            Equation 5 

Where:  S is the 𝐿 × R endmember matrix, Ψ𝑛 is scaling matrix with [Ψ𝑛]𝑙,𝑘 =

 𝜓𝑛𝑙,𝑘 ≥ 0.  

GLMM offers great flexibility, allowing the use of different statistical 

distributions to model residuals and to take into account various sources of variability 

as well as the capability to be adapted to account for atmospheric effects, illumination, 

shadows, instrumental noise, and other factors that can influence the spectral response 

of mixed pixels. 

Different methods, including the least squares method, maximum likelihood 

estimation, and Bayesian methods, can be used to estimate the proportions of 

endmembers in the GLMM. The main goal of these methods is to solve an optimization 

problem that aims to minimize the difference between the observed spectra and the 

spectra estimated from the proportions of endmembers.  

However, GLMM does have several difficulties and restrictions, it should be 

acknowledged. One of the most difficult obstacles is identifying the number of 

endmembers in the data. Overestimating or underestimating the number of 
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endmembers can result in considerable inaccuracies in percentage estimation. 

Furthermore, GLMM implies a linear mixing process, which may not be the case in 

some real-world scenarios. Sensor saturation, non-linear illumination effects, and 

material interactions can all contradict this assumption and cause estimate mistakes. 

- Generalized full Extended Linear Mixing Model (GELMM) 

The Generalized Extended Linear Mixing Model, an extension version of 

GLMM designed specifically for this situation, differs from the original model 

primarily in the way it addresses the linearity of the mixing process where the primary 

benefit of the GELMM is its capacity to consider non-linearities and supplementary 

factors that impact spectral response. 

 Comparing to the Generalized Linear Mixing Model, the GELMM enables the 

exploration of intricate relationships between endmembers and various variables, 

including illumination effects, shadows, and non-linear transformations, in which, this 

enhanced capability allows for a more precise representation of the connection 

between endmember proportions and the spectra of mixed pixels by introducing non-

linear features into the model which enables the GELMM to more effectively manage 

scenes where the spectrum properties of materials varies non-linearly with their 

proportions and this is particularly important when lighting circumstances vary, as 

well as in images captured at different times of day or with changing illumination 

angles. 

- The Perturbed Linear Mixing Model (PLMM) 

The perturbed linear mixing model is an approach used in hyperspectral imaging 

to model mixed pixels more realistically. Instead of the classical linear mixing model, 

which assumes a strictly linear relationship between the spectra of the mixed pixels 

and the proportions of the endmembers, the perturbed linear mixing model considers 

the perturbations and non-linear effects that can occur during the mixing process. 

Assuming that the number of endmembers K is known, the proposed PLMM 

varies from the standard LMM in that each pixel 𝑥𝑛 is represented by a combination 

of the K endmembers (indicated as 𝑚𝑘) that has been modified by a perturbation vector 

𝑑𝑚𝑛,𝑘 that accounts for endmember variability. The final PLMM can be written.  
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The PLMM equation can be written as:  

𝑥𝑛 = ∑ 𝑎𝑘𝑛
𝐾
𝑘=0 (𝑚𝑘 + 𝑑𝑚𝑛,𝑘) + 𝑒𝑛   for n=1,...,N              Equation 6 

Where:  

 𝑥𝑛 is the 𝑛th pixel of hyperspectral image. 

 𝑎𝑘𝑛 is the proportion of the 𝑘th endmember in the 𝑛th pixel of the image. 

 𝑚1, … ,𝑚𝑘 is the linear combination of the K endmember. 

 𝑑𝑚𝑛,𝑘 denotes the perturbation of the 𝑘th endmember in the 𝑛th. 

 𝑒𝑛 represents the noise caused by data collection and modeling errors. 

The PLMM equation can be expressed as a matrix as follows:  

𝑋𝑛 =  𝑀𝐴 + [𝑑𝑀1𝑎1| … |𝑑𝑀𝑁𝑎𝑁] + 𝐸𝑡                       Equation 7 

Where:  

 𝑋𝑛 is an 𝑁 × 𝐿 matrix that contains 𝑡ℎ𝑒 image pixels. 

  M is an 𝐿 × 𝐾 endmember matrix. 

  𝐴 is an 𝐾 × 𝑁 the abundance matrix. 

  𝑑𝑀𝑁 is an 𝐿 × 𝐾 matrix where its columns contain the perturbation vectors. 

  𝐸𝑡 is the noise matrix. 

In the context of hyperspectral imaging, where every individual pixel is 

identified by a continuous spectrum of spectral values, the perturbed linear mixing 

model takes into account various sources of disturbance such as atmospheric effects, 

surface interactions, instrumental errors, illumination variations, shadows and other 

factors that can affect the spectral response of mixed pixels.         

Utilizing the perturbed linear mixing model in hyperspectral imaging offers 

several benefits. Primarily, it enhances the representation of intricate material-

environment interactions, resulting in more precise estimations of endmember 

proportions. Additionally, by incorporating disturbances, it becomes possible to 

mitigate estimation errors and enhance the overall quality of spectral unmixing 

outcomes. 
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- Least square Unmixing methods 

The least squares unmixing technique is a popular method for estimating the 

quantities of distinct materials (endmembers) in a mixed pixel spectrum in which the 

linear combination of endmember spectra weighted by their abundances and the 

observed mixed pixel spectrum are assumed to have a linear relationship. The least 

squares unmixing approach comes in two frequent iterations: 

a- Constrained Least Square Unmixing (CLSU) 

Constrained least squares unmixing is a spectral unmixing method widely used 

to estimate the proportions of different materials (endmembers) in the spectral 

signature of a mixed pixel where, it assumes a linear relationship between the observed 

spectrum of the mixed pixel and the linear combination of endmember spectra 

weighted by endmember abundance. 

In this method, extra limitations are placed on the abundance values while 

performing the unmixing procedure which can encompass non-negativity (abundance 

values cannot be negative), sum-to-one (the sum of abundances for all endmembers 

must be equal to one), or other constraints derived from prior knowledge about the 

materials being unmixed. By integrating these constraints, the unmixing algorithm 

guarantees that the estimated abundances conform to the anticipated characteristics of 

the endmember proportions. 

Constrained least squares unmixing includes the formulation of an optimization 

problem where the goal is minimizing the sum of the squared deviations between the 

observed mixed pixel spectrum and the linear combination of the endmember spectra 

weighted by their abundances. This optimization issue can be handled using a variety 

of strategies, including direct solvers, iterative methods, and convex optimization 

algorithms. 

b- Fully Constrained Least Square Unmixing (FCLSU) 

Fully constrained least squares unmixing is an advanced method for estimating the 

number of endmembers present in a mixed pixel spectrum in which, it seeks to 

address the unmixing problem by taking into consideration both endmember 

abundance limitations and spectral constraints (Heinz et. al., 2001). 

The aim of this method is to handle the Abundance Sum-to-One Constraint 

(ASC) in linear unmixing problems, so in order to take care of the ASC, the 
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FCLSU method tackles the challenge of decomposing hyperspectral data into its 

constituent materials while simultaneously imposing constraints on the 

abundance fractions. These constraints are part of the Fully Constrained Least 

Squares (FCLS) model, which comprises three specific requirements: 

 Non-negativity Constraint: This constraint ensures that the abundance 

fractions, representing the proportions of materials in a pixel, cannot be 

negative in which, it aligns with the fundamental principle that materials 

cannot have negative amounts within a given pixel. 

 Abundance Sum-to-One Constraint (ASC): The ASC constraint guarantees 

that the total sum of abundance fractions for each pixel equals one in which it 

signifies that the entire pixel's composition is accounted for by the identified 

materials, leaving no fraction unexplained. 

 Endmember Convex Constraint: Under this constraint, it is assumed that the 

endmembers, which represent the pure spectral signatures of materials, lie 

within the convex hull formed by the observed spectra and this can imply that 

the endmembers are linear combinations of the observed spectra and are 

confined within the range defined by the observed data. 

In order to take the ASC into account, the ASC in the matrix signature M is 

embedded by defining a new matrix signature which is expressed by N and 

defined by (Heinz et. al., 2001): 

𝑁 = [
𝛿𝑀
1𝑇

]            Equation 8 

Where:  1= (1, 1, ... ,1)T  and a vector s by       𝑠 = [
𝛿𝑟
1
]    Equation 9 

Where, the impact of the ASC is controlled by the use of 𝛿 in these two 

equations, allowing the FCLS model to incorporate the sum-of-abundance 

(SCA) constraint when analyzing linear spectral mixtures. This is achieved by 

introducing an extra endmember into the model that represents the ASC. This 

additional endmember is a spectral vector consisting of constant values set to 

one, indicating the constraint of the abundance fractions summing to one. 

To solve the modified FCLS problem, the FCLSU method applies the Least 

Squares method to estimate the abundance fractions. By integrating the ASC 

into the analysis, the FCLSU method offers a more precise depiction of the 

material proportions within each pixel of the hyperspectral image. 
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1.5. Spectral variability 

Spectral variability is a frequent phenomenon seen in many settings in which the 

spectral fingerprints of the pure component elements changes over the hyperspectral 

image, it can also be associated with the concept of a pure substance, as an example of 

signatures that contains a single plant species that differ widely depending to growth 

and climatic circumstances.  

Spectral variability in hyperspectral imaging, refers to the variation in the 

spectral signatures of different materials or objects present in a scene captured by a 

hyperspectral sensor. Each substance contains its unique spectral signature that is 

determined by how it interacts with light at various wavelengths, in other words, 

spectral variability refers to variances in the spectral profiles of the components 

present in an image and the presence of this phenomenon can lead to substantial errors 

in estimation that are carried forward during the unmixing process. 

Spectral variability can be a result of various factors such as the chemical 

composition of the materials, their physical structure, their surface condition, their 

density, the mainly three conditions are: 

1.5.1. atmospheric conditions 

When measuring ground reflectance, atmosphere interference is one of the 

primary causes of spectral variability where, significant quantities of electromagnetic 

radiation including visible and infrared light are absorbed by three main occurrences 

which are: 

1.5.1.1. Atmospheric absorption 

Certain atmospheric gases (such as oxygen, ozone, methane, carbon and others) 

that can be significantly wavelength based, also aerosols which can change smoothly 

throughout the spectrum, and, most particularly, water vapor, whereas other molecules 

and vapors distort the light that comes in which can affect the measured radiance at 

the sensor, thus, it leads to spectral variability by causing a great deviation on the 

required ground reflectance. 
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1.5.1.2. Atmospheric scattering  

Light interacts with gas molecules, aerosols, and other particles as it passes 

through the Earth's atmosphere where, the spectral characteristics of the entering light 

changes as an outcome of this scattering process in which, it can reduce the intensity 

of specific wavelengths and affect the general structure of the spectral signature, 

factors such as air composition, humidity, and aerosol concentration all impact 

atmospheric scattering, resulting in spectral variability. 

1.5.1.3. Path length variation  

In response to atmospheric conditions, the light path length between the target object 

and the sensor could possibly change that is caused by factors such as air density, 

temperature gradients, and altitude variations, resulting in variations in the quantity of 

atmosphere by which the light passes. The quantity of air scattering and absorption 

experienced by the light is affected by this change, resulting in spectral variability. 

 

Figure 9 : The atmospheric impacts on the obtained hyperspectral image. 
Source: Borsoi R. A., (2021) 

 

The radiation sources in the figure above are: (a) light directly reflected by the 

atmosphere towards the sensor; (b) light scattered by the atmosphere and reflected by 

the ground; (c) light directly reflected by the ground; and (d) light reflected by 

surrounding areas on the ground and then scattered towards the sensor. 
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Figure 10: Illustration of the effect of atmospheric circumstances on spectral 

variability.  
Source: Borsoi R. A., (2021) 

 

1.5.2. Illumination and Topographic effects 

Changeable illumination and topographic occurs when spectral signatures of the 

materials constituent natural variation such as physicochemical differences, in the one 

hand, Illumination refers to the way the scene is illuminated, typically by sunlight and 

it can occur when the variation in the angle of incidence of light, shadows cast by 

surrounding objects, and atmospheric conditions cause variations in the spectral 

reflectance of objects leading to the ability of the same surface to appear differently 

depending on the angle of illumination, which contributes to spectral variability.  

 

Figure 11: an example of the angle of Illumination. 

Source: Borsoi R. A., (2021) 

 

In the other hand, Topographic effects refer to changes in spectral reflectance 

caused by the topography of the terrain. Shaded areas, slopes, surface orientations, and 

elevation changes can influence the amount of light reflected from objects, resulting 

in spectral variations. For example, a surface facing the sun may have a higher 

reflectance than a surface facing another direction. 
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1.5.3. Intrinsic spectral variability 

Intrinsic spectral variability refers to the natural variability in the spectral 

signatures of materials present in a hyperspectral scene which is caused by intrinsic 

factors such as material composition, molecular structure, surface roughness, density, 

particle size and shape, object orientation and so on, where, each material has unique 

spectral properties that can vary depending on these intrinsic factors.  

1.5.4. Methods for decreasing HI’s spectral variability 

These mentioned above effects can introduce additional variability into 

hyperspectral data, which can make the interpretation and analysis of spectral 

information more complex, however, they are several methods and techniques that 

mitigate these effects and improve the accuracy of hyperspectral analyses and 

decreasing the spectral variability which are: 

1.5.4.1. Spectral Library Purification 

Spectral library purification is a method used to reduce spectral variability in 

hyperspectral imaging. The spectral library refers to a collection of spectral signatures 

of pure materials or endmembers. However, these libraries may contain impurities or 

outliers that can introduce unwanted spectral variability into the spectral unmixing 

process. 

The purpose of spectral library purification is to improve the quality of the 

spectral library by identifying and removing impurities or outliers which can be 

accomplished by statistical techniques or filtering methods that identify spectral 

signatures that do not match the characteristics of the pure materials in the scene. 

The goal of spectral library purification is to reduce spectral variability by 

ensuring that the spectral signatures in the library accurately represent the pure 

materials present in the hyperspectral scene leading in improving the accuracy of the 

estimation of abundance fractions and endmembers during the spectral unmixing 

process as well as, reducing errors introduced by unwanted data or impurities in the 

spectral library. 
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1.5.4.2. Spectral Angle Mapper (SAM) 

The Spectral Angle Mapper is a method used to quantify the spectral similarity 

between a spectral signature of interest and the spectral signatures present in a 

hyperspectral scene. This method is used in the context of spectral variability to 

compare spectral signatures and assess how similar they are in terms of spectral angle 

which is calculated by measuring the angle between the vectors of two spectral 

signatures in a vector space. The smaller the angle, the more similar the spectral 

signatures are. By calculating the spectral angle between the spectral signatures, it is 

possible to identify which endmembers are most similar and therefore have reduced 

spectral variability. 

1.5.5. Deep Generative Models 

Deep Generative Models are machine learning methods for modeling and 

generating complex data in which, they are used in the context of spectral variability 

to capture the distribution of spectral signatures present in hyperspectral data and 

based on deep neural networks, such as generative adversarial neural networks (GAN) 

or variational autoencoders (VAE), these models are able to learn latent 

representations of hyperspectral data, allowing them to generate new spectral 

signatures that are consistent with the original data distribution. 

In the context of spectral variability, deep generative models can be used to 

reduce variability by learning latent representations that capture the subtle variations 

and underlying structures of spectral signatures and also, they can be used to generate 

synthetic spectral signatures that are more stable and less prone to unwanted variation.  

 

 

 

 

 

 

 



 31 

CHAPTER TWO 

DEEP LEARNING 

Nowadays, deep learning market size has been estimated to be worth over $18.16 

billion, growing at a rate of 41.7 percent from 2018 to 2023 since it has a lot of benefits 

from optimum data utilization, cost reduction, high quality results and reduced need 

for feature engineering, it has seen a rise in a variety of different application domains 

and begun to understood how it has the potential to revolutionize so many different 

research areas and parts of society ranging from advances in autonomous vehicles and 

robotics to medicine, biology and health care, reinforcement learning, generative 

modeling, security etc....    

To illustrate more, deep learning is the use of artificial neural networks to model 

non-linear relationships between input data and predicted outputs, or labels which has 

a long-standing history cognitive science and neuroscience-inspired artificial 

intelligence. These neural networks develop the ability to extract pertinent, abstract 

information from the data used to train them. Advances in voice recognition, 

genomics, and computer vision have all been made possible by deep learning.  

 

An equally vast spectrum of artificial neural network topologies has been designed to 

handle such a wide variety of jobs.  

 

 

Figure 12: neural network architecture. 
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So, what is the neural network actually is? Neural network is a strategy for 

constructing a computer software that learns from data. It is based on the 

understanding of how the human brain operates. Initially, a group of software 

"neurons" is built and linked together, allowing them to communicate with one 

another. The network is then given a challenge to solve, which it repeatedly tries to 

accomplish while attempting to strengthen the connections that lead to success and 

weaken those that lead to failure. 

Deep learning is a high-level abstraction algorithm that model the data from 

large sets of learned data. Additionally, it serves as an element of machine learning, 

which is a particular type of artificial intelligence.  Artificial intelligence is a 

technology that allows a computer to emulate human behavior; machine learning, on 

the other hand, is a technique that accomplishes artificial intelligence using algorithms 

trained on data. In the context of deep learning, this structure is known as an artificial 

neural network. 

Neural network topologies for deep learning have several hidden layers that can 

be anywhere between 2-3 layers up to 150 layers. This is the origin of the term "deep" 

learning. Large datasets of (labeled) data are typically utilized to train neural network 

designs and deep learning models. As a result, instead of depending on manual feature 

extraction, the models may learn about and adjust to the characteristics directly from 

the dataset. 

There are three of the most historically significant architectures for Computer vision 

which are Feedforward Neural Networks (FNNs), Fully Connected Networks (FCNs), 

Convolutional Neural Networks (CNNs) and Transformers. 

2.1. Feedforward Neural Networks 

A Feedforward Neural Network is a fundamental architecture in the field of deep 

learning which is widely used for various tasks such as classification, regression and 

feature extraction. 

In a forward propagating neural network, information flows in a single direction 

from the input layer through one or more hidden layers to the output layer where each 

layer is composed of several interconnected neurons, called neurons or units and the 

neurons in neighboring layers are completely linked, which means that each neuron's 

output is coupled to every neuron in the next layer, in the one hand, the input layer of 
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a forward propagating neural network receives the input data, which can be a vector 

or a matrix depending on the nature of the problem, then the hidden layers process the 

input data by applying nonlinear transformations to create increasingly abstract 

representations, in which, these transformations are performed using activation 

functions such as the sigmoid function or the rectified linear unit function (ReLU), in 

the other hand, the output layer produces the final prediction or output based on the 

representations learned from the hidden layers. The output activation function’s layer 

is chosen according to the task at hand. 

To train a forward propagating neural network, a process called gradient 

backpropagation is typically used which involves propagating the error signal from the 

output layer to the input layer and adjusting the weights of the network to minimize 

the difference between the predicted output and the actual output and this is 

accomplished using an optimization algorithm such as gradient descent, which 

iteratively updates the network weights. 

2.2. Fully Connected Networks (FCNs) 

FCNs are the simplest type of neural network architecture. Each input element 

in a fully connected layer is combined linearly to generate each output element, which 

is then subjected to a non-linear activation function. 

One of the main type in FCN for pixel classification is the Autoencoder (AE), in 

which the idea of it, is to build some encoding of the input and try to reconstruct an 

input directly, the process is to take in as input raw data then pass it through some 

series of deep neural network layers and as a result the output is directly a low 

dimensional latent space (a feature space) , so in general “encoder” learn mapping 

from the data x to a low-dimensional latent space z. 

2.3. Convolution Neural Networks (CNNs) 

In this report, Convolutional Neural networks (CNN) will be focused on, which 

is an artificial neural network, also called a class of Deep Neural Networks, that is so 

far been most popularly used for analyzing images due to its remarkable performance 

in various visual recognition problems and also its ability to identify and categorize 

certain features from images, one of the founders to do so is (Makantasis et. al., 2015) 

who employed two convolution layers followed by two fully linked layers, and 

nowadays, it has applications in image and video recognition, image classification, 



 34 

medical image analysis, computer vision, and natural language processing. 

Convolutional neural network is made up of convolutional layers that are alternately 

stacked and spatial pooling layers. The convolutional layer enables the feature maps 

extraction using linear convolutional filters, which will be followed by nonlinear 

activation functions such as rectifier, sigmoid and so on, it is also used to change the 

number of spectral channels and improving classification and also allowing gradient 

propagation over the network by employing residual connections. Spatial pooling is 

the process of grouping local characteristics from spatially neighboring pixels in order 

to increase object durability to minor deformations. 

For the case of hyperspectral imaging, CNN is used mainly in HIS analyses, 

where a pixel and its neighbors in a hyperspectral image are fed into the CNN as inputs, 

and the final CNN output is set as the anticipated class labels. 

2.4. Transformers 

The Transformer architecture is a neural network architecture used in deep 

learning, particularly in the field of natural language processing. It was introduced by 

(Vaswani et al., 2017) and has seen great success in tasks such as machine translation 

and text generation. 

The Transformer architecture differs from typical recurrent neural network 

architectures by using only attention mechanisms to capture the relationships between 

elements in an input sequence, however, it does not rely on recurrence or convolution 

to process sequences, which gives it increased computational efficiency and facilitates 

parallelism. 

The Transformer architecture is composed of several blocks of attention layers 

and fully connected layers, also called encoder and decoder blocks in which, each 

encoder and decoder block consists of several sublayers. 

The sublayer of attention is the central part of the Transformer in which it allows 

the model to distinguish long-range dependencies between the elements of the 

sequence by calculating attention weights between them which is used then to weight 

the importance of each element when generating output representations. 

In each of these sublayers, there are several attention heads in which they enable 

calculating them independently of the other, allowing the model to capture different 

types of information and to be used to generate the output representations. hips in the 
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sequence. The attention weights are then combined to obtain an overall representation 

of the sequence. 

In the context of hyperspectral imaging, the Transformer architecture can be 

used to improve the spectral resolution of images while reducing spectral variability 

and it can be achieved by exploiting the complex and non-linear relationships between 

different wavelengths in hyperspectral data. 

2.5. Convolutional Neural Network’s structure: 

Because the collected hyperspectral data set contains tens of thousands of 

reasonably big data sets, deep learning facilitated the analysis of large amounts of data. 

For this case, CNN was used which is capable of extracting features from input data 

automatically by detecting and retrieving as well as learning specific spectral 

structures such as light reflection intensity, slope, and peak. Although noise has an 

influence on CNNs, the effect becomes minor as the amount of data grows. 

To illustrate more, CNNs are neural networks that learn by repeating operations 

and highlighting the features of the input data where, on the input hyperspectral data, 

a convolution operation was performed, as illustrated in Figure 13. Equation (10) 

represents the convolved output data here, where x is the image, m*n is the kernel size, 

w is weight, and b is for bias parameter. 

𝑎𝑖𝑗 =∑ ∑ 𝑤𝑠𝑡𝑥(𝑖+𝑠)(𝑗+𝑡) + 𝑏
𝑛−1

𝑡=0

𝑚−1

𝑠=0

       Equation 10 

 

 

 

Figure 13 : a typical CNN design made up of a fully connected layer, a 

convolutional layer, and a max pooling layer  
Source: Prasad S., (2020) 
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Convolutional Neural Networks are feed-forward neural networks made up of 

different combinations of convolutional layers, max pooling layers, and fully 

connected layers.  

A CNN is composed of several layers that work sequentially to extract meaningful 

features from the data by applying convolution, pooling and classification operations. 

- A convolution tool that separates and classifies numerous properties of an image 

for further analysis using a process known as feature extraction. This CNN 

feature extraction approach aims to reduce the number of features in a dataset. It 

creates new features by combining an initial collection of existing features into a 

single new feature. Not to forget that there are several CNN levels, as seen in the 

CNN architectural diagram below. 

- In the feature extraction network, there are several pairs of convolutional or 

pooling layers.  

- A fully connected layer that uses the output of the convolutional process to 

identify the class of the picture using previously extracted features. 

 

 

 

Figure 14: CNN architectural diagram. 
Source: Prasad S., (2020) 
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Figure 15: CNN structure for Hyperspectral data. 

 

2.6. Building blocks of CNN 

CNNs are multi-layer architectures that can be trained and consist of numerous 

feature extraction phases.  Each level is made up of multiple layers such as dense 

layers, convolutional layers, pooling layers, recurrent layers, normalization layers, etc. 

Each layer may perform different  kinds of transformations on their inputs and some 

layers are better suited for certain tasks  than others, for example, a convolutional layer 

would likely be used in a model that has related work with image data, a recurrent in 

the other hand, will be used that’s doing work with time series data and the dense layer 

or fully connected layer is just a layer that connects each input to each output within 

its layer, in the case of hyperspectral image four main layers will be discussed which 

are: 

2.6.1. Convolutional layer 

A CNN layer uses several convolutions in parallel to generate a collection of 

linear activation functions. Convolutional layers are in charge of extracting local 

features at various places employing trainable Kernels 𝑊𝑖𝑗
(𝑙)

 that serve as link weights 

between the i,j feature maps of layer L-1 and layer L respectively, which is effectively 

a sliding dot product, in this scenario, the kernel moves along the input matrix, and the 

dot product between the two is taken as if it were a vector. 

 

 

Figure 16: An illustration of how a convolutional layer works. 
Source: Prasad S., (2020) 

 

The convolution may be thought of as the multiplication of the pixels of the 

image I by components of a sliding window represented by the kernel, which is nothing 

more than a filter or a feature detector used to extract features from images. In other 
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words, the kernel is a matrix that traverses across the input data, performs the dot 

product on the sub-region of the input data, and returns the matrix of dot products as 

the output. 

2.6.2. ReLU layer: 

The Rectified Linear Unit (ReLU) is an artificial neural network's activation function 

which can be defined as follows: 

𝑓(𝑥) =  𝑚𝑎𝑥(0, 𝑥)    Equation 11 

Where, x is the input value, in other words, if the input value is positive or zero, the 

output is equal to the input value. If the input value is negative, the output is 0. 

The ReLU is widely used in neural networks because of its computational simplicity 

and efficiency. It allows to introduce nonlinearity in the model, which is essential to 

learn complex and discriminative representations of data. In addition, ReLU promotes 

sparsity by making activations zero for negative values, which can lead to better 

computational efficiency, reduced information redundancy as well as it can be a key 

role in discriminative feature learning and contributes to improved model performance 

in tasks such as classification, object detection and image segmentation. 

2.6.3. Pooling layer 

A pooling function decreases a feature map's dimensionality and is repeated to 

each data channel (or band) to minimize susceptibility to rotation, translation, and 

scaling as well as aggregating data both inside and across the feature maps. 

To illustrate more, pooling layers enables down sampling feature maps by 

summarizing the existence of features in feature map patches where the most active 

presence of a feature is summarized by max pooling, whereas average pooling focuses 

on the average presence of a feature. 

For max pooling function, its purpose is to retain texture information by applying 

a window function to the input patch and computes the maximum within the 

neighborhood. In the other hand, average pooling function purpose is to retain 

background information by computing the mean of the input components inside a 

patch. 
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The maximum is located via the max pooling technique within the 

neighborhood proximity window patches of size 2×2 with stride of 2. The average 

pooling method computes the average of the input components in a window patch of 

size 2×2 with a stride of 2, and by stride, it means the amount of movement between 

applications of the filter to the input image and it is almost always symmetrical in 

height and width dimensions.  

2.6.4. Fully connected layer 

Fully connected ANN layers are often utilized in the latter stages of a CNN for 

classification or regression based on feature maps acquired by convolutional filters 

where each node on neural network is fully connected to every previous and next 

node (Basha et. al., 2020). 

 

Figure 18: Fully connected layers with two layers. 
Source: Ma W., (2017) 

 

In other words, after several layers of convolution, pooling and ReLU, the extracted 

features are flattened and passed to one or more fully connected layers. These layers 

are similar to those of a classical neural network and are used to combine the extracted 

features and perform the final classification. 

 

Figure 17: Pooling operations of several types. 
Source: Prasad S., (2020) 
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Figure 19 : CNNs algorithm flow chart. 
Source: You W., (2017) 

 

2.7. CNN and HSI 

Convolutional neural networks (CNNs) are neural network architectures 

specifically designed for image processing and analysis. In the field of hyperspectral 

imaging, CNNs play a crucial role in the exploitation of spectral and spatial 

information contained in hyperspectral images, in which they are deployed to 

accomplish a variety of specific objectives such as: 

2.7.1. Spectral classification: 

CNNs are used in hyperspectral imaging to accomplish automated categorization of 

pixels or areas by learn to extract discriminative spectral characteristics and apply 

them to pixels or areas to assign class labels. 

2.7.2. Abnormality Detection 

CNNs are used to detect abnormal or unusual features in a hyperspectral image by 

learning to distinguish pixels or areas which are significantly different from the 

normal distribution of the data. 
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2.7.3. Spectral reconstruction 

CNNs are deployed to reconstruct complete hyperspectral spectra from sample 

observations or compressed data which is done by learning to estimate missing 

spectral values or to reconstruct high resolution spectra from low resolution spectra. 

2.7.4. Object segmentation 

CNNs are employed in hyperspectral image segmentation to automatically 

detect and delineate objects or regions of interest within the image which is done by 

leveraging their ability to learn and recognize relevant features, CNNs can effectively 

identify and classify different objects and areas in the hyperspectral image. 

A convolutional neural network is composed of several layers, including 

convolution layers, pooling layers and fully connected layers where, the convolution 

layer is the key component of CNNs in hyperspectral imaging which applies a set of 

convolution filters to the hyperspectral image to extract relevant features at different 

scales and abstraction levels that leads in capturing patterns and structures present in 

hyperspectral data. 

Three groupings may be made about CNN: 

(i) 1-dimension CNNs spectral features extraction (Huang et. al., 2015). 

(ii) 2-dimension CNNs spectral features extraction (Zhao et. al., 2016). 

(iii) 3-dimension CNNs spectral features extraction (Li et. al., 2017). 

Hyperspectral image can be depicted as a three-dimensional data cube when spectral 

sampling is done along the z axis, 3D CNN used to learn nearby input signal in the 

HSI data's spatial and spectral dimensions, as well as to extract critical classification 

information. 

 

Figure 20 :  A 3D CNN architecture for hyperspectral image. 
Source: Prasad S., (2020) 
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2.8. Deep Generative Models 

Generative models are a powerful concept where the goal is taking the trained 

samples from some distributions as an input and learn the represented model, in other 

words, all of them are seeking to learn the real data distribution of the training set in 

order to produce new data points with slight deviations by simulating the data's 

probability distribution and produce samples in accordance with it.  

To Illustrate more, theoretically, based on a collection of data (xi, i)= 1,.....,Nx , 

generative models seek to estimate the probability distribution p(X) of a random 

variable X∈ RL  in such a way that it is possible to generate new samples that resemble 

new realizations of X where, through the utilization of generative models, it becomes 

possible to comprehend the fundamental connections and structures within 

hyperspectral data. Consequently, this enables the generation of fresh observations that 

possess comparable attributes to the initial dataset. This capability finds relevance in 

diverse scenarios, including the simulation of hyperspectral data to facilitate model 

training, the completion of missing data, the amplification of data for enhanced 

learning, and even the creation of authentic hyperspectral scenes. 

Generative modeling is based on two main ways and the purpose of them is 

fundamentally similar by trying to learn a probability distribution using the given 

model, furthermore, by trying to match that probability distribution as same as the true 

distribution of the data, first is the density estimation where data samples are given in 

which they going to fall to some probability distribution and the goal is to learn an 

approximation of what the function of that probability distribution could be an the 

second way is sample generation where, given some input samples (data distribution), 

the goal here is to learn a model of that data distribution and then use that process to 

actually generate new instances, or in other words new samples, in which it will fall in 

line with what the true data distribution is. 

Generative data can be very complex and interesting due to frequently working 

with some data types such as images where the distribution is very high dimensional, 

for this reason a task called neural networks is used that can be very important in 

learning these extraordinarily complex functional mappings and estimating of these 

high dimensional data. 
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Generative models can be very useful of uncovering underlying features in a 

dataset in a completely unsupervised manner and this can be very important in 

applications that requires understanding more about what data distribution look like in 

a setting where the given model is being applied for some downstream task, for 

example, in facial detection, many different faces could be given as a data set so when 

starting, it could be very hard to know the exact distribution of these faces with respect 

to features such as skin tone, hair or illumination, for this case, generative modeling 

can be used to not only uncover what the distribution of these underlying features may 

be but also use this information to build more fair and representative data sets that can 

be used to train machine learning models that are unbiased and equitable with respect 

to these different underlying features. 

Another example in generative model application is the outlier detection 

(autonomous driving case) and the goal is to detect rare events that may not be very 

well presented in the data but very important for the given model to be able to handle 

and effectively deal with when deployed, in this case generative model can be used to 

estimate this probability distribution and identify those instances such as when 

pedestrian walks in or there is a strange events like a deer crossing the road and be 

able to effectively handle and deal with this outliers in the data. 

Various types of generative models exist, including the latent variable models 

which are generative neural networks (GANs), variational autoencoders (VAEs), and 

inverse adversarial generative networks (IRGANs). Each of these models employs 

distinct techniques for modeling and generating data. 

Before exploring these neural networks, a common underlying variable 

deployed in these models called latent variable which is a lower-dimensional space 

where information is condensed in a compressed form, it acts as a hidden variable that 

captures the fundamental features of the input data and this latent variable can be seen 

as an abstract and condensed representation of information, and it is essential in 

producing new data samples that are realistic and coherent leading, by manipulating 

the values of the latent variable, it enables to exert control over the properties and 

attributes of the generated samples, leading to customization and exploration of the 

model's output. 
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2.8.1. Autoencoders 

The idea of Autoencoders is to build some encoding of the input and try to 

reconstruct an input directly, the process is to take in as input raw data then pass it 

through some series of deep neural network layers and as a result the output is directly 

a low dimensional latent space (a feature space) , so in general “encoder” learn 

mapping from the data x to a low-dimensional latent space z (Alexsander et. al., 2023). 

this low-dimensional z enables to effectively build a compression of the data by 

moving from the high dimensional input space to this lower dimensional latent space, 

thus, it enables to get a very compact and hopefully meaningful representation of the 

input data and the way to do this is to use the input data maximally by complementing 

this encoding with a decoder network as shown in the figure (20) , after that, the latent 

representation that lower dimensional set of variables will be taken and goes up from 

to try to learn a reconstruction of the original input image, thus a reconstructed output 

which is an imperfect reconstruction of the original data called (x-hat) will be 

observed, therefor, this network can be trained end-to-end by looking at the 

reconstructed output and the input and simply trying to minimize the distance between 

them, to illustrate more, the output and Input will be subtracted and then squared, and 

this is called a mean squared error between the input and the reconstructed output. 

ℒ(𝑥, 𝑥 ) =∥ 𝑥 − 𝑥 ∥2       Equation 12 

In the case of images, this is just a pixel by pixel difference between the reconstructed 

output and the original input. 

 

 

 

 

Figure 21 : encoder and decoder of the autoencoder model. 
Source: Alexander A., (MIT 6. S191) 

 

so, in general a “decoder” learns mapping back from latent space z to a reconstructed 

observation x̂.  
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The idea of using this reconstruction is very powerful in taking a step towards 

the unsupervised learning idea by effectively trying to capture these variables which 

could be very interesting without requiring any labels to the given data and this is 

because of the fact of lowering dimensionality of the given data into this compressed 

latent space, the degree in which the compression is performed has a really big effect 

on the reconstruction quality, so this idea of autoencoders is a powerful first step in 

trying to learn a compressed representation of the given input data without any sort of 

label (unsupervised learning) from the start, in this way an automatic encoding of the 

data will be built, as well as self-encoding the input data which is why the term of 

autoencoders comes in the first place.  

Autoencoding = Automatically encoding data, “Auto” = self-encoding.  

2.8.2. Variational Autoencoders (VAEs):  

The concept of variational autoencoder   is more commonly used in actual 

generative modeling of today, the difference between the traditional autoencoder and 

VAE is in the latent variable which means that for the traditional autoencoder, given 

some input x, when it is passed through after training, this will always result in the 

same output no matter how many times the input gets passed. 

However, in the case of variational autoencoder and more generally in requiring 

to learn better and smoother representation of the input data and actually generating 

new images that weren’t be able to generate before with autoencoder structure due to 

its purely deterministic, VAEs introduce an element of stochasticity of randomness to 

try to be able to generate new images and also learn smoother and more complete 

representations of the latent space and to do so, the latent space z will be breaking 

down into a mean and a standard deviation and the purpose of the encoder portion of 

the network is to output a mean vector and a standard deviation vector in which they 

correspond to distributions of these latent variables z, thus it could be said that 

variational autoencoders introduce some element of probability or randomness that 

will enable to generate new data also to build up a more meaningful and more 

informative latent space. 
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Figure 22: the additional elements in the VAEs compared to the AEs models. 
Source: Alexander A., (MIT 6. S191) 

 

The key here is that by introducing this notion of probability distribution for each 

of these latent variables, each latent variable will be defined by a mean and a standard 

deviation, and thus, new data will be generated by sampling from that latent 

distribution in which, because of it, both of the encoder and decoder architectures are 

going to be fundamentally probabilistic in their nature and that means is that over the 

course of training, the encoder is trying to infer a probability distribution of the latent 

space with respect to its input data while the decoder is trying to infer a new probability 

distribution over the input space given that same latent distribution and so when these 

networks are trained, two separate sets of weights (theta and phi) will be learned. 

 

Figure 23 : An overview of variational autoencoder’s key elements. 
Source: Alexander A., (MIT 6. S191) 

 

The loss function is now going to be a function of those weights and a new term 

will be introduced which is called the regularization term (the loss is no longer 

constituted by the reconstruction term) (Borsoi et.al., 2019). 
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ℒ(𝜙, 𝜃, 𝑥) =  (𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 𝑙𝑜𝑠𝑠) + (𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑡𝑒𝑟𝑚)        Equation 13 

ℒ(𝜙, 𝜃, 𝑥) = 𝐸𝑞𝜙(𝑧|𝑥)[𝑙𝑜𝑔 𝑝𝜃(𝑥|𝑧)] − 𝐷(𝑞𝜙(𝑧|𝑥) ∥ 𝑝(𝑧))        Equation 14 

Where:  

- Reconstructed loss = ∥ x − x ∥2 or the difference between the reconstructed 

output and the original input. 

- The theory of this regularization term ‘‘D (𝑞𝜙(𝑧|𝑥) ∥ p(z))” is Kublac Libler 

divergence or KL divergence between the inferred latent distribution 

𝑞𝜙(𝑧|𝑥)and the fixed prior on latent distribution p(z) that it’s going to impose 

some notion of structure in this probabilistic space in which: 

𝐷(𝑞𝜙(𝑧|𝑥) ∥ 𝑝(𝑧)) =  −
1

2
∑ (𝜎𝑗 + 𝜇𝑗

2 − 1 − 𝑙𝑜𝑔𝜎𝑗)
𝑘−1
𝑗=0     Equation 15 

Properties to achieve from regularization: 

a- Continuity: points that are close in latent space / similar content after decoding.  

b- Completeness: sampling from latent space / “meaningful” content after 

decoding.  

After defining the loss function, the objective is to optimize this loss by updating 

the weights of the network during the training process where, the weights are 

iteratively adjusted to minimize the loss. Breaking down the loss term, the 

reconstruction loss plays a crucial role and is similar to the loss used in autoencoder 

structures. In the case of image data, the reconstruction loss measures the pixel-wise 

difference between the original input and the reconstructed output. The goal is to 

minimize this difference, ensuring that the network can accurately reconstruct the 

input data by iteratively updating the weights based on this loss which enables the 

network to learns and improve its reconstruction capabilities over time. 

It is important to note that when applying regularization techniques in a network, 

there is a trade-off between the degree of regularization and the quality of the 

reconstruction. Increasing the level of regularization can have a negative impact on the 

accuracy of the reconstructed data. Therefore, finding the right balance is crucial in 

practice. The goal is to achieve both a high-quality reconstruction and effective 

regularization that enforces a smooth and comprehensive latent space. This is typically 
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accomplished by applying regularization methods that encourage a more regular 

distribution of latent variables, such as imposing a normal-based regularization. 

However, the only missing step back is that how could practice advance in 

training this network end-to-end, and notice that by introducing the mean and variance 

term and by imposing this probabilistic structure of the latent space, stochasticity was 

introduced which a sampling operation, operating over a probability distribution 

defined by this mean and variance terms (µ and σ) and what that means is that during 

back propagation, it is impossible to affectively back propagate gradients through this 

layer because it’s stochastic, so, in order to solve this step back is to actually re-

parametrize the sampling layer a little bit then diverting the stochasticity away from 

these µ and σ terms and then, ultimately be able train this network end-to-end. 

To summarize VAE, the key problem of variational autoencoders is a concern of 

density estimation trying to estimate this probability distributions of these variables z.  

2.8.3. Generative Adversarial Network (GAN) 

A Generative Adversarial Network (GAN) is an artificial neural network 

architecture where Instead of explicitly modeling the probability density or 

distribution of the given data, the goal here is to care about this implicitly while using 

this information to sample and generate new instances and this artificial neural 

network involves two main components of two parts which are the generator and the 

discriminator in which, the generator is in charge of producing new synthetic data that 

looks similar real-world instances, such as images, text, or sounds in which the method 

employs a training data set to create samples that are similar to the distribution of real 

data. The discriminator, on the other hand, is trained to discriminate between actual 

and created data by learning from a training data set and classifying real data as "real" 

and generated data as "fake."  

The step back here is that the given input data is very complex and it’s very 

difficult to go with it to generate new realistic samples, thus, GANs are generative 

models that are created by competing two neural networks, in other words, by creating 

two individual neural networks that are affectively adversaries. 

To illustrate more, to mislead the discriminator, the generator converts noise into 

an imitation of the data, while the discriminator attempts to distinguish actual data 

from fakes made by the generator, in other words, these components are set up to 
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compete with each other in such a way that the discriminator is forced to classify fake 

and real data and the generator is forced to produce better fake data to deceive the 

discriminator. 

 

Figure 24 : An overview of GAN’s elements. 
Source: Alexander A., (MIT 6. S191) 

 

This iterative process of interaction between the generator and the discriminator 

establishes a dynamic learning cycle, wherein both sides continuously refine their 

performance and the ultimate objective here is to achieve a generator that can produce 

synthetic data of exceptional quality, making it virtually indistinguishable from real 

data in the eyes of the discriminator. 

The way GANs is trained is by formulating an objective or a loss function which 

known as adversarial objective and the goal is that the generator exactly reproduces 

the true data distribution.  

2.8.3.1. Loss function: 

The loss function is essential for directing training and maintaining that the generator 

and discriminator both learn effectively which is separated into two parts: 

- the discriminator loss: 

The discriminator plays a crucial role in GANs by accurately distinguishing between 

real and generated data. The discriminator loss quantifies the discriminator's 

performance in this task. It is determined by evaluating how well the discriminator 

correctly classifies real and generated samples. The discriminator strives to minimize 

this loss by improving its accuracy in distinguishing between the two types of data 

in which the goal is maximizing the objective D overall   

𝐴𝑟𝑔𝑚𝑎𝑥𝐷 𝐸𝑧,𝑥(𝑙𝑜𝑔𝐷(𝐺(𝑧)) + 𝑙𝑜𝑔 (1 − 𝐷(𝑥)))                Equation 16 

- the generator loss: 
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The primary goal of the generator in a GAN is to create synthetic data that exhibits 

a realistic appearance. In order to accomplish this, the generator seeks to decrease 

the probability of the discriminator accurately identifying the generated samples as 

artificial. The generator loss is computed by evaluating the discriminator's output 

when presented with the generated data. The objective is to motivate the generator to 

generate samples that have a higher probability of being classified as genuine by the 

discriminator. 

For the generator, the goal is minimizing the objective G from the perspective of the 

generator  

𝐴𝑟𝑔𝑚𝑖𝑛𝐺  𝐸𝑧,𝑥(𝑙𝑜𝑔𝐷(𝐺(𝑧)) + 𝑙𝑜𝑔 (1 − 𝐷(𝑥)))             Equation 17 

So, in general the overall loss function is  

𝐴𝑟𝑔 𝑚𝑎𝑥𝐷 𝑚𝑖𝑛𝐺𝐸𝑧,𝑥(𝑙𝑜𝑔𝐷(𝐺(𝑧)) + 𝑙𝑜𝑔 (1 − 𝐷(𝑥)))               Equation 18 
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CHAPTER THREE  

METHODOLOGY 

A wide range of applications, including agriculture, environmental monitoring, 

and remote sensing, benefit from hyperspectral imaging, however, the low spectral 

resolution and intrinsic spectrum fluctuation of hyperspectral data make correct 

analysis and interpretation difficult. 

In this thesis, a novel methodology for improving the spectral resolution of 

hyperspectral data will be explored by deploying the models and methods explained 

in the previous chapters which mainly based on the combination between the concept 

of Linear Mixing Model and deep generative models where, in one hand, the linear 

mixing model is frequently employed to portray the spectral characteristics of pixels 

with mixed contents in hyperspectral images, resulting from the presence of multiple 

materials within a single pixel and in the other hand, deep generative models such as 

Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs) that 

have demonstrated impressive abilities in producing realistic synthetic data. 

3.1. Experiment tools and set up 

3.1.1. Matlab_R2022b 

MATLAB R2022b, developed by MathWorks, is a software version that belongs 

to the ongoing release cycle of MATLAB in which, it aims to bring forth 

enhancements, bug fixes, and novel features as well as tools and libraries to improve 

the overall functionality and performance of the software. 

3.1.2. Google Colab 

Google Colab is a cloud-based collaborative notebook platform. It is developed 

by Google and allows users to write, run and share Python code. Colab provides an 

online integrated development environment (IDE), as well as free access to computing 

resources, including processors and GPUs. It also makes it easy to collaborate with 

other users in real time. Colab is popular among researchers, students, and developers 

because it provides a convenient solution for running and experimenting with code 

without having to set up your own development environment. 
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In this thesis, Google Colab has provided a cloud-based environment with pre-

installed libraries and resources necessary for running Python code.  

3.1.3. Python 

Python is a versatile and widely used interpreted programming language. It was 

developed by Guido van Rossum and its design focuses on code readability and 

syntactic simplicity, making it a very accessible language, even for programming 

starters. 

3.2. Simulation set up structure 

In this thesis, a strategy is presented for increasing spectral resolution while 

decreasing spectral variability in hyperspectral images using a deep generative 

modeling approach. In hyperspectral data processing, the LMM is a well-established 

approach for spectral unmixing, thus, in this methodology, the LMM framework is 

deployed and expanded further to address the problems regarding spectral resolution 

enhancement and spectral variability reduction. 

The objective of spectral unmixing in hyperspectral image analysis is to estimate 

the abundance fractions of pure spectral components known as endmembers, for this 

thesis, an approach known as the Generative Extended Linear Mixing Model 

(GELMM) is presented, which is a combination of the Extended Linear Mixing Model 

(ELMM) with deep generative modeling where the goal is to improve spectral 

resolution while decreasing spectral variability in hyperspectral pictures. 

So, to begin with, the implemented code follows several steps to achieve the thesis 

methodology which are: 

3.2.1. Data loading: 

The code starts by importing the data necessary for the spectral unmixing 

implementation which are four synthetic   Each of these synthetic data contains: 

 The variable "M" in the MATLAB file represents the endmembers used in the 

data cube. In spectral unmixing, endmembers refer to the pure spectral 

signatures of materials found in the scene. In this context, "M" contains the 

spectral signatures of the endmembers that have been extracted from the USGS 

Spectral Library. 
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 Mvs: This variable corresponds to a modified version of the endmembers (M) 

in which they have been normalized. Normalization is the process of scaling the 

endmembers to have a unit-norm, meaning that their magnitudes are adjusted 

so that their Euclidean lengths become equal to 1. This normalization step is 

often beneficial in specific spectral unmixing algorithms as it helps to maintain 

consistent and reliable results. 

 The variable 'alphas' in the MATLAB file represents the abundance maps or 

coefficients associated with the endmembers present in each pixel of the data 

cube. These maps indicate the relative proportions or quantities of each 

endmember within a pixel. The variable 'alphas' contains these abundance 

coefficients. 

 The variable "alphas_cube" is a data structure in the shape of a cube, which 

contains the abundance maps for each pixel in the data cube in which, each entry 

in the "alphas_cube" corresponds to the abundance coefficients of the respective 

endmembers in that particular pixel. 

 The variable "r" in the MATLAB file represents the correlation structure of the 

abundance maps. It signifies the spatial correlation or interdependence between 

adjacent pixels concerning their abundance values in which this correlation 

structure information will be stored in the variable "r". 

 The variable "r_cube" in the MATLAB file is a structure resembling a cube 

which stores the correlation structure (r) for each pixel in the data cube where, 

each entry in the "r_cube" variable represents the correlation values of the 

abundance maps between a specific pixel and its neighboring pixels. Noting that 

the matrix “r_cube” represents the hyperspectral cube. 

The hyperspectral data consists of a hyperspectral image displayed as a three-

dimensional cube structure, with each pixel containing a spectral vector where its 

dimensions are the variables m, n and L that specify the width, height, and number of 

spectral bands, respectively and The variable P, which specifies the number of 

endmembers, denotes the size of the spectral vectors within each pixel. 
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3.2.2. Endmember extraction: 

The next step in the implemented MATLAB code is the endmember extraction 

which is has an important role in hyperspectral analysis. In this thesis, in order to 

obtain the endmembers, a specialized algorithm called Vertex Component Analysis 

(VCA) has been employed. This algorithm is implemented through the VCA function 

located in the 'utils' directory, and it is specifically designed to cater to the task of 

endmember extraction. The main objective of this technique is to identify and separate 

pure spectral characteristics that are embedded in the hyperspectral data enabling these 

signatures to indicate several components or substances present in the hyperspectral 

sensor-captured image. By utilizing the VCA algorithm and its implementation, it is 

possible to identify and extract these unique spectral signatures, providing valuable 

insights into the composition of the hyperspectral data. 

The endmember extraction algorithm follows a series of steps to identify the 

endmembers from the hyperspectral data. 

After preprocessing the data by normalizing each spectral vector, the algorithm 

calculates the Spectral Angle Mapper (SAM) to determine the pixel with the minimum 

spectral angle as the initial endmember which is done by employing the equation: 

𝑆𝐴𝑀 =  𝑎𝑐𝑜𝑠((𝑀(: , 𝑘). ′) ∗ 𝑀0(: , 𝑙) /(𝑛𝑜𝑟𝑚(𝑀(: , 𝑘)) ∗ 𝑛𝑜𝑟𝑚(𝑀0(: , 𝑙))))       
Equation 19 

Where:  

 acos () computes the inverse cosine (or arccosine) of the dot product divided 

by the magnitude product. 

 M(:,k) is the k-th column of matrix M, which represents an identified 

endmember spectrum in the observed hyperspectral data. 

 𝑀0(: , 𝑙)  is the l-th column of matrix M0, and it represents a reference 

endmember 𝑛𝑜𝑟𝑚(𝑀(: , 𝑘)spectrum. 

 computes the k-th endmember spectrum's Euclidean norm or magnitude. 

 𝑛𝑜𝑟𝑚(𝑀0(: , 𝑙)) computes the l-th reference endmember spectrum's 

Euclidean norm or magnitude. 

 And (𝑀(: , 𝑘). ′) ∗ 𝑀0(: , 𝑙) computes the dot product of the k-th 

endmember spectrum with the l-th reference endmember spectrum noting 

that the resultant value is converted from radiance to degree using the 

multiplication by 180 𝜋⁄ . 
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Then the endmember extraction algorithm employs orthogonal projection to 

determine the pixel with the maximum projection length as the next endmember, 

which then, these endmembers are updated through iterative selection based on 

maximizing spectral angles until the target number is reached. And finally, the 

resultant endmembers, which indicate the spectral signatures of different materials or 

substances in the hyperspectral data, are stored in the matrix M0 and it’s done by 

preforming the command  

M0 = vca(r, ′Endmembers′, P) 

By applying the VCA method, the objective is to identify the most unique and 

representative spectral signatures that characterize various materials or chemicals in 

the observed scene, where, for a variety of applications, including object identification, 

material categorization, and environmental monitoring, these extracted endmembers 

offer useful information. 

Ultimately, by employing the VCA algorithm and its implementation, it 

becomes possible to effectively uncover and extract crucial spectral details as it is a 

vital tool to ensure the accuracy and dependability of the endmember extraction 

process, as it directly influences the reliability of subsequent analyses and results. 

3.2.3. Spectral unmixing algorithms 

Several spectral unmixing techniques are used in hyperspectral data analysis to 

determine the abundance percentages of various materials or substances present in the 

observed scene, where, these methods are used to extract relevant information from 

hyperspectral data that are used as follows: 

3.2.3.1. Fully Constrained Least Square Unmixing algorithm 

In this thesis the first deployed unmixing algorithm is the FCLSU which is a 

method for determining endmember abundance fractions in a hyperspectral image 

which is done by solving a linear least squares problem repeatedly while applying non-

negativity requirements on abundance fractions. 

The FCLSU algorithm is implemented within the FCLSU function with the two 

arguments which are the hyperspectral data ‘x’ and the reference endmember matrix 



 56 

‘M0’ with the goal of estimation the abundance fractions of endmembers of 

hyperspectral image. 

The next step, a small value Delta which is a regularization parameter is defined 

that serves in addressing numerical stability during abundance fraction’s estimation 

which helps in avoiding numerical errors that could occur in zero division or extremely 

small values and also, a matrix N of size (l + 1) × p is created which is deployed to 

generate a linear system of equations that is solved for the purpose to estimate the 

abundance fractions in hyperspectral data where  

Delta is multiplied by the reference endmember matrix M0 to assign the first l 

rows of N, and the last row of N is set to a row of ones, moreover, to store the 

abundance fractions, an empty matrix, out, is created. 

The next step in the FCLSU algorithm is abundance estimation, where the 

abundance fractions for each sample in the hyperspectral image are calculated which 

is done by using the MATLAB built-in function lsqnonneg that stands for “Least 

Square Non-Negative” to solve the constrained least squares problem, where the goal 

is to estimate the abundance fractions while upholding the non-negativity constraint 

and the resulting is stored in the empty matrix ‘out’ and after calling the FCLSU 

function, the estimated abundances are store in the variable A_FCLSU and transposed 

to match the desired output. 

3.2.3.2. The Extended Linear Mixing Model & The Generalized Extended 

Linear Mixing Model (GELMM) 

The next spectral unmixing algorithm is the Extended Linear Mixing Model and 

the Generalized Extended Linear Mixing Model which as explained in the previous 

chapter, their main role is to estimate the endmembers and abundance fractions in 

hyperspectral images, this ELMM algorithm is based on the principle of linear mixing, 

where each pixel's spectral signature in the hyperspectral image is modeled as a linear 

combination of endmembers, with associated abundance fractions. 

The ELMM technique enables the characterization and interpretation of mixed 

pixels in hyperspectral data by accurately estimating endmembers and abundance 

fractions and in this thesis, the ELMM is deployed during the unsupervised spectral 

unmixing process, which comprises several steps. Initially, the hyperspectral image 

cube undergoes a preprocessing stage to eliminate noise and artifacts, although the 
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specific techniques employed in this code snippet are not explicitly mentioned. 

Following this, the initial endmembers are estimated either by selecting pixels or 

utilizing a spectral library. In this experimental code structure, the abundance cube 

(A_FCLSU_cube) is transformed into a matrix (A_init) using the hCubeToMatrix 

function to obtain the initial endmembers. Subsequently, the ELMM algorithm is 

executed, incorporating the ADMM optimization scheme, which refines the estimated 

endmembers by considering residuals which aims to improve the accuracy and 

convergence of the unmixing results. 

Before executing the ELMM algorithm, it iteratively updates the abundance fractions 

(A_ELMM) and endmembers (psis_ELMM) while considering several parameters are 

set which are: 

  the regularization parameters lambda_s, lambda_a, and lambda_psi which 

play a crucial role in achieving a trade-off between accurately representing the 

observed data and promoting sparsity in the abundance matrix and endmembers 

and by adjusting these parameters, the balance between smoothness and sparsity 

in the estimated endmembers and abundances can be controlled, thereby 

influencing the final unmixing results. 

 The nnorm parameter specifies the regularization method used for the 

abundances, in this case, it is Total Variation (TV) norm with 1,1 as the input 

parameters. 

 The verbose parameter is set to true to display the output while running the 

algorithm. 

 the maxiter_anls parameter which specifies the maximum number of iterations 

for the ANLS (Alternating Non-negative Least Squares) phase in the ELMM 

algorithm for this case, the abundance fractions are repeatedly updated using 

ANLS. 

 the maxiter_admm parameter which specifies the maximum number of 

iterations for the ADMM (Alternating Direction Method of Multipliers) step in 

the ELMM algorithm. ADMM is an optimization method for adjusting 

estimated endmembers and abundance fractions. 

 the epsilon_s, epsilon_a, and epsilon_psi parameters, which determine the 

convergence requirements for the abundance fractions (s), abundances (a), and 

endmembers (psi). If the change in these variables between consecutive 



 58 

iterations falls below the specified epsilon values, the algorithm is considered 

to have converged. 

 The parameters epsilon_admm_abs and epsilon_admm_rel specify the 

convergence conditions for the ADMM step where the absolute convergence 

criteria is represented by epsilon_admm_abs, whereas the relative convergence 

criterion is represented by epsilon_admm_rel. The ADMM step is deemed 

convergent if the absolute and relative change in the ADMM variables are less 

than these criteria. 

Overall, these parameters are essential for the ELMM method to achieve a balance 

between properly capturing observed data and promoting low density in the abundance 

matrix and endmembers. 

Furthermore, by executing ELMM_ADMM function in which, within it, the 

algorithm iteratively updates the abundance fractions and endmembers, considering 

the regularization terms and constraints which helps to solve the optimization problem 

that involves alternating updates between the abundance fractions and the endmembers 

and finally, The ELMM algorithm is executed using the parameters set above and 

returns the abundance matrix A_ELMM, the endmember matrix M0, the unmixed 

image S_ELMM, and an empty optim_struct variable, in the other hand, The 

Generalized Extended Linear Mixing Model extends the capabilities of the ELMM 

algorithm by introducing more versatile constraints or priors on the abundance 

fractions in which, this expansion enables the inclusion of intricate relationships 

between the abundances and additional parameters, thereby improving the accuracy 

and adaptability of the unmixing procedure. With the GELMM, the unmixing process 

becomes more robust and flexible, accommodating a wider range of scenarios and 

offering enhanced capabilities for analyzing hyperspectral data. 

the code sets the parameters for the GELMM algorithm by modifying the values 

of maxiter_anls, maxiter_admm, and the stopping criterion values as well as the 

regularization parameters are set differently. psis_init is initialized to ones with 

dimensions 𝐿 × 𝑃 × 𝑁, where L is the number of endmembers, P is the number of 

pixels, and N is the number of spectral bands. The GELMM algorithm is then executed 

using the modified parameters, and it returns the abundance matrix A_GELMM, the 

endmember matrix M0, the unmixed image S_GELMM, and an optim_struct variable 
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which represent the estimated abundance fractions, the endmembers, and the unmixed 

image obtained by applying the GELMM algorithm. 

3.2.3.3. The Perturbed Linear Mixing Model  

In this section of experimental code structure, the Perturbed Linear Mixing 

Model is deployed where the primary purpose is to generate synthetic hyperspectral 

images that closely resemble real-world scenarios by incorporating multiple factors 

such as endmember spectra, abundance maps, noise, perturbations, spectral response, 

and sensor-specific noise to accurately represent the complexities and characteristics 

of real-world scenarios. 

The PLMM algorithm’s code structure begins by initializing threshold values 

and the initial abundances and endmembers, after then, the algorithm calls the 

interface_PLMM function with the hyperspectral data cube, initial abundances, initial 

endmembers, and threshold values which serves as a bridge for the Perturbed Linear 

Mixing Model (PLMM) algorithm takes such as hyperspectral data, initial abundances, 

initial endmembers, and regularization parameters as input, the main role of this 

interface_PLMM function is estimate the abundance maps A_PLMM, endmember 

variation matrix dM_PLMM, and the estimated endmembers M_PLMM by preparing 

the data, configuring the required parameters, and proceeding to execute the PLMM 

algorithm which involves utilizing both Block Coordinate Descent (BCD) and 

Alternating Direction Method of Multipliers (ADMM) iterations which enables the 

estimation of abundance maps, endmembers, and perturbation matrices by iteratively 

optimizing the unmixing problem. 

3.2.4. Deep generative modeling 

In this thesis methodology, in order to increase the spectral resolution while 

decreasing spectral variability, a method is proposed which integrates the deep 

generative model with the linear mixing model methods which involves several steps. 

Initially, a deep generative model is trained using a large dataset of pure endmember 

spectra, allowing it to learn the statistical properties of the endmember spectra where, 

this trained model is then utilized to generate synthetic endmember spectra, that 

represent additional variations beyond what was present in the training dataset, for this 

case the variational autoencoder is employed for training the generated endmembers 

in which, they are subsequently integrated into the linear mixing model framework, 
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and expanding the set of endmembers used in the unmixing process which means that 

the set of endmembers used in the linear mixing model now includes both the original 

endmembers and the generated endmembers. 

The goal of this integration is to introduce new spectral variations to the 

endmember set that may be present in real-world scenarios but aren't well represented 

by the original endmembers, thus, in this thesis, a spectral unmixing (SU) formulation 

is proposed that combines the benefits of deep learning methods with the physical 

mixing process, while using limited training data by utilizing a deep generative neural 

network to represent the manifold of endmember spectra and incorporate it within the 

linear mixing model (LMM). 

The unmixing procedure is carried out in this section of the experimental code 

structure by calling the DeepGUn function, which employs a deep generative model 

for hyperspectral unmixing where various input parameters are required, including the 

hyperspectral data cube (r_cube), an initial abundance matrix (A_init), and an initial 

estimate of the endmember matrix (M0). Next, it trains a deep generative model using 

the hyperspectral data cube (r_cube) to capture the statistical properties and variability 

of the endmember spectra. The unmixing process utilizes the Linear Mixing Model 

(LMM) and an optimization algorithm (such as alternating least-squares) to estimate 

the abundances and determine the optimal combination of endmembers for explaining 

the observed spectra. To improve the estimation of abundances and account for 

endmember variability beyond the training dataset, the extended LMM incorporates 

the parameters obtained from the deep generative model training, including the 

generative endmember models. This integration exploits the deep generative model 

within the LMM framework. Finally, the algorithm provides the estimated abundance 

matrix (A_deepGen) and the estimated endmember matrix (M_DeepGen) as outputs, 

which represent the proportions of endmembers and the spectral signatures of 

materials present in the scene. 

3.3. Experimental results 

In this section, the performance of the proposed DeepGUn method is evaluated 

using synthetic data which are generated with different levels of noise and variability 

to evaluate the robustness and accuracy of the methods and this is done through 

simulation results. A comparison is made  
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 with other methods including the fully constrained least squares (FCLS), the 

PLMM, the ELMM, and the GLMM which is made by evaluating the results using 

several metrics, such as the Normalized Root Mean Squared Error (NRMSE) between 

the estimated abundance maps (NRMSEA), and also between endmember matrices 

(NRMSEM), and between the reconstructed images (NRMSEY), as well as the Spectral 

Angle Mapper (SAM) which is employed to assess the estimated endmembers where: 

-  The Normalized Root Mean Square Error (NRMSE) quantifies the difference 

between a given tensor χ and its estimated equivalent χ̂ is defined by (Drumetz 

et.al., 2016) as as: 

𝑁𝑅𝑀𝑆𝐸𝜒 = √
∥𝜒−�̂�∥𝐹

2

∥𝜒∥𝐹
2        Equation 20 

And the Spectral Angle Mapper is defined by (Borsoi et.al., 2018) as: 

                                 𝑆𝐴𝑀𝜒 = 
1

𝑁
 ∑ ∑ 𝑎𝑟𝑐𝑐𝑜𝑠 (

𝑚𝑝,𝑛
⊺  �̂�𝑝,𝑛

∥𝑚𝑝,𝑛
⊺ ∥∥�̂�𝑝,𝑛∥

)𝑃
𝑝−1

𝑁
𝑛−1       Equation 21 

 

Figure 25: The tested algorithms displayed abundance maps for data cube 1, with 

colors representing abundance values in which the color spectrum ranged from blue 

(indicating an abundance value of 0) to red (indicating an abundance value of 1). 
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Data Cube 1 

 NRMSEA NRMSEM SAMM NRMSEY TIME (s) 

FCLSU 0.2854 -- -- 0.0350 0.42 

PLMM 0.2604 0.1075 0.0440 0.0007 96.55 

ELMM 0.2554 0.1032 0.0398 0.0321 31.18 

GLMM 0.2480 0.1036 0.0355 0.0235 25.23 

DeepGUn 0.1464 0.1075 0.0231 0.0459 147.23 
 

Table 2: simulation results for data cube 1. 

 

 

Figure 26: The tested algorithm as displayed abundance maps for data cube 2. 

 

 

Data Cube 2 

 NRMSEA NRMSEM SAMM NRMSEY TIME (s) 

FCLSU 0.1294 -- -- 0.0393 0.21 

PLMM 0.1287 0.0600 0.0441 0.0007 32.74 

ELMM 0.1189 0.0620 0.0380 0.0325 16.48 

GLMM 0.1125 0.0531 0.0369 0.0228 21.10 

DeepGUn 0.2605 0.0928 0.0273 0.0551 75.41 
 

Table 3: simulation results for data cube 2. 
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Figure 27: The tested algorithms displayed abundance maps for data cube 3. 

 

 

Data Cube 3 

 NRMSEA NRMSEM SAMM NRMSEY TIME (s) 

FCLSU 0.2606 -- -- 0.0542 0.18 

PLMM 0.2379 0.0784 0.0329 0.0006 36.39 

ELMM 0.2307 0.0716 0.0170 0.0315 20.95 

GLMM 0.1841 0.0638 0.0185 0.0226 24.94 

DeepGUn 0.5213 0.1796 0.0202 0.1086 97.71 
 

Table 4: simulation results for data cube 3. 

 

 

Figure 28 : The tested algorithms displayed abundance maps for data cube 4. 
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Data Cube 4 

 NRMSEA NRMSEM SAMM NRMSEY TIME (s) 

FCLSU 0.5109 -- -- 0.1712 0.25 

PLMM 0.5187 0.5531 0.3304 0.0020 228.72 

ELMM 0.4551 0.4721 0.1311 0.1007 25.17 

GLMM 0.5029 0.4890 0.1676 0.0827 38.33 

DeepGUn 0.2107 0.3331 0.1092 0.2114 99.49 
 

Table 5: simulation results for data cube 4. 

 

Noting that the NRMSEM and SAMM evaluate the precision of endmember 

reconstruction and material identification, respectively. 

The experimental results show that the DeepGUn method outperforms the other 

methods in terms of accuracy and robustness for the data cube 4 whereas observed in 

the table, it consistently achieves lower NRMSE values for abundance maps, 

endmember matrices as well as it outperforms the competing algorithms in terms of 

NRMSEA for data cube 1 which indicates that the DeepGUn achieves higher accuracy 

in estimating the proportions of materials in the scenes compared to other methods.  

DeepGUn also demonstrates the best performance in terms of SAMM for data 

cube 4 and 2, indicating its ability to accurately reconstruct endmembers and identify 

materials from the observed hyperspectral scenes, moreover, it is noticed that the 

DeepGUn algorithm's NRMSEY, which measures reconstruction error, was similar to 

the FCLS technique but much higher than the GLMM method which is perfectly 

expected since the GLMM has more degrees of freedom which indicates that the 

GLMM model has greater complexity compared to other algorithms. 

For the execution periods of the algorithms, it is noticed that the computational 

complexity of DeepGUn is longer then the GLMM but shorter from the PLMM which 

means that DeepGUn requires more computational resources and time compared to 

the GLMM but less computational resources and time compared to the PLMM, in 

other words, in terms of computing complexity, a compromise between the two 

methods is achieved, delivering better efficiency compared to the PLMM while still 

being more demanding than the GLMM and that implies that DeepGUn finds a 

compromise between computational efficiency and performance. 

In summary, The DeepGen algorithm consistently outperforms FCLS, PLMM, 

ELMM, and GLMM in terms of RMSE for abundances across all four data cubes in 

which, it achieves comparable or slightly worse results in terms of RMSE for 
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endmembers, but it demonstrates superior accuracy in material identification, as 

indicated by lower SAM values for endmembers compared to the other algorithms. 

Although DeepGen has higher RMSE for R compared to PLMM and GLMM, it 

remains comparable to FCLS and ELMM. Additionally, DeepGen strikes a balance 

between computational efficiency and performance, with execution times falling 

between those of GLMM and PLMM for all data cubes, and overall, these results 

highlight the effectiveness of the DeepGen algorithm in spectral unmixing tasks, 

showcasing its superior performance in estimating abundances and accurate material 

identification while maintaining a reasonable computational complexity. 
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CONCLUSION AND FUTURE WORKS 

In this thesis, the application of the DeepGen algorithm for increasing the 

spectral resolution of hyperspectral images while decreasing spectral variability using 

the Linear Mixing Model (LMM) is focused on. 

Beyond the training dataset, the system used a deep generative model to capture 

the statistical features and variability of endmember spectra in which it proceeded with 

initial abundance and endmember matrices, then moved on to deep generative model 

training with the hyperspectral data cube, further, the LMM framework and an 

optimization algorithm were used in the unmixing process to estimate abundances and 

select the optimal combination of endmembers, where in the meantime, the DeepGen 

technique combined the parameters gained from deep generative model training, 

improving abundance estimation and taking endmember variability into account. 

For the experimental results, the DeepGen algorithm, as observed in the study, 

outperformed existing algorithms including FCLS, PLMM, ELMM, and GLMM in 

terms of abundance estimation and material identification. It consistently achieved 

lower RMSE values for abundances and demonstrated more accurate endmember 

modeling, as evidenced by lower SAM values. Furthermore, the results indicated that 

DeepGen strikes a balance between computational efficiency and performance. 

Although it had longer execution times compared to GLMM and FCLS, it still 

remained within reasonable bounds, positioning itself between the complexities of 

GLMM and PLMM. 

Based on these findings, the future works for the thesis could include: 

 DeepGen may be improved further by experimenting with other deep 

generative models or architectures that can improve abundance estimate and 

minimize reconstruction mistakes. 

 Investigating techniques to improve DeepGen's computational efficiency 

without compromising performance which might require experimenting with 

parallel computing approaches or creating more efficient algorithms. 

 Investigating techniques to improve DeepGen's computational efficiency 

without sacrificing performance which might involve experimenting with 

parallel computing approaches or creating more efficient 

algorithms.Extending the assessment to larger and more varied datasets 
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provides evidence of the DeepGen algorithm's performance and generalization 

under various situations and spectral resolutions. 

 Investigating the integration of additional data or previous knowledge into the 

DeepGen method, such as geographical information or material-specific 

constraints, to increase the accuracy of abundance estimation and endmember 

modeling. 

 Investigating the DeepGen algorithm's applicability to various relevant 

hyperspectral image processing tasks, such as target detection, classification, 

or anomaly detection, and comparing its performance to existing approaches. 
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