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SUMMARY 

There has been a significant increase in the use of solar energy in industry, which 

has led to greater awareness about renewable energy from power plants and smart 

grids. One challenge in this field is detecting photovoltaic (PV) system anomalies. This 

research aims to address this challenge by using various machine learning algorithms 

and regression models to identify abnormalities in PV components. The goal is to 

determine which models can most accurately distinguish between normal and 

abnormal behavior of PV systems. Our findings will provide clear guidance for making 

informed decisions about which machine-learning approaches are most effective in 

this complex problem. 

Key Words: Solar Energy; Intelligent Grid System; Power Plant Anomalies; PV 
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ÖZET 

Sanayide güneş enerjisinin kullanımında önemli bir artış olmuş, bu da elektrik 

santrallerinden ve akıllı şebekelerden yenilenebilir enerji konusunda daha fazla 

farkındalığa yol açmıştır. Bu alandaki zorluklardan biri, fotovoltaik (PV) sistemlerdeki 

anormallikleri tespit etmektir. Bu araştırma, PV bileşenlerindeki anormallikleri 

belirlemek için çeşitli makine öğrenimi algoritmaları ve regresyon modelleri 

kullanarak bu zorluğu ele almayı amaçlamaktadır. Amaç, hangi modellerin PV 

sistemlerinin normal ve anormal davranışlarını en doğru şekilde ayırt edebildiğini 

belirlemektir. Bulgularımız, bu karmaşık problem alanında hangi makine öğrenimi 

yaklaşımlarının en etkili olduğu konusunda bilinçli kararlar vermek için net bir 

rehberlik sağlayacaktır. 

Anahtar kelimeler: Güneş enerjisi; Akıllı Şebeke Sistemi; Santral Anomalileri; PV 
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INTRODUCTION 

In recent years, there has been a rapid growth in renewable energy, including 

power plants, which is expected to improve the production of clean, low-cost energy 

and drive economic growth (Vlaminck et al., 2022). One important issue in this field 

is detecting and identifying abnormal patterns in solar systems, particularly 

photovoltaic (PV) components (Cespedes et al., 2022; Sajun et al., 2022). Using big 

data and data-driven approaches, such as convolutional neural networks and deep 

learning systems, can effectively detect and prevent these abnormalities. These 

machine-learning approaches have proven to be accurate in many cases. 

Solar photovoltaic (PV) systems often experience a range of abnormalities that 

can affect their performance (Lin et al., 2022; Meribout et al., 2023), including internal 

and external faults. Internal faults can result in zero power production during daylight 

hours, including component failure, shading, inverter shutdown, system isolation, and 

inverter maximum power point issues. External factors can hinder power generation, 

even if not caused by the PV system. 

Dust, humidity, shading, and temperature are measured to be the most influential 

external factors in the production of PV systems. There have been numerous data 

science projects aimed at addressing these anomalies, including the use of artificial 

neural networks (ANN) for solar equipment modeling. ANN might save time and 

money by avoiding difficult mathematical techniques and needing fewer diagnostic 

procedures to establish input/output correlations. 

One study (Elsheikh, Katekar, et al., 2021) used an algorithm of NN with long 

short-term memory (LSTM) to forecast the yield of solar stills, which can recall 

patterns and anticipate long-term time-series behaviors. Another study (Elsheikh, 

Panchal, et al., 2021) provided methods based on artificial intelligence for predicting 

the water output of solar distillers, incorporating a moth-flame optimizer and an LSTM 

model. Compared to the solitary LSTM model, the optimized LSTM model 

outperformed it. 

Convolutional LSTM (ConvLSTM) is an effective hybrid model that combines 

LSTM and a convolutional neural network (CNN), was proposed by (Ibrahim et al., 

2020). 
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It exhibited accurate prediction results with reduced latency, hidden neurons, and 

computational complexity. The application of deep learning techniques in various 

industries, such as data mining, medicine, agriculture, and wind and solar energy 

production, has been examined in other recent research (Aslam et al., 2021; Ibrahim 

et al., 2022). 
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CHAPTER ONE 

PURPOSE OF THE THESIS 

1.1. Literature Survey   

Studies have looked at various methods for spotting irregularities in PV power 

networks. Authors (Branco et al., 2020) looked into various techniques for locating 

and categorizing irregularities in PV systems, including the auto-regressive integrated 

moving average model (ARIMA)(Deif et al., 2021), K Nearest Neighbors (KNN) 

classification, neural networks, and support vector machines (Hammam et al., 2022). 

The authors (De Benedetti et al., 2018) developed a strategy for detecting and 

predicting abnormalities in PV systems and performing maintenance. The model is 

based on an ANN that predicts AC power generation using temperature and solar 

irradiance data from PV panels. Reference (Natarajan et al., 2020) presents a new 

method for identifying faults using thermal image processing and a support vector 

machine (SVM) tool that classifies characteristics as faulty or non-defective. 

A model-based method for identifying irregularities in the PV plants' DC section 

and brief shadowing is presented in Reference (Harrou et al., 2019). The procedure 

comprises developing a design founded on the model of a one-diode to characterize 

typical PV system performance and generate fault detection residuals. The residuals 

are then subjected to a one-class SVM (1-SVM) to detect errors.  

According to reference (Feng et al., 2020), Sundown is a method that can 

identify individual panel failures in solar arrays without using sensors. It works by 

analyzing the interactions between nearby solar panels and detecting deviations from 

predicted behavior. 

The model can simultaneously handle several issues in multiple panels and 

classify abnormalities to discover possible causes, such as leaves, snow, electrical 

faults, and dirt. A brand-new tool called ISDIPV is presented in reference (Sanz-Bobi 

et al., 2012) for locating and analyzing faults in PV solar power systems. It comprises 

three primary parts data gathering, anomaly detection, and performance deviation 

diagnostics. 



 

4 

Reference (Zeng et al., 2022)used multilayer perceptron neural network models 

and linear transfer functions (LTF) to model average performance. The study 

suggested a data-driven method employing PV string currents as indicators to detect 

and categorize anomalies in PV systems. The proposed method for anomaly detection 

featured two steps {Global Context-Aware Anomaly Detection (GCAD) and Local 

Context-Aware Detection (LCAD)}, and it leveraged unsupervised machine learning 

techniques. 

In reference (Mulongo et al., 2020), using generators as power sources for 

TeleInfra base stations were studied, and anomalies in fuel consumption were 

identified using reported data. Four classification approaches - KNN, logistic 

regression (LR), multilayer perceptron (MLP), and SVM - were used to identify 

anomalies in gasoline consumption patterns by learning the patterns using pattern 

recognition. The findings demonstrated that MLP was the most successful measuring 

and interpretation method. 

Using KNN and 1-SVM for anomaly detection, a unique method of PV system 

monitoring is introduced in reference (Benninger et al., 2019). These self-learning 

algorithms greatly minimize measurement labor while enhancing the accuracy of 

defect monitoring. In reference (Benninger et al., 2020), a multilayer perceptron and 

the K-Nearest-Neighbors method are used to analyze data from a DC sensor and 

distinguish between different electrical current characteristics. A sensorless method 

for fault detection in PV plants is proposed in Reference (Firth et al., 2010), and it is 

based on the sharp fall in current between two MPPT sampling points. 

Simulations were run to show that anomalies might be found in various settings, 

regardless of brightness and irradiance levels. In reference (Balzategui et al., 2021), a 

framework for detecting anomalies in monocrystalline solar cells is proposed. The 

system is divided into two parts:- 

Part 1: Generative Adversarial Network (GAN) anomaly detection model 

is used, which can spot aberrant patterns using only perfect training 

examples. 



 

5 

Part 2: After detecting the anomalies, they are utilized to generate features 

that are used to train a fully convolutional network in a supervised 

manner. 

In reference (Wang et al., 2022), a technique is proposed for real-time analysis 

of aerial thermography video streams. The method employs a combination of image 

processing and statistical machine learning techniques to detect and localize 

abnormalities in photovoltaic (PV) images using resilient principal component 

analysis (RPCA). 

The method also includes post-processing techniques for image segmentation 

and noise reduction. Energy yield data are evaluated using various models in reference 

(Hempelmann et al., 2020). It is discovered that anomalous ensembles, proximity-

based models, linear models, probabilistic models, and NN have the greatest detection 

rates. 

Reference (Iyengar et al., 2018) introduces SolarClique, a data-driven approach 

for detecting irregularities in the electricity output of solar facilities, which does not 

require sensor equipment for fault/anomaly detection and relies only on the array's 

output and the output of adjacent arrays for operational anomaly detection. Reference 

(Tsai et al., 2020) suggests an anomaly detection method using a semi-supervised 

learning model to predict solar panel settings to avoid situations where the solar panel 

cannot produce electricity due to equipment degradation. This method uses a clustering 

model to filter normal behaviors and an Autoencoder model for neural network 

classification. 

Using a variational autoencoder model with a decoder and encoder 

parameterized by recurrent NN (RNN) to capture the progressive relationship of time-

series data, Reference (Pereira & Silveira, 2018) describes a comprehensive, 

unsupervised, and scalable method for detecting anomalies in offline and live time-

series data. The study shows that the model can effectively identify abnormal 

configurations by utilizing probabilistic restoration measures such as anomaly scores. 

Reference (Kosek & Gehrke, 2016) proposes a new approach to detecting cyber-

physical intrusions in smart grids by utilizing an ensemble model incorporating non-
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linear regression models and anomaly scores. This technique aims to enhance the 

accuracy of anomaly detection in smart grids. 

In (Rossi et al., 2016), the authors describe the employment of an unsupervised 

collective and contextual detection algorithm to monitor the data flow of a major 

Czech Republic energy dispenser. The method employs clustering silhouette 

thresholding in combination with category clustering and conventional item-set 

mining techniques to detect anomalies. 

Reference (Toshniwal et al., 2020) overviews many anomaly detection 

approaches, including graph analysis, closest neighbor, clustering, statistical, spectral, 

and information-theoretic methods. The input data, kind of anomalies, output data, and 

domain expertise determine the optimal AD method. 

 

1.2. Problem Statement 

Monitoring tools are needed to effectively operate photovoltaic (PV) systems, as 

they can help identify and address issues that may affect the system's performance and 

safety. Online monitoring can provide plant operators with important information for 

managing the plant and integrating it into a smart grid. Failure to detect problems with 

PV arrays can lead to reduced power generation and fire hazards. Early detection of 

anomalies on solar panels can help prevent power loss and ensure the panels' continued 

performance and safety. Therefore, it is important to have efficient and accurate 

methods for detecting anomalies in PV systems.  

 

1.3. Aims and Objective 

The following are some of the key Objectives of this thesis. 

1. This study will investigate various anomaly detection models and conduct 

comparison tests to evaluate their precision and performance with 

optimized hyperparameters. 



 

7 

2. This study aims to define and quantify the external and internal variables 

that cause anomalies in PV power plants, their impacts on model 

accuracy, and the link between these factors and anomaly identification. 

1.4. Thesis Questions 

Along with the previous review of the related works, problem formulation, and 

the objectives of this study, we might summarize the main thesis questions by the 

following: 

1. What is the best model for nominal prediction?. 

2. What are the optimum hyperparameters for prediction models ?. 

3. What is the correlation between features used in our study ?. 

1.5. The Proposed Model 

Based on the performance of many machine learning models, this thesis will 

investigate and show the best model that can accurately identify anomalies in the PV 

system. The effectiveness of machine learning models in identifying abnormalities will 

be evaluated by utilizing the correlation coefficients among plants' external and 

internal feature characteristics. 

The data utilized were collected over 34 days at 15-minute intervals at two Indian 

plants for solar power (The first is in Gandikotta, Andhra, while the second is near 

Nasik, Maharashtra). 

To assess the generation rate and identify any potential irregularities, twenty-

two inverter sensors were installed at the plant and inverter levels for each plant. The 

sensors measured the AC and DC powers and the internal factor. Additionally, the 

inverter monitored the module temperatures, ambient conditions, and irradiance for 

meteorological measurements at the plant level (These represented external influences 

that may cause anomalies). 

1.6. Thesis Conclusions 

Successfully identified equipment failure and underperformance events with a 

rule-based method and linear/nonlinear modeling of the relationship between 



 

8 

irradiance, temperature, and DC power. This approach can be useful for real-time 

condition monitoring and fault detection. 

1.7. Thesis Organization 

The thesis is composed of five chapters.   

Chapter One : Theoretical Background 

Chapter Two : Purpose of the Thesis 

Chapter Three : Data Exploration and Preparation 

Chapter Four : Methods and Results 

Chapter Five : Conclusions and Future Work 
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CHAPTER TWO  

THEORETICAL BACKGROUND  

This chapter reviews the research on the numerous fault types that can occur in 

solar PV arrays, the protection holes in traditional fixes, and the methods for fault 

detection, classification, localization, and protection. These current approaches' 

advantages and disadvantages are also investigated. 

2.1. Overview of Solar PV Array Faults 

The PV system can be affected by various defects and those in the PV utility 

grid, power conditioning unit, and array. The thesis specifically concentrates on the 

PV arrays that demonstrate voltage (I-V) characteristics vs. limited and non-linear 

current, setting them apart from conventional AC or DC power sources. As a result, 

PV array failures need to be carefully assessed and given further thought, according to 

Figure 1. 

 

 

 

 

 

 

 

 

 

Figure 1. Frequent failures in PV arrays (DC line) 

 

Solar PV arrays are prone to a variety of issues. This thesis assumes that the PV 

array is the only potential source of fault current due to the galvanic isolation typically 

provided by PV inverters between the PV arrays and utility grid. Ground and line-line 

faults pose the greatest risk for significant fault current flow among these faults (Alam 
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et al., 2015). Without appropriate fault detection, these faults can be the origin of 

dangerous DC arcs and maybe lead to fire threats in the PV array (Brooks, 2011). 

Furthermore, parallel or series DC arcs may develop because of one of these four fault 

classes (Yuventi, 2013), with series arcs resembling introduced variable resistance, 

making detection or extinguishing challenging (Spooner & Wilmot, 2008). 

2.2. Protection Gap of Conventional Solutions 

The National Electrical Code (NEC) specifies that traditional fault protection 

and detection relies on overcurrent protection devices (OCPD), ground-fault detection 

interrupters (GFDI), and Ground Fault Protection Devices (GFPD) (Association et al., 

1915). The fundamental capabilities and limitations of these protections are outlined 

below. 

2.2.1. Ground Fault Detection Interrupters 

GFDI or GFPD are widely used to interrupt and detect ground faults in PV arrays 

of grounded PV systems (J. C. Wiles, 2012). The PV system is called grounded when 

the negative conductors are deliberately grounded, as depicted in Figure 2. 

 

Figure 2. GFDI model in the grounded PV systems  (J. Wiles, 2008) 

 



 

11 

Table 1. Maximum permissible detection range for ground current (Association et al., 1915) 

 

All non-current-carrying conductive parts must be grounded, including conductor 

enclosures, equipment, and metallic module frames (Association et al., 1915; Zhao, 2011). 

In PV inverters, a tiny fuse (within range 1A) is often incorporated to measure the ground-

fault leakage current and diagnose ground faults (Inverters & Converters, 2010); the GFDI 

parameters must correspond to Table 1. in accordance with the standard UL 1741. 

As seen in Figure 2. Regardless of whether the ground fault is positive (indicated in red) 

or negative (indicated in blue), the ground-fault current within the closed fault route will always 

return through the GFDI. If the fault current is sufficient, the GFDI (for example, a fuse) will 

explode. The PV inverter will then turn off, de-energizing the Solar array until an open circuit 

is achieved. 

The described (Brooks, 2011) Bakersfield PV fire risks are believed to be generated by 

"blind zones" of GFDI, which have been discovered (Flicker & Johnson, 2013) in the condition 

of double-ground fault. Two successive ground faults occurred with the Bakersfield fire's twin 

ground fault. As seen in Figure 3. the original ground was situated between the ground and the 

negative conductor. The PV system masked the failure since the fault current stayed below the 

GFDI setting. 

DC power in KW 
Maximum permissible detection range for ground current 

(Amperes) 

0 – 25 1 

25 – 50 2 

50 – 100 3 

100 – 250 4 

 250 5 
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Figure 3. The primary hidden ground fault is: Relation between the equipment 

grounding conductor and a grounded current-carrying conductor (Brooks, 2011) 

 

As illustrated in Figure 4. the second ground fault occurred between the 

conductor responsible for carrying ungrounded current (i.e., the positive conductor) 

and the conductor responsible for grounding the device. The inverter's GFDI fuse 

quickly blew due to the massive ground-fault current that resulted from this. 

Regrettably, the primary and secondary fault sites impeded the fault path, enabling the 

large fault current to run continually for a prolonged duration. Owing to the fault 

current's high heat output and exceeding the conductors' current rating, the fault current 

caused fire danger and insulation failure. 
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Figure 4. The secondary hidden ground fault 

Relation between the equipment-grounding conductor  and ungrounded current-

carrying  conductor (Brooks, 2011) 

 

Double-ground faults, a potentially lethal fault situation, have also been 

implicated in other fire events, including the 2011 Mount Holly, North Carolina, solar 

PV fire (Association et al., 1915). The initial ground fault was not detected in this 

instance because the current level was much below the GFDI's rating. The subsequent 

second ground fault activated the GFDI. The ground faults could not be eliminated 

because the blocked channel permitted the continuous passage of ground-fault current. 

In the end, there was a fire. 

2.2.2. Devices for Overcurrent Protection 

The National Electrical Code (NEC) of the United States mandates the 

installation of overcurrent protection devices (OCPD) in series with each PV string 

(Association et al., 1915) to safeguard modules and cables from fault-induced 

overcurrent. Under standard test conditions, the OCPD's rated current must be at least 

156 percent of the PV modules rated short-circuit current (ISC) (Association et al., 

1915). It must also adhere to UL standard 2579 (Fuses—Part, 2010) and European IEC 
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standard 60269-6 (Fuses—Part, 2010). In accordance with IEC standard 60269-6 

(Fuses—Part, 2010), the non-fusing current (Inf) of PV fuses must be 1.13 In (at least 

1.76ISC). The precise comparison between the NEC, IEC and UL criteria for selecting 

PV fuses is shown in (Ziar et al., 2014). 

Moreover, as shown in Figure 5. the fuse has non-linear melting characteristics 

(Current vs. Time needed for melting fuse components). Often, a higher current than 

Inf implies a speedier melting process. For example, it may take several hours to melt 

a fuse if the current is slightly more than Inf. If the PV fault current remains below Inf, 

the fuse safety gap exists because it stops the fuse from blowing. 

 
 

(a) The fuse of Solar PV 

(Guide, 2014). 

(b) Relation between current  and time 

 

Figure 5. The curve of fuses shows melting time and current. 

 

Given that solar PV arrays is the sole source of fault current, characteristics such 

as maximum power point tracker (MPPT), low solar irradiance, high fault resistance, 

and small-mismatched fault site may significantly lower the amount of backed current 

into the faulty string (I back) (Zhao, De Palma, et al., 2012). Hence, the fuse protection 

gap may exist if the fault current maintains beyond Inf. 
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2.2.3. Summary 

OCPD and GFDI have a protection gap when specific fault situations occur 

within the PV array. Due to this, the flaw may not be adequately repaired, and it may 

continue undetected until the PV system fails. 

Many ways to close the protection gap created by traditional protection and fault 

detection systems were suggested. These fixes might rely on the isolation of 

transformers in PV inverters and the grounding of PV systems. Figure 6 shows several 

present classifications, fault detection, protection, and localization approaches to PV 

arrays that have been created to boost the reliability, safety, and efficiency of solar PV 

systems. The remainder of this chapter explores the advantages and disadvantages of 

each present choice for each category. 

 

 

Figure 6 .  General ideas for enhancing PV-system dependability and protection 

2.3. Current Solutions for Fault Detection Classification and Location 

The phrase "an indication that something is going wrong in the monitored 

system" defines fault detection (Gertler, 1998). Fault classification may automatically 

determine the fault type in addition to fault detection. Fault location can approximate 

the cable fault area to expedite system recovery and aid in the search for the problem. 

This makes fault detection, classification, and placement essential for tracking and 

identifying unanticipated issues in solar PV systems. A brief discussion and summary 

of existing options (Table 2.). 

 

 
Solar PV arrays 

Fault protection Fault location 

Fault 

classfication 
Fault detection 
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Table 2. Overview of current PV fault detection, classification, and location 

Fault 

Type 
Method 

Fault 

Detection 

Fault 

Classification 

Fault 

Location 
G

ro
u
n
d
 f

au
lt

s 

 
GFDI √ x x 

Insulation 
√ x x 

Resistance monitor 

RCD √ √ x 

TDR √ √ √ 

SSTDR √ √ √ 

I-V Curve Analysis √ x x 

Statistical Method √ x x 

L
in

e-
li

n
e 

fa
u
lt

s 

 

OCPD √ x x 

RCD √ x x 

TDR √ √ √ 

I-V Curve Analysis √ √ x 

Statistical Method √ x x 

Performance Comparison √ x x 

Capture Loss Analysis √ √ x 

Performance Ratio √ x x 

Machine Learning √ √ x 

O
p
en

–
ci

rc
u
it

 f
au

lt
s 

I-V Curve Analysis √ x x 

Performance Comparison √ √ x 

Performance Ratio √ x x 

Machine Learning √ √ x 

Machine Learning √ √ x 

M
is

m
at

c

h 
fa

u
lt

s I-V Curve Analysis √ x x 

Performance Comparison √ x x 
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Fault 

Type 
Method 

Fault 

Detection 

Fault 

Classification 

Fault 

Location 

Ir Thermography √ x √ 

Internal Series Resistance √ √ x 

Machine Learning √ √ x 

DC-Arc 

faults 

AFCI √ x x 

Machine Learning √ x x 

 

 

 

Graphic 1. The current-voltage curve shows PV characteristics. 

 

2.3.1. Quantitative – Model-Based Solutions 

2.3.1.1. Current – Voltage curve Analysis 

An I-V curve study can determine the effective points of a PV string, array, or 

module. As observed in Graphic 1, the I-V curve exposes crucial PV features. Hence, 

it is feasible to classify and identify PV issues using I-V characteristics, for example, 

decreased voltage, mismatch losses, shunt losses, series losses, and decreased current 

(Hernday, 2011). 
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2.3.1.2. Performance analysis of a PV system 

Energy may be lost due to PV system failures, fire risks, and safety concerns. In-

home PV systems in the UK, the energy lost due to failures has been examined and 

classified (Firth et al., 2010). It was determined that the yearly energy loss in PV 

systems due to faults might reach 18.9%. As a result, it is important to keep an eye on 

the performance of PV systems, create fault detection techniques, and research 

problem patterns. 

 

  

 

 

 

 

 

 

Figure 7. PV system performance analysis 

 

Performance comparison contrasts real-time operating PV performance with 

simulated performance (Drews et al., 2007; Stellbogen, 1993). Performance 

comparison has recently been suggested as a method for finding flaws. In general, it 

contrasts the performance achieved with what was anticipated. Simple: a fault may be 

indicated by a large disparity in output performance as measured and produced. As 

seen in Figure 7. the usual performance evaluation includes defect detection, 

performance comparison, predicted and measured PV performance, meteorological 

data such as temperature and sun irradiation, and expected PV performance as a 

baseline. 

Comparison and Fault 

Detection 

Solar Irradiance Temperature 

Expected PV 

Performance 

Actual PV 

Performance 
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Figure 8. PV fault detection system overview utilizing performance comparison 

(Drews et al., 2007) 

 

    To prevent energy and related cost losses in PV systems provides, as one example, 

an automated PV performance comparison that tracks the difference between 

anticipated and actual energy output in real-time (Drews et al., 2007), as shown in 

Figure 8. The simulation model is fed data from the defect detection system, which 

includes data on ambient temperature and solar irradiance obtained from satellites 

(Psim). It keeps track of the AC output power (P actual) and contrasts it with Psim in 

the interim. Continuous total blackout, snow cover, energy loss, and changing energy 

loss are the four main categories of faults. The drawback is that it responds slowly 

because it continuously analyses PV power, equivalent to energy yield. For instance, 

this fault detection technique might require at least a day. 

2.3.1.3. Performance Ratio (PR) 

References (Blaesser & Munro, 1993; Commission & others, 1998; Haeberlin & 

Beutler, 1995) propose using Performance Ratio (PR) as a normalized metric to 

evaluate the energy yield of a PV system and assess its performance. PR is suitable for 

fault detection as it considers the system losses, regardless of the inclination and 

orientation of the panel. It is regularly expressed as Equation 1, where the final yield 

(Yf) is divided by the reference yield (Yr). 
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𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑟𝑎𝑡𝑖𝑜 =  
𝑌𝑓

𝑌𝑟
    (1) 

Figure 9. This demonstrates the procedure for computing Yf and Yr in grid-

connected PV systems, where Yf represents the utility grid normalized AC energy 

output. 

 

Figure 9. Calculate Yr and Yf for PV systems connected to the grid 

 

It is described in Equation 2; in the given equation, E represents the AC power 

output, while P0 represents the nominal PV power. 

𝑌𝑓 = 
𝐸

𝑃
     (kWh/kW) or (hours)   (2) 

Yr stands for the normalized sun irradiation circumstances on the other side. It 

is described in Equation 3, where GSTC equals 1 kW/m2 and H represents the total solar 

irradiance in-plane in (kWh/m2). 

𝑌𝑟 = 
𝐻

𝐺𝑆𝑇𝐶
     (hours)     (3) 



 

21 

 

Graphic 2. 2001 performance ratio graphics for photovoltaic systems 

(Marion et al., 2005) 

 

PV system PR readings are typically reported monthly or annually (long-term). 

PR delivers improved short-term results, such as every day or every week, which can 

be employed in PV systems to detect defects. Under normal operating conditions, PR 

values for PV systems usually range between 0.65 and 0.8, as shown in Graphic 2. 

However, a much lower PR implies system defects or anomalies, such as partial 

shading, wrong system size, MPPT failures, inverter malfunctions, or PV array issues. 

The graph also demonstrates that shorter periods, such as daily, offer superior fault-

detection resolution and faster response times than monthly or weekly data (Haeberlin 

& Beutler, 1995). 

2.3.1.4. Analysis of Capture Loss  

To circumvent the shortcomings of PR as a metric (Chouder & Silvestre, 2010; 

Commission & others, 1998) established the idea of system capture loss (Lc) to identify 

system-level abnormalities better. Lc refers to the operating losses of the PV array and 

is defined in Equation 4, where YA represents the daily energy output per KW of the 

installed PV array, and Yr denotes the reference yield. In addition, Lc can be further 

subdivided into other capture loss (Lcm) and thermal capture loss (Lct), as illustrated in 

Equation 5. 

Lc = Yr − YA       (4)  
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Lc = Lct − Lcm       (5) 

The measured capture loss (Lcm) should stay within the theoretical boundary for 

a normal PV array. Using Equation 6, where σ represents the simulated capture losses 

Lc sim standard deviation of, faults can be identified. 

Lc sim − 2δ < Lc mes < Lc sim + 2δ    (6) 

 An approach for fault classification, which is an extension of (Chouder & 

Silvestre, 2010), was developed using power loss analysis. This approach relies on the 

variation between the observed and simulated parameters. 

 

2.3.2. Solutions Based on Process – History  

2.3.2.1. Statistical Methods  

Based on energy generation, statistical techniques are suggested to identify PV 

system anomalies (Vergura et al., 2009). Explicitly, inferential and descriptive 

statistics are used for the measured energy production of each PV plant subarray. The 

results of experiments demonstrate that one can be wired incorrectly out of 22 typical 

PV panels using the suggested method. 

Multivariate outlier rules have been presented to detect PV faults using the 

minimum covariance determinant (MCD) (Vergura et al., 2009). Specifically, the 

MCD is employed to compute the full distance (RD) based on multiple current and 

voltage measurements at different precise times for the PV modules. The fault 

detection criteria become simple: if the estimated RD exceeds a certain threshold, the 

PV module is at fault.  

2.3.2.2. Machine Learning 

Machine learning is a form of artificial intelligence that extracts information 

from a given PV data collection. Supervised learning techniques include a subset of 

machine learning. As seen in Figure 10, supervised learning techniques may make 

predictions by studying the system. This depends on a vast quantity of labeled data. In 

PV installations, numerous supervised learning models have been put forth. Artificial 

neural networks (ANN) have been created for monitoring PV health status (Riley & 
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Johnson, 2012), assessing PV performance under partial shade (Nguyen et al., 2009), 

and identifying short-circuit faults in PV arrays (Karatepe et al., 2011). The effects of 

soiling on massive PV arrays have been predicted using polynomial regression models 

and Bayesian Neural Network (BNN) (Pavan et al., 2013).  The K-nearest neighbor, 

support vector machine (SVM), and decision-tree model are employed for PV defect 

detection and classification (Zhao, Yang, et al., 2012). 

 

 

 

 

 

 

 

Figure 10. Supervised learning 

 

2.3.3. Solutions Based on Signal–Processing  

2.3.3.1. Dc Arc – Fault Circuit Interrupter 

The NEC 2014 Version (Association et al., 1915) specifies DC arc-fault circuit 

interrupters (AFCI) to cover the gaps in protection produced by conventional OCPD 

and GFDI. If GFDI and OCPD (Strobl & Meckler, 2010) do not remove the fault 

appropriately, a DC arc may arise in PV arrays. An electric arc is "an electrical 

breakdown of a gas that creates a continual plasma discharge, resulting from a current 

traveling through a normally nonconductive material such as air" (Yuventi, 2013). At 

the Northeastern University Power Electronics lab, a dc arc is generated using a dc arc 

generator and a photovoltaic (PV) simulator, as seen in Figure 11 (a). Figure 11 (b) 

displays the experimental configuration for the dc arc experiment. In the case of low-

power, arc current Iarc is 3A, and arc voltage is 30V dc. To guarantee that the dc arc 

continues uninterruptedly, the PV simulator continues operating close to the maximum 

power point (MPP) in the arc fault. When the current and voltage ratings grow in actual 

Testing the model 

Training the model 

A Large Amount of Labeled Data 
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PV fields, dc arcs may have a significantly greater amount of power, which might 

swiftly spark fire dangers. 

 

 

 

  

(a)         A dc arc generator creates a dc arc. 

 

(b) A diagram of an experimental dc arc setup. 

Figure 11. Northeastern university dc arc testing configuration 

 

A substantial quantity of AC noise will be produced in the dc arc, as seen in 

Graphic 3. which can be employed as a signature for defect detection. AFCI should 

identify and stop parallel and series arcing problems in dc PV sources and output 

circuits. The Fast Fourier Transform (FFT), The Discrete Wavelet Transform (DWT), 

and ANN have all been used to produce several dc-arc detection techniques. 
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Graphic 3. Frequency domain analysis for series vs. Normal dc-arc current. 
  

2.3.3.2. Insulation Resistance Monitor 

When a PV system is de-energized and not grounded, ground-fault protection is 

implemented via insulation resistance monitoring (Hernández & Vidal, 2009). The PV 

array's insulation resistance ranges from k to M (Ω), and when direct contact faults or 

insulation faults (such dangerous ground faults) happen, it dramatically drops. Hence, 

a ground fault can be recognized if the insulating resistance suddenly decreases. An 

insulation model for solar PV, parallel and series insulation resistance, PV working 

circumstances, and PV module leakage capacitance has been proposed (Hernández et 

al., 2010). Also, as PV module relative humidity (RH) or temperature rises, the 

experimental results demonstrate that a PV array's insulation resistance reduces.  

A commercially available insulation resistance monitor is displayed in Figure 12. For 

ground-fault detection, continuously measures positive-ground and negative-ground 

insulating resistance v(Momoh & Button, 2003). Both electrified and de-energized PV 

systems can employ this method. 
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Figure 12. Insulation resistance monitoring system (Marion et al., 2005) 
  

2.3.3.3. Residual Current Detector (RCD) 

n a power system, the residual current detector (RCD) functions as a differential 

relay by measuring the current difference between the protected zone's input and 

output terminals (refer to Figure 13). If the difference in current reaches a certain level, 

an alarm is triggered to signal a problem. Nevertheless, the use of transformerless PV 

inverters may lead to a significant leakage current due to the parasitic capacitance of 

the PV array. This could cause unnecessary RCD tripping (Blackburn & Domin, 

2015). 

In power systems, the optimum protection method for generators, motors, 

reactors and transformers has been known as differential protection for over 50 years 

(Blackburn & Domin, 2015). The protected area's electrical parameters, usually the 

current entering and exiting, are monitored by differential relays. 
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Figure 13. The development of fault-detecting differential relays (Blackburn & 

Domin, 2015) 

 

The main currents entering and exiting the protected zone are I1a and I1b, as 

illustrated in Figure 13. Moreover, I1a and I1b are the corresponding secondary 

currents. The operational current of the relay, iop = i1a − i1b, separates them. A fault 

alert will be transmitted if the amplitude of |iop| exceeds "0" or a minimum limit. 

A residual current monitoring unit (RCMU) or residual current detector (RCD) 

has been proposed for detecting defects in PV arrays, equivalent to the differential 

relay used throughout power systems, as shown in Figure 14. 

RCD#1 or #2 might be a single PV string or a full PV array, and they both 

monitor the total currents entering and leaving the protected area. A defect will be 

identified once |iop| exceeds each threshold. For instance, String 1 has a ground fault 

at location G1 with ground fault current Ig. i1a i1b and ipos /= ineg. RCDs #1 and #2 

will correctly identify the fault as well. 

The RCD protection method has a limitation known as a "blind spot" when the 

protected area is not in contact with an external fault point. This can occur due to 

degradations within the protected zones and open-circuit or short-circuit problems. In 

these circumstances, it should be equal to ineg, and ipos should be close to zero. 
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Figure 14. PV arrays employing RCD for  protection. 

 

2.3.3.4. Time Domain Reflectometry 

Time Domain Reflectometry (TDR) is a measuring technique that involves 

injecting specific waveforms, such as an impulse or step signals, and analyzing the 

waveforms that reflect to determine the characteristics of an electrical wire or cable. 

TDR compares the reflections produced by the standard or specified impedance to 

those produced by the unknown line environment. TDR can therefore be utilized to 

diagnose the problematic cables or wires. In a large electrical system, TDR is useful 

as it can detect and classify faults and pinpoint the issue with precision. 
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Figure 15. Diagram of the TDR layout in the PV region. (Schirone et al., 1994) 

 

Graphic 4. Input and reflected waves with cable (Takashima et al., 2006) 

The use of TDR for fault location in PV fields has been proposed in studies 

(Takashima et al., 2006, 2009). In Figure 15. the schematic diagram is displayed. 

An example of this can be seen in Graphic 4. which displays a step input into a 

PV string and its corresponding reflected waveform. Waveforms change based on 

conditions such as resistance load, open circuit fault, and short circuit fault. 
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Graphic 5. TDR on open/short circuit PV. 

 

Graphic 5. İllustrates the TDR outcomes for short-circuit and open-circuit 

defects in PV strings using a negative input step. The different TDR responses can be 

beneficial in accurately identifying the fault location. Nevertheless, TDR has 

numerous shortcomings. The test PV system should first be down to avoid affecting 

the energy yield. Second, it is less effective at autonomous defect detection since it 

needs human input to monitor and understand the reflected waveforms. 

2.3.3.5. Spread Spectrum Time Domain Reflectometry  

Spread spectrum time domain reflectometry (SSTDR), a commercially available 

alternative to TDR, has been suggested to find aero plane wiring issues (Smith et al., 

2005). SSTDR is an effective method for locating live wire faults due to its strong 

noise immunity and low-test signal levels. During ground-fault conditions, the 

autocorrelation peaks generated by SSTDR are significantly higher than the normal 

peaks, which is useful for detecting ground faults in PV systems. This justifies the 

defect detection algorithm put out in (Alam et al., 2013). SSTDR has yet to be 

suggested for locating or categorizing faults. 
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(a)     IR thermal image shows a hotspot on a PV module's back (Muñoz et al., 

2008) 

 

(b)      Camera for thermal imaging (Ancuta & Cepisca, 2011) 

Figure 16. PV array utilizing infrared (IR) thermography for fault detection. 

 

2.3.3.6. Infrared Thermography 

Infrared (IR) thermography was utilized to detect mismatch problems in PV 

systems, such as PV module hot spots (Figure 16). As reported in studies, these can be 

the source of power loss and irreparable damage to the modules (Ancuta & Cepisca, 

2011; Muñoz et al., 2008). While IR inspection is routine and periodic, it can be 

expensive if it necessitates more labor costs from PV maintenance staff throughout the 

modules' lifetime. 
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Figure 17. The one-diode model equivalent circuit 

 

2.3.3.7. Internal Series Resistance 

The frequently utilized one-diode model schematic design is represented in 

(Association et al., 1915) Figure 17. As reported, the circuit current equation is given 

by Equation 7.  

𝐼𝑝𝑣 = 𝐼𝐿 − 𝐼𝑆 [exp (
𝑉𝑝𝑣+𝐼𝑝𝑣𝑅𝑠

𝐴⋅𝑘⋅𝑇⋅𝑁𝑆
⋅ 𝑞 − 1)] −

𝑉𝑝𝑣+𝐼𝑝𝑣𝑅𝑠

𝑅𝑠ℎ
               (7) 

The PV module output current is represented by Ipv, while IL represents the 

light-generated current. IS represents the diode's saturation current, and Vpv is the 

module voltage. Rsh and Rs are equivalent shunt resistances and internal series, 

correspondingly. Additionally, q (1.38 10^-23 J/K) and k (1.38 10^-23 J/K) are the 

electron charge and Boltzmann constant, respectively. NS is the number of solar cells 

placed in series within the module, and T is the temperature in Kelvin of the PV 

module. Finally, A denotes the diode's ideal factor. 

The module's series resistance (Rs) can detect PV module degradation internally. 

Either measurement made near open-circuit voltage (Kunz & Wagner, 2004) or I-V 

curve analysis (Sera et al., 2008) can be used to estimate the real Rs. Degraded PV 

modules typically show higher Rs values than the standard, a helpful attribute for 

problem detection. 
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2.4. Solutions based on Existing Fault Protection 

To stop the defect and avoid damaging the PV components, fault protection 

devices can be activated by a fault signal once it has been identified. System protection 

aims to isolate any issues within a power system swiftly, minimizing the impact on the 

rest of the system and preserving its integrity, as reported in reference (Blackburn & 

Domin, 2015). "fault protection" and "fault clearing" can be used interchangeably to 

refer to this process. 

In PV applications, isolating any fault areas within the solar PV arrays is 

recommended to minimize their impact on the rest of the system. Table 3. provides an 

overview of the fault protection techniques currently used for PV arrays. Blocking 

diodes, GFDIs (ground-fault detecting interrupters), and OCPDs are passive 

approaches (Zhao, De Palma, et al., 2012). On the other hand, active solutions depend 

on semiconductor switches circuit breakers, or contactors, to isolate and de-energize 

the damaged PV components after using more sophisticated sensor circuitry to detect 

the problem (Luebke et al., 2016; Pozsgay, 2016; Schripsema, 2014). 

Table 3. An overview of current PV fault protection measures 

Protection 

type 
Method Cost Complexity Limitation 

 GFDI Low Low Blind spots 

Passive OCPD Low Low Blind spots 

 Blocking diode Low Low Low reliability 

 AFCI Medium Medium 

High-frequency 

interference from 

power condition 

units 

Active  
Contactor + 

protection relay 
Medium/high Medium 

Bulky and costly 

for high voltage 

application  

 

Semiconductor 

switch + protection 

relay 

Low / 

medium 
Medium 

PV – module 

level only 

Passive protection devices have clear limits. We have talked about the "blind 

spots" of OCPD and GFDI before. Blocking diodes can interfere with OCPD's proper 
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operation and are not a replacement for them (Zhao, De Palma, et al., 2012). Active 

fault prevention devices are advantageous to passive ones in increasing fault 

protection. However, they rely heavily on fault detection techniques. Hence, fault 

detection approaches that can send a precise and timely trigger signal to active 

protection systems remain crucial. 

An evaluation of the literature on current fault detection, localization, protection, 

and classification strategies for solar photovoltaic (PV) arrays is provided in this 

chapter (DC side). Also, the advantages and disadvantages of current techniques are 

investigated and contrasted. Methods for defect identification, classification, and 

location can generally be categorized into three groups: methods based on quantitative 

models, methods based on process histories, and methods based on signal processing. 

GFDI and OCPD are frequently employed in PV installations for fault protection and 

are mandated by the NEC. However, its flaws and restrictions have been found, which 

could result in the previously mentioned fire risks. 

Several approaches have been suggested utilizing different methodologies to 

deal with this issue. However, drawbacks can reduce their usefulness in practical PV 

applications. Therefore, better fault detection techniques are urgently needed to protect 

PV systems from the risks associated with faults. 

2.5.     Support Vector Machine (SVR) 

The supervised learning algorithm, Support Vector Machines (SVMs), can be 

applied to classification or regression applications. They operate by doing regression 

with the least error or by locating the hyperplane in a high-dimensional space that 

maximum separates various classes. When the number of features is substantially 

higher than the number of samples and the data is noise-free or has minimal noise, 

SVMs are extremely helpful. They work best when the classes are well-separated and 

in high-dimensional spaces. SVMs can be employed with various kernel functions, 

which enables them to adapt to complex non-linear relationships in the data. This is 

one advantage of SVMs. The "kernel technique," which enables them to operate in a 

higher-dimensional training dataset without explicitly computing the coordinates of 

the data in that space, may also be used to manage high-dimensional data. 
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Vapnik and his colleagues presented the support vector regression (SVR) 

method (Deif, Solyman, et al., 2021), and the development route was established by 

expanding the SVM classification algorithm (Hammam et al., 2022). As a supervised 

machine learning technology, SVR permits the prediction of continuous real-valued 

variables and is a machine learning regression technique for regression analysis (Deif, 

Hammam, Solyman, et al., 2021).  

2.6. Support Vector Machine regression  

In the support vector machine method, the model is first trained using a sample 

data set and then used to make predictions. Let the sample data be (xi, yi), where i =

1, 2,… , n. Here, xi represents the input factor that influences the value of the cyber 

safety situation, and yi represents the predicted situation value. The regression function 

can be expressed as (Deif & Hammam, 2020): 

𝑦𝑖 = 𝜔 ⋅ 𝒙𝒊 + 𝑏     (8) 

The formula includes the weighting matrix 𝜔, the input vector xi, the biasing 

direction 𝑏 and the predicted regression value 𝑦𝑖. It also utilizes an 𝜀 -insensitive loss 

function. 

|𝑦 − 𝑦𝑖|𝜀 = {
0, |𝑦 − 𝑦𝑖| ≤ 𝜀
|𝑦 − 𝑦𝑖| − 𝜀,  other 

  (9) 

If it is acceptable for the fitting error to pass 𝜀, Equation (8) can be modified by 

introducing a relaxation factor, resulting in the following constraint: 

𝑚𝑖𝑛
1

2
=∥ 𝝎 ∥2+ 𝐶 ∑  𝑛

𝑖=1   (𝜉𝑖 + 𝜉𝑖
∗)

 s.t.  𝑦𝑖 − 𝝎 ⋅ 𝒙𝑖 − 𝑏 ≤ 𝜀 + 𝜉𝑖
∗

𝝎 ⋅ 𝒙𝑖 + 𝑏 − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖

𝜉𝑖, 𝜉𝑖
∗ ≥ 0, 𝑖 = 1,2…… , 𝑛

   (10) 

Where C is the penalty factor, and 𝜉𝑖 and 𝜉𝑖
∗are relaxation variables. By taking 

the derivative of the optimization problem specified in Equation 10, we can obtain the 

dual problem, as shown below: 
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𝑚𝑖𝑛 𝑊(𝛼, 𝛼∗) = −𝜀 ∑  𝑙
𝑖=1   (𝛼𝑖

∗ + 𝛼𝑖) + ∑  𝑙
𝑖=1  𝑦𝑖(𝛼𝑖

∗ − 𝛼𝑖)

−
1

2
∑  𝑙

𝑖,𝑗=1   (𝛼𝑖
∗ − 𝛼𝑖)(𝛼𝑗

∗ − 𝛼𝑗)𝐾(𝑥𝑖 , 𝑥𝑗)

 s.t.  ∑  𝑙
𝑖=1  𝛼𝑖

∗ = ∑  𝑙
𝑖=1  𝛼𝑖

0 ≤ 𝛼𝑖
∗ ≤ 𝐶, 0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 = 1,2… 𝑙

    (11) 

where K(𝒙𝒊, 𝒙𝑗)  is the kernel function, and 𝛼𝑖, 𝛼𝑖
∗ are Lagrange multipliers. The 

regression function that results is: 

𝑦𝑖 = ∑  𝑛
𝑖=1 (𝛼𝑖

∗ − 𝛼𝑖)𝐾(𝑥𝑖, 𝑥𝑗) + 𝑏     (12) 

 

2.7. Support Vector Machine classification (SVM_C) 

A brief overview of SVM classification will be provided in this section. SVMs 

are primarily used as binary classifiers, which means they can distinguish between two 

classes. Based on statistical learning theory, the primary objective of SVM 

classification is to identify a hyperplane that efficiently divides the positive (+1) and 

negative (-1) classes. 

Consider the process of segregating (𝒙𝑖, 𝑦𝑖)  training data., where 𝑖 = 1,2, … ,𝑚, 

into two classes. The feature vector 𝒙𝑖 belongs to the space R𝑛and has n dimensions; 

during the class label 𝑦𝑖belongs to the set ∈ {+1,−1}. The generalized linear SVM 

aims to identify the best hyperplane for separating classes., 𝑓(𝒙) = ⟨𝒘 × 𝒙 > +𝑏, by 

solving the following optimization equation: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑤,𝑏

1

2
∥ 𝑤 ∥2   subject to 𝑦𝑖(𝑤 ⋅ 𝑥𝑖 + 𝑏) − 1 ≥ 0  (13) 

 

SVMs aim to find the hyperplane in a high–dimensional space that maximally 

separates the positive and negative examples by solving an optimization problem with 

constraints. The orientation of the hyperplane is determined by the weight vector 𝒘, 

and the distance of the hyperplane from the origin is determined by the bias term 𝑏. 

The optimum values for 𝑏 and 𝒘 can be calculated by minimizing the magnitude of 𝒘 

subject to the constraint that the distance between the hyperplane and the nearest 

examples is greater than or equal to some value (the margin). This constraint is 
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enforced using the Lagrange multipliers 𝜆𝑖(𝑖 = 1,2,⋯ ,𝑚), where m is the number of 

examples. The generated hyperplane has the fewest possible training mistakes. 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛 (∑  𝑚
𝑖=1  𝑦𝑖𝜆𝑖 < 𝑥𝑖 × 𝑥 > +𝑏∗)    (14) 

sign (.) denotes a function and those 𝒙𝑖 vectors for which 𝜆𝑖 > 0  are known as 

support vectors.  

When it is not possible to define the hyperplane using linear equations, the data 

𝒙 can be  

Linear, polynomial, radial basis function (RBF), and sigmoid kernel functions 

are the most often utilized. One is the RBF, commonly employed in SVM 

classification due to its remarkable nonlinear performance. The RBF equation is the 

following: 

𝑘(𝒙𝑖, 𝒙𝑗) = 𝑒𝑥𝑝 (−
∥∥𝒙𝑖−𝒙𝑗∥∥

2

𝜎2 )           (15) 

By incorporating the kernel function, the nonlinear SVM classifier might take 

the following forms: 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛 (∑  𝑚
𝑖=1  𝑦𝑖𝜆𝑖𝑘(𝒙, 𝒙𝑖) + 𝑏)    (16) 

 

2.8. Grey Wolf Optimizer (GWO) 

The Grey Wolf Optimization (GWO) algorithm, a new meta-heuristic group 

intelligence optimization technique, was presented by Mirjalili et al. in 2014 (Deif et 

al., 2022; Deif, Hammam, Ahmed et al., 2021; Hammam et al., 2022). The meta-

heuristic optimization technique known as Grey Wolf Optimization (GWO) was 

influenced by hunting strategy and the natural leadership structure of grey 

wolves(Zamfirache et al., 2022). The algorithm resembles the wolf pack's leadership 

structure, in which the alpha wolves take the lead, the beta wolves assist, and the delta 

wolves search for food. Each wolf in the pack is assigned a position and is rewarded 

based on their performance. GWO is based on these principles and uses a population 

of candidate solutions, called wolves, to search for the optimal solution. The wolves 

are assigned different positions in a pack, and their reward is based on their position 
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in the hierarchy. The GWO algorithm solves optimization problems with many 

variables and complex constraints. It is a fast, reliable, and efficient optimization 

algorithm that can be applied to various optimization problems. 

This method optimizes the search by simulating the predatory behavior of gray 

wolves, which includes tracking, encirclement, chase, and assault. It has a rigid social 

structure where the top three wolves are regarded as the best, and the bottom three are 

referred to as 𝜔. These wolves are positioned around the best wolves (𝛼, 𝛽, and 𝛿). 

Further definitions related to the GWO algorithm are provided below. 

1. The distance between a gray wolf and its prey is given by: 

𝐷⃗⃗ = |𝐶 ⋅ 𝑋 𝑞(𝑡) − 𝑋 (𝑡)|      (17) 

The location vector of the quarry is represented by 𝑋 𝑞, while 𝑋  represents the 

location vector of the gray wolf. The current number of iterations is denoted by t, and 

𝐶  is defined as 2 times 𝑟 1. Here, 𝑟1 is a random number that ranges between 0 and 1. 

At iteration t, 𝐶  is set to 2 ⋅ 𝑟 1 and 𝑋 𝑞 characterizes the prey location vector while 

𝑋  is the gray wolf location vector, where 𝑟1is a random number between 0 - 1. 

2. Location Update of the Gray Wolf: 

𝑋 (𝑡 + 1) = 𝑋 𝑞(𝑡) − 𝐴 ⋅ 𝐷⃗⃗           (18) 

The equation 𝐴 = 2𝑎 ⋅ 𝑟 2 − 𝑎 , 𝑎  includes the convergence gene, denoted by"𝑎 ," 

which varies between 2 and 0, and the variable."𝑟 2," which is a random number 

between 0 and 1. 

3. Prey position positioning: 

𝐷⃗⃗ 𝛼 = |𝐶 1 ⋅ 𝑋 𝛼 − 𝑋 |, 𝐷⃗⃗ 𝛽 = |𝐶 2 ⋅ 𝑋 𝛽 − 𝑋 |, 𝐷⃗⃗ 𝛿 = |𝐶 3 ⋅ 𝑋 𝛿 − 𝑋 | (19) 

 

𝑋 1 = 𝑋 𝛼 − 𝐴 1 ⋅ (𝐷⃗⃗ 𝛼), 𝑋 2 = 𝑋 𝛽 − 𝐴 2 ⋅ (𝐷⃗⃗ 𝛽), 𝑋 3 = 𝑋 𝛿 − 𝐴 3 ⋅ (𝐷⃗⃗ 𝛿)  (20) 

𝑋 (𝑡 + 1) =
𝑋⃗ 1+𝑋⃗ 2+𝑋⃗ 3

3

              (21)  
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The locations of 𝛼, 𝛽, and 𝛿 are represented by 𝑋 𝛼, 𝑋 𝛽, and 𝑋 𝛿, respectively. 

𝐶 1, 𝐶 2, and 𝐶 3are random vectors, and 𝑋  is the current solution location. 

The principal phases of the Grey Wolf optimizing algorithm are as follows: 

 

  

Phase 1 : Set the values for the grey wolf population's a, A, C, 𝑋 𝛼, 𝑋 𝛽 , 𝑋 𝛿, and 

𝑋 𝛿 parameters to initialize the process. 

Phase 2 : Compute the fitness values of every individual. 

Phase 3 : Compare the fitness values of intelligent individuals with the fitness 

values of 𝑋 𝛼, 𝑋 𝛽 and 𝑋 𝛿 to identify the current optimal solution and 

the suboptimal solution. 

Phase 4 : Compute the values of a, A, and C. 

Phase 5 : Update the current position of each intelligent individual according 

to equation (27). 

Phase 6 : If the termination condition (maximum number of ıterations) is met, 

it will go back to Phase 2, otherwise, it will terminate. 
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CHAPTER THREE 

DATA EXPLORATION AND PREPARATION 

This chapter discusses the steps involved in data gathering, exploration, pre-

processing, and finally, the correlation analysis between the features. Pre-processing 

is the initial and most crucial step in working with machine learning algorithms. We 

first discuss merging the datasets, cleaning them up, visualizing them, and then 

investigating the correlation. The chapter is divided into sections. 

3.1. Data acquisition 

The used data were gathered over 34 days with intervals of 15 minutes at two 

solar power plants in India (plant one is close to Gandikotta, Andhra, and plant two is 

close to Nasik, Maharashtra). To measure the generation rate, each plant has 22 

inverter sensors connected to the inverter and the plant levels (an internal factor that 

can cause anomalies). The inverter measures the meteorological measurements at the 

plant level (they represent the external factors that can cause anomalies). The 

information is available, licensed, and accessible (Kannal, 2020). Table 4. displays the 

dataset's characteristics. 

Table 4. The Study's Variables and Their Description 

Variable type Variable name Variable Abbreviation (unit) Variable Description 

In
te

rn
al

 f
ac

to
r DC power Power _DC (kW) 

Amount of DC power 

generated by the inverter 

AC power Power _AC (kW) 
Amount of AC power 

generated by the inverter 

Total yield Total _Power _DC (kw) 

The summation of all the 

DC power that is generated 

from the inverter in time. 

E
x

te
rn

al
 f

ac
to

rs
 

Solar irradiance IRR (𝑘𝑊/𝑚2) 

The amount of 

electromagnetic radiation 

received from the sun per 

unit area 

Ambient 

temperature 
Amb_Temp (C°) 

The ambient temperature at 

the solar power plant 

Solar panel 

temperature 
Module_Temp (C°) 

The temperature that 

measured by attaching the 

sensor to the solar panel. 

This is the temperature 

indication for that module. 
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As we can see in Table 5, there are 22 distinct inverters with between 3104 and 

3155 readings. Prediction models may have trouble due to this difference. Hence it 

should be considered. The largest discrepancy of 51 entries translates to a difference 

of roughly 13 hours because one item corresponds to a 15-minute measurement. 

 

Table 5. Measurements Number of Each Inverter  

Inverter ID Number of Measurements 

bvBOhCH3iADSZry 3155 

1BY6WEcLGh8j5v7 3154 

VHMLBKoKgIrUVDU 3133 

7JYdWkrLSPkdwr4 3133 

ZnxXDlPa8U1GXgE 3130 

ih0vzX44oOqAx2f 3130 

wCURE6d3bPkepu2 3126 

z9Y9gH1T5YWrNuG 3126 

uHbuxQJl8lW7ozc 3125 

pkci93gMrogZuBj 3125 

iCRJl6heRkivqQ3 3125 

sjndEbLyjtCKgGv 3124 

zVJPv84UY57bAof 3124 

McdE0feGgRqW7Ca 3124 

rGa61gmuvPhdLxV 3124 

ZoEaEvLYb1n2sOq 3123 

adLQvlD726eNBSB 3119 

1IF53ai7Xc0U56Y 3119 

zBIq5rxdHJRwDNY 3119 

3PZuoBAID5Wc2HD 3118 
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WRmjgnKYAwPKWDb 3118 

YxYtjZvoooNbGkE 3104 

 

3.2. Data Preprocessing 

Data were cleaned to eliminate anomalies, unnecessary information, and 

incomplete data. Data transformation was done to improve insights and produce 

positive results. CSV (Comma Separated Value) files are used to store the data. 

MinMaScaler is used to normalize the data before the features are examined. We 

combined the two datasets to create one dataset, which was then used to analyze the 

distribution and correlations after first cleaning and to prepare the data to eliminate 

null values and 110 unnecessary segments. 

 

3.3. Solar power plant analysis 

In order to determine whether there is any statistical difference in the power 

generation between the two plants, a study of two solar power plants in separate parts 

of India was conducted. This statistical study will determine which solar power plant 

is more effective at converting energy. Forecasting the weather and estimating power 

for the foreseeable future can be done using survey data from two solar power 

facilities. 

 

3.3.1. Descriptive analysis of solar power plant – 1  

Using Minitab software, statistical analysis is carried out. Minitab is free 

software that can be used for statistical analysis. The classical and Bayesian forms of 

Kovari's data analysis are straightforward. 

According to Table 6, the average DC power produced by Solar Panel – 1 over 

all days and hours is 3147.43 W, but the average AC power produced by the Inverter 

is 307.803 W. 

However, this is not the actual average power produced during the day Equation 

22, as given below, is used to calculate the real average power of a day. 
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The actual average power of a day =  
Total power

no.of days
    (22) 

The following values are obtained by replacing the parameter values in Equation 

22 and solving the following: 

Actual average DC power =
2.165×108

34
= 6.35 × 106 W 

Actual average AC power =
2.117×107

34
= 6.23 × 105 W. 

This demonstrates that the average DC power is higher than the average AC 

power, indicating that the inverter's power conversion has the maximum loss and is 

the least effective. 

Table 6. Statical analysis of solar power plant production (Plant – 1) 

 DC – Power  AC – Power  

Valid Value 68778 68778 

Missing Value 0 0 

Mean 3147.426 307.803 

Median 429 41.494 

St. Deviation 4036.457 394.396 

Minimum Value 0 0 

Maximum Value 14471.13 1410.95 

 

Table 7. analyses the weather conditions for solar power plant – 1. 

The average ambient temperature these days has been 20 C° and 35 C°, 

respectively 18 C° and 65 C° are the minimum and maximum module temperatures. 

Average irradiation of each day =
 Total irradiation 

 no.of days 
=

726.5

34
= 21.36kWh/m2 
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Table 7. Statical analysis of solar power plant production (Plant – 2) 

 Ambient – Temp. Module – Temp.  Irradiatıon 

Valid Value 3182 3182 3182 

Missing Value 0 0 0 

Mean 25.532 31.091 0.228 

Median 24.614 24.618 0.025 

St. Deviation 3.355 12.261 0.301 

Minimum Value 20.399 18.14 0 

Maximum Value 35.252 65.546 1.222 

 

The relationship between ambient temperature, module temperature, and 

irradiation is shown in Table 8. They are positively connected, as indicated by lower 

positive diagonal elements. The module temperature and irradiation are strongly 

connected, as indicated by the correlation coefficient of 0.962. A correlation value of 

0.8 demonstrates the strong correlation between module temperature and ambient 

temperature, demonstrating the dependence of module temperature on ambient 

temperature. The p-value is less than 0.001, indicating that there is a chance that the 

probability of one out of 1,000 is incorrect. 

 

Table 8. Correlation between irradiation, module temperature, and the ambient 

temperature 

 Ambient – Temp. Module – Temp.  Irradiatıo 

Ambient_Temp 1   

Module_Temp 0.854 1  

Irradiatıon 0.723 0.962 1 
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3.3.2. Descriptive Analysis of Solar Power Plant – 2  

Table 9. reveals that the average DC power production from Solar Panel – 2. 

overall days and hours is 246.702 W, while the average AC power output from the 

Inverter is 241.278 W. Despite what I said, this is not the day's average power equation 

can be used to determine the real daily average power (1). 

Actual average DC power =
1.67×107

34
= 4.9 × 105 W  

Actual average AC power =
1.63×107

34
= 4.79 × 105 W 

       This demonstrates that the average DC and AC power are equal, indicating that 

the inverter operates with 99 % efficiency and little loss during power conversion. 

 

Table 9. Analysis of generation of solar power plant – 2 
 

 DC power AC power 

Valid value 67698 67698 

Missing value 0 0 

Mean 246.702 241.278 

Median 0 0 

St. Deviation 370.57 362.112 

Minimum value 0 0 

Maximum value 1420.933 1385.42 
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Table 10. Analysis of weather conditions of solar power plant – 2 

 Ambient – Temp. Module – Temp.  Irradiation 

Valid value 3259 3259 3259 

Missing value 0 0 0 

Mean 28.069 32.772 0.233 

Median 26.981 27.535 0.019 

Std. Deviation 4.062 11.344 0.313 

Minimum value 20.942 20.265 0 

Maximum value 39.182 66.636 1.099 

 

The average ambient temperature throughout these days has been 21 C° and 39 

C°, respectively. According to Table 10. the minimum and maximum module 

temperatures are 20 C° and 67 C°, respectively. 

Average irradiation of each day =
 Total irradiation 

 no.of days 
=

758.5

34
= 22.3kWh/m2 

The solar power plant – 2's weather analysis has the same solar power plant-1's 

Pearson correlation. Irradiation and module temperature have strong relationships with 

each other and with ambient temperature. 

3.3.3. Outliers Analysis  

The following insight can be seen in Graphic 6:  

 Outliers in Power-Irradiation indicate failure of the panel lines. If there 

is enough sunlight, but no power is generated, this points to faulty 

photovoltaic cells. 

 Outliers in DC-AC conversion indicate failure at the inverter. If DC 

power is delivered, but less AC power is generated than expected, the 

inverter may malfunction. 
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It can use these outliers for equipment fault and maintenance detection. 

 

Graphic 6. Scatter Matrix of Features 

 

In addition, If we look closely at TOTAL_YIELD vs. SENSOR_NUM from the 

previous graphic, we see two groups of inverters. One group starts with a higher total 

yield than the other one. This is most likely because this group was installed earlier 

than the others. 

 

3.3.4. Temperature analysis  

 

Graphic 7. Daily module ambient temperature 
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As shown in Graphic 7. the ambient temperatures range from 20 to 35 C°, and 

modules reach temperatures from 18 to 65 C°. Modules reach significantly higher 

temperatures than their ambient air during the daytime. The ambient temperature is 

lagging behind the daily module cooldown. This means the modules cool down 

quicker than their environment. 

 

Graphic 8. Relation between AC power, ambient temperature, and irradiation 
 

In Graphic 8. A clear positive relation between Irradiance and AC_power can be 

observed as predicted by the physics model. However, the relation is unclear because 

it also depends on irradiation. 

3.3.5. Irradiation analysis  

The irradiation status of Plants – 1 and 2 is depicted in Graphics 9 and 10, 

respectively. According to both graphical representations, Plant – 1 received a 

maximum of 0.34 W/m2, and Plant – 2 received a minimum of 0.12 W/m2. 

Even though there is not much difference in the daily radiation for the two plants, 

Plant 1 received more radiation for a month than the other two. With this information 
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about the irradiation status of both plants, we recommend increasing Plant – 2's 

irradiation. 

 

Graphic 9. Status of Plant – 1's Weather Sensor's Radiation 

 

Graphic 10. Status of Plant – 2's Weather Sensor's Radiation 
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Graphic 11. Daily Yield and AC – DC Power during Day hours 
 

The daily yield is shown in Graphic 11. According to the figure's forest, the 

maximum daily yield was 195000 kW, and the lowest was 120000 kW. Graphic 11. 

İn above graph details (AC and DC power during the day). If we closely examine 

the AC and DC power hours, we can conclude that the hours from 06:33:20 am to 

04:40 pm are when we receive most of the DC power. Around 11:06:40 am, we 

received a maximum of 30000 kW of DC electricity. Since it is a solar power plant, 
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most power is generated during daylight. However, AC power is significantly less than 

DC power. 

We could not survive without direct current (DC) power because many modern 

electrical and electronic devices rely on it for smooth operation and maybe even 

voltage. Neither type of power is "better" than the other; both are required. In actuality, 

alternating current (AC) dominates the electrical industry; all power outlets function 

flawlessly with AC-powered equipment, even if the current must be quickly changed 

to direct current (DC). This appears because DC cannot carry power from power plants 

to buildings over the same long distances as AC. Generating AC is also considerably 

simpler than DC due to how generators turn. 

 

3.4. Identification of Faulty and Deficient Equipment 

  We need to locate real DC power to identify inadequate or flawed machinery. 

Graphic 12.  displays the percentage of DC power transformed into AC power. Actual 

DC power and Mean DC power are shown in Graphic 13. The Actual power ranges 

from 9.765 to 9.794 %, and the mean power is 9.780 %. 

 

Graphic 12. Percentage of DC Power converted into AC Power 
 

However, it still needs to provide us with precise information that would allow 

us to research good equipment further. Since we cannot see what is wrong with our 

power plant, let us look at how various inverters operate during the day. This brought 

us to the following graphical display, which provides details regarding DC power 

throughout the day from all sources. 
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Graphic 13. DC Power throughout a day from all the Sources 
 

In both plants, there are numerous sources of various sorts. There are roughly 

68,778 sources in one plant. Therefore, in the following section, I again focused on 

this query. I looked into the plant's initial and last sources to determine which was 

ineffective. If we successfully identify the inefficient source, we may determine the 

plant's overall efficiency and what other elements are causing the underperforming 

equipment. 
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Graphic 14. DC Power for First 10 and Last 10 Sources 
 

Compared to other inverters, Graphic 14's first and last sources, 

1BY6WEcLGh8j5v7 & bvBOhCH3iADSZry, show deficiencies; it is possible that 

these inverters need to be repaired or replaced. However, before we go into the 

specifics of inefficient inverters, let us look at some general plant problems. To do this, 

let us examine DC power generation over all 34 days. 
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CHAPTER FOUR 

METHODS AND RESULTS 

This chapter discusses the specific methods used for our anomaly detection 

model. Three  approaches are used in this research for anomaly detection in solar 

power plants. The first approach uses the physical model, while the hybrid 

GWO_SVM regression model is used in the second approach. The third approach 

investigates the  hybrid GWO_SVM classification  model 

4.1. Materials  

Data from solar power plants in India (Near Gandikota, Andhra Pradesh) was 

gathered over 34 days with 15-minute intervals. Twenty – two inverter sensors were 

connected to both inverters and plants to monitor the generation rate (the internal factor 

that may lead to anomalies). The inverters monitored meteorological conditions at the 

plant level (external factor that can produce anomalies). 

This data is publicly available, licensed, and accessible in accordance with 

(Kannal, 2020). The Variables used in this study are described in table 11 below. 

 

Table 11. Description of Variables Used in this Study 

Variable type Variable name 
Variable Abbreviation 

(unit) 
Variable Description 

Internal 

factor 

DC power Power _DC (KW) 

The quantity of DC 

power produced by the 

inverter 

AC power Power _AC (KW) 

Amount of AC power 

produced by the 

inverter 

Total yield Total _Power _DC (KW) 

The total DC power 

output from the inverter 

over a period of time. 
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External 

factors 

Solar irradiance IRR (KW /𝑚2) 

The intensity of the 

electromagnetic 

radiation emitted by the 

sun per unit area 

Ambient 

temperature 
Amb_Temp (C°) 

The temperature 

around the solar power 

plant 

Solar panel 

temperature 
Module_Temp (C°) 

The temperature 

indication for the solar 

module is measured by 

attaching a sensor to 

the panel. 
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4.2. Methodology 

This research investigates three different approaches for detecting anomalies in 

solar power facilities. The first methodology is based on a physical model, the second 

on a hybrid GWO SVM regression model, and the third on a hybrid GWO SVM 

classification model. The overall process is represented in Figure 18. and involves the 

following steps: data preparation, feature selection, prediction phase, and performance 

evaluation. These are explained in more detail in the subsequent sections. 

Anomaly Detection

SVM Regression 

model 

SVM Classification  

model 

Evaluate models performance 

Dataset

Data exploration and split dataset into Train and Test Sets

All  inverter 

measures
Irradiation

DC powers

Threshold conditions 

Choose the best 

hyper parameters 

(C, g)

Grey wolf 

optimizerPhysical 

model

Physical 

characteristics 

of solar panels

Dataset

 preparation

Features 

selection 

Prediction 

Performance 

evaluation 
 

Figure 18. Overall methodology steps 
 

4.2.1. Data preparation 

The main dataset was preprocessed by combining the power generation and 

weather data into a single dataset, removing any measures with missing values, and 

looking at the scale of the variables. Then, 80 % of the dataset was randomly picked 

to train the prediction model, and the other 20 % was used to test the model's accuracy. 
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4.2.2. Features selection  

The primary goal of feature selection is to improve the performance of a 

predictive model by utilizing only pertinent data and diminishing the computational 

cost of modeling by decreasing the input variable to be modeled. Spearman's rank 

correlation (𝜌)  was utilized to quantify the correlation rank between variables using 

the following equation: 

𝜌 = 1 −
6∑  𝑑𝑖

2

𝑛(𝑛2−1)
      (23) 

Where 𝑑𝑖
2 is the difference between the two ranks of each observation, and 𝑛 is 

the number of observations.  

4.2.3. Prediction phase  

4.2.3.1. Physical model 

According to Hooda et al. (2018), the non-linear equation can be used to model 

the Power DC output of a photovoltaic cell. 

𝑃(𝑡) = 𝑎 ∗ 𝐸(𝑡)(1 − 𝑏 ∗ (𝑇(𝑡) + (𝐸(𝑡)/800) ∗ (𝑐 − 20) − 25) − 𝑑 ∗ ln (𝐸(𝑡)))  (24) 

Where 𝑃(𝑡) is Power DC, 𝐸(𝑡) is irradiance, Temperature 𝑇(𝑡) and coefficients 

a, b, c, d (Rahman et al., 2021). 

4.2.3.2. GWO-SVM classification / Regression  Model 

GWO and SVM were combined to create GWO-SVM C and GWO-SVM R, 

which were used to predict Power_DC. While support vector regression models 

usually perform well in modeling linear and nonlinear relationships, SVR accuracy 

depends on the proper selection of parameters C (penalty term) and g (kernel width). 

These two factors are known to have a vast range of variations and significantly 

influence the accuracy of SVR. As there is no set procedure for choosing these values, 

finding the right parameters can be computationally demanding and can be seen as an 

optimization problem. To tackle this problem, we have used the hybrid optimization 

technique GWO. The GWO method optimizes the SVM regression prediction 

procedure by doing the following:  
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Step 1 : Determine the dependent and independent variables based on the 

model's presumptions, then provide data for the SVM training and 

test sets. 

Step 2 : While determining the input parameters for the GWO algorithm (the 

values of a, A, and C), initializing the scopes of parameters c and g; 

Step 3 : Each intelligent individual location carrier must have the letters c 

and g to initialize the gray wolf population; 

Step 4 : Determine each gray wolf's fitness value by learning the training set's 

data using the SVM's initial c and g values. 

Step 5 : The fitness value divides the gray wolf group into four unique levels: 

a, b, d, and x. 

Step 6 : Update each gray wolf's location in accordance with the algorithm 

(12). 

Step 7 : The GWO algorithm then modifies each intelligent person's position 

in accordance with the fitness value, keeping the location with the 

highest fitness value; 

Step 8 : Model training is complete, and the ideal value of C and g is 

generated when the iteration times reach Max iteration (the 

maximum number of iterations); 

Step 9 : The SVM regression forecasting model is built using the best c and 

g, and its performance is assessed and predicted using the test data 

set that was previously partitioned. The algorithm design step's 

flowchart is shown in Figure 19. and is based on choosing the best 

SVM parameters, c, and g, using the grey wolf approach, as 

described in the section above. 
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start

Initialize the gray wolf

population, values of

 a, A, and C

Calculation of the fitness of the

grey wolf

Calculate Xα Xβ and Xδ   

Update the position for

each agent

Update a, A, and C

Calculate fitness of the update

each location

Update Xα Xβ and Xδ   

Optimized parameters

Xα (c,g)

SVM prediction

Output results

End

Satisfy the algorithm

stop condition

 

Figure 19. The proposed architecture of GWO optimizer with SVR 

 

4.2.4. Anomaly prediction decision for models  

If the value of P(t) derived from the GWO-SVM R and Physical models is over 

the threshold, it indicates that the inverter is functioning normally; however, if the 

value is below the threshold, it means that the inverter has failed. The GWO-SVM C 

model further distinguishes the two categories, classifying solar panels into three 

categories (Normal, Defective, and Marginal) based on the P(t) value. 
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𝑃(𝑡) = {
𝑁𝑜𝑟𝑚𝑎𝑙, 𝑃(𝑡) ≥ 𝜃

𝐹𝑎𝑢𝑙𝑡 , 𝑃(𝑡) < 𝜃
      (25) 

In our experiment, we tested a range of threshold levels. The optimal limit was 

215 kW.  

4.2.5. performance evaluation 

The effectiveness of the Physical and GWO-SVM R models developed in this 

article is evaluated using Root Mean Square Error (MSE) metrics. 

𝑅𝑀𝑆𝐸  = √
1

𝑛
∑  𝑛

𝑖=1   (𝑦𝑖 − 𝑥𝑖)2
     (26) 

In the formula, 𝑦𝑖 is the actual situation value, 𝑥𝑖 is the forecasted value, and n 

is the predicted sample size. 

While the formulas (Eq. 27, 28, and 29) are used to calculate the classification 

accuracy of the GWO-SVM_C model.  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100%     (27) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑡𝑦 =  
𝑇𝑁

𝐹𝑃+𝑇𝑁
× 100%      (28) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
× 100%     (29) 

 

The digits TP (True Positive) and TN (True Negative) represent the number of 

correctly identified Normal/Fault states of the inverter, while FN (False Negative) and 

FP (False Positive) signify the number of incorrectly identified Normal/Fault states of 

the inverter. 

4.2.6. Experimental and Results 

This project aims to create a prediction model that can classify the internal and 

external elements that lead to PV power plant faults. To do this, we conducted three 

experiments. 

First, we studied the data characteristics' correlation to find the most important 

factors for training our predictive models. 

Second, we tested various optimization models to establish the best 

hyperparameters for our prediction models. 
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Third, we employed three methodologies for detecting anomalies in solar power 

plants. 

Finally, we used the most accurate prediction model to determine which days 

and inverters had the highest failure rate. 

Graphic 15 shows the correlation coefficients between the input factors and the 

solar panel output Power_Dc. The correlation coefficient is a normalized covariance 

measure, with values ranging from (-1 to 1). A strong negative correlation of -1 implies 

that an increase in one variable will lead to a decrease in the other. In contrast, a strong 

positive correlation of 1 implies that an increase in one variable will increase the other. 

The diagonal values, which represent a variable's correlation with itself 

(autocorrelation), are equal to 1 since a variable is perfectly correlated.  

Graphic 15. Correlation matrix for dataset variables 
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A clear correlation can be seen between the output of Power DC and the inputs 

of Power AC, Module Temperature, and irradiation. In contrast, there is less of a 

connection between Daily Yield, Total Yield, Ambient Temperature, and Power DC. 

The inputs of our experiment are Power AC, Module Temperature, and irradiation, 

while Daily Yield, Total Yield, and Ambient Temperature are treated as outputs.   

 

Graphic 16. Box plots for selected inputs variables 
 

 

As seen in Graphic 16, the variables of our dataset have varied scales due to an 

error in the prediction phase. To ensure the accuracy of our models, the state of the 

inverter (Normal / Fault) must be indicated in the dataset. Graphic 17s scatter plot of 

DC power and irradiance reveals outliers, demonstrating that some inverters did not 

receive DC power despite enough sunlight to generate electricity. This highlights the 

efficiency of our solar panel lines in converting sunlight to DC power. 
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Graphic 17. Distribution of power_DC and IRR for each inverter 
 

 

A scatter plot between DC power and irradiance (see Graphic 17), with the 

addition of inverter states, has been created to identify any anomalies in the solar 

energy-to-electricity conversion which would indicate faulty photovoltaic panel lines. 

Equipment failure can be assumed if no power is detected at the inverter during normal 

daylight operation (see Graphic 18). 
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Graphic 18. Distribution of power_dc and IRR for each inverter after 

determine inverter status 

 

Before deploying SVM classification and regression models to forecast the 

amount of DC power generated by the inverter for solar power plants, the GWO 

method is utilized to optimize the SVM model hyperparameters in order to improve 

the prediction accuracy. To demonstrate the advantages of the GWO algorithm, two 

benchmark optimizer models have been created for comparison {Grid search (GS) and 

Random search (RS)}. The philosophy behind these optimizers and the rationale for 

their selection are discussed in reference (Strobl & Meckler, 2010) 

In the GWO-SVM classification model, all dataset attributes are utilized to 

predict Power DC. On the other hand, the physical model only employs Irradiation and 

Module Temp. Table 12. displays the initial parameters for the GWO algorithm, and 

the SVR model was created utilizing the Jupiter Programming Language, which 

supports Python. Irradiation was applied in the GWO-SVM regression model to Power 

DC..  
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Table 12. Initial parameters of the GWO 

Optimizer name Parameter Value 

GWO 

Α Min = 0 and max = 2 

Number of agents 100 

Iterations number 50 

GS and RS 

C = Linear  Min = 0.001and max = 10,000 

G = Linear, RBF, sigmoid Min = 0.001and max = 10,000 

 

Graphic 19. depicts the prediction accuracy results of the proposed models SVM 

R and GWO-R with the selected benchmark models. All models were trained using 

the dataset from June 6 to June 21, 2020, and the RMSE values for all models are 

displayed in Table 13. 

 

Table 13. The impact of different optimization methods on power_DC prediction 

accuracy 

Model RMSE 

RS _SVM  532.47 

SVM_R 415.98 

GS_SVM  400.83 

GWO-SVM_R 318.04 

 

In general, the performance of the SVM R prediction model increased when GS 

and GWO were included. The RMSE for SVM R is reduced by 3 % when using GS 

and 23 % when using SVM-GW R. When SVM R is combined with SVM RS, the 

RMSE of Power Dc prediction rises from (415.98) to (532.47), indicating a reduction 

in performance. These results demonstrate that the GWO optimizer enhances the 

SVM's regression performance. 
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Graphic 19. depicts a comparison of the convergence curves of the GWO, GS, 

and RS optimizers. Nota bene, la capacidad fsica is la media de capacidad fsica 

obtenida The superior the performance, the lower the values of best fitness, worst 

fitness, and mean fitness. Using GWO models yields the highest performance, as 

determined by observation. 

 

Graphic 19. Convergence curves for (a) GS optimizer,(b) GW optimizer and (c) RS 
 

Three models are tested for anomaly identification in solar power plants to 

categorize the inverters into two classes based on their performance (Normal and 

Fault). The first model employs the physical model, whereas the second model 

employs the hybrid GWO SVM R model. The hybrid GWO SVM C model is the third 

model. The result of this comparison is depicted in Graphic 20. as a confusion matrix. 
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(a) (b) 

 

(c) 

Graphic 20. Confusion matrix for (a) SVM-GW_C model, 

(b) Physical model and (c) SVM-GW_R 

 

The confusion matrix reveals that the True classification of the GWO SVM C 

model for all classes was 143. On the other hand, the model was offered incorrectly 

four times, once as Fault class and twice as Normal class. Therefore, GWO SVM C 

attained an overall accuracy of 97.28 %, followed by the SVM-GW R model (91.22 

%) and the Physical model (87.84 %) with the lowest accuracy. 

In addition, sensitivity and specificity rates were determined and displayed in 

Table 14. based on a confusion matrix. Compared to the Physical and SVM-GW R 

models, the SVM-GW C has the greatest values for sensitivity and specificity. 
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Table 14. Sensitivity and specificity rates for predictive models 

Model Sensitivity Specificity 

SVM-GW_C 85.71 % 99.21 % 

SVM-GW_R 68.42 % 94.57 % 

Physical model 52.63 % 93.02 % 

 

Based on the previous findings, we can infer that the SVM-GW C model is the 

best model for anomaly identification in solar power plants by classifying inverter 

states into two categories (Normal and Fault). In addition, it is possible to discover the 

day and inverter with the highest failures using SVM-GW C, as illustrated in Graphics 

21 and 22. On June 7th, the greatest number of errors were reported. And Inverters 18 

and 22 saw the most failures. 

 

Graphic 21. Ranking  the number of the most failures days  that occur  

in inverters based on the SVM-GW_C model  anomaly detection 
 

https://onlineconfusionmatrix.com/#measures
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Graphic 22. Ranking  the number of failures that had in inverters 

based on the SVM-GW-C model, anomaly detection 
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CHAPTER FIVE 

CONCLUSIONS AND FUTURE WORK  

5.1. Conclusion  

It is essential to use data-driven methods to detect anomalies in present-day solar 

power plants in order to minimize downtime and optimize efficiency. This study 

examines the performance of three machine learning models to find the best model 

that can accurately detect photovoltaic (PV) system abnormalities. The correlation 

coefficients between the plants' internal and external feature characteristics were 

calculated and used to assess the models' performance in recognizing anomalies. 

GWO-SVM C proved adept at recognizing anomalies and accurately distinguishing 

the healthy signal. Further research will explore intelligent anomaly mitigation 

strategies. Applying the growing trend of distributed machine learning, i.e., federated 

learning, in large-scale intelligent solar power grids could be an interesting research 

topic. 

5.2. Future work  

The following suggestion can be considered to develop the work presented in 

this study.  

To further this investigation, future studies may examine new active fault 

protection strategies, such as how to safely, quickly, and actively fix the problem. The 

active fault protection solution should improve system efficiency, reliability, safety, 

and fault immunity based on the trip signal produced by the suggested ways. 

Consequently, a suitable future study topic would be the combination of active fault 

protection approaches with the suggested methods. PV inverters assume increasing 

duties as PV penetration rises, including fault detection and protection, power 

conversions, and recording maximum power points. PV inverters can offer more safety 

features because they are the most sophisticated part of the PV system. Recent PV 

inverters, for instance, are equipped with various fault detection options, including 

insulation detection in ungrounded PV arrays, ground fault detection, dc-arc fault 

detection, and residual current detection. 
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Nevertheless, current PV inverter fault detection methods rely solely on 

instantaneous measurements and signal processing. For this reason, fault classification 

for PV inverters is still unavailable. Future studies may concentrate on incorporating 

the proposed fault classification methods into the PV inverters, making excellent use 

of the easily accessible historical data. Better fault detection features would be made 

available, which might raise the PV system's reliability and safety.
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APPENDIXES 

PYTHON CODE 

1. Import & Preprocessing 

In [ ]: 
import os 

import pandas as pd 

import numpy as np 

import datetime 

import seaborn as sns 

import matplotlib.pyplot as plt 

%matplotlib inline 

import plotly.express as px 

import plotly.graph_objects as go 

import matplotlib.dates as mdates  

xformatter = mdates.DateFormatter('%H:%M') # for time 

axis plots 

import sklearn 

from scipy.optimize import curve_fit 

import warnings 

warnings.filterwarnings('ignore') 

 

In [ ]: 
# Import all available data  

df_gen1 = 

pd.read_csv("C:/Users/Administrator/Desktop/Plant_1_Gener

ation_Data.csv") 

df_gen2 = pd.read_csv("C:/Users/Administrator/Desktop 

/Plant_2_Generation_Data.csv") 

df_weather1 = pd.read_csv("C:/Users/Administrator/Desktop 

/Plant_1_Weather_Sensor_Data.csv") 

df_weather2 = pd.read_csv("C:/Users/Administrator/Desktop 

/Plant_2_Weather_Sensor_Data.csv") 

 

2. Preprocess And Merge Datasets 

In [ ]: 
# adjust datetime format 

df_gen1['DATE_TIME'] = 

pd.to_datetime(df_gen1['DATE_TIME'],format = '%d-%m-%Y 

%H:%M') 

df_weather1['DATE_TIME'] = 

pd.to_datetime(df_weather1['DATE_TIME'],format = '%Y-%m-

%d %H:%M:%S') 
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# drop unnecessary columns and merge both dataframes 

along DATE_TIME 

df_plant1 = pd.merge(df_gen1.drop(columns = 

['PLANT_ID']), df_weather1.drop(columns = ['PLANT_ID', 

'SOURCE_KEY']), on='DATE_TIME') 

 

In [ ]: 
# add inverter number column to dataframe 

sensorkeys = df_plant1.SOURCE_KEY.unique().tolist() # 

unique sensor keys 

sensornumbers = list(range(1,len(sensorkeys)+1)) # sensor 

number 

dict_sensor = dict(zip(sensorkeys, sensornumbers)) # 

dictionary of sensor numbers and corresponding keys 

# add column 

df_plant1['SENSOR_NUM'] = 0 

for i in range(df_gen1.shape[0]): 

    df_plant1['SENSOR_NUM'][i] = 

dict_sensor[df_gen1["SOURCE_KEY"][i]] 

# add Sensor Number as string 

df_plant1["SENSOR_NAME"] = 

df_plant1["SENSOR_NUM"].apply(str) # add string column of 

sensor name 

 

In [ ]: 
# adding separate time and date columns 

df_plant1["DATE"] = 

pd.to_datetime(df_plant1["DATE_TIME"]).dt.date # add new 

column with date 

df_plant1["TIME"] = 

pd.to_datetime(df_plant1["DATE_TIME"]).dt.time # add new 

column with time 

# add hours and minutes for ml models 

df_plant1['HOURS'] = 

pd.to_datetime(df_plant1['TIME'],format='%H:%M:%S').dt.ho

ur 

df_plant1['MINUTES'] = 

pd.to_datetime(df_plant1['TIME'],format='%H:%M:%S').dt.mi

nute 

df_plant1['MINUTES_PASS'] = df_plant1['MINUTES'] + 

df_plant1['HOURS']*60 

# add date as string column 

df_plant1["DATE_STR"] = df_plant1["DATE"].astype(str) # 

add column with date as string 

 

In [ ]: 
df_plant1.head() 

 

In [ ]: 
#import data 
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pd.DataFrame(df_plant1).to_csv("C:/Users/Administrator/De

sktop/66.csv") 

There are two days with significantly lower temperature ("bad weather") on. 

Such events may be difficult to forecast without access to more weather data (air 

pressure, wind, humidity, cloud formation etc.) and advanced weather forecasting 

models. 

3. Rule-based Fault Detection 

During the data exploration we found a simple way to identify faulty equipment: 

If there is no power measured at the inverter during normal daytime operation, we can 

assume/identify equipment failure. Let's create a new column ("STATUS") that 

identifies faulty operation: 

In [ ]: 
# Function to check if time is during daytime operation 

def time_in_range(start, end, x): 

    """Return true if x is in the range [start, end]""" 

    if start <= end: 

        return start <= x <= end 

    else: 

        return start <= x or x <= end    

# set normal daytime operation range 

start=datetime.time(6,30,0) # sunrise 

end=datetime.time(17,30,0) # sunset 

# Create new column to check proper operation 

# Return "Normal" if operation is normal and "Fault" if 

operation is faulty 

df_plant1["STATUS"] = 0 

for index in df_plant1.index: 

    if  time_in_range(start, end, 

df_plant1["TIME"][index]) and 

df_plant1["DC_POWER"][index] == 0: 

        df_plant1["STATUS"][index] = "Fault" 

    else: 

        df_plant1["STATUS"][index] = "Normal" 

 

In [ ]: 
#import data 

pd.DataFrame(df_plant1).to_csv("C:/Users/Administrator/De

sktop/3000.csv") 

 

In [ ]: 
fig = px.scatter(df_plant1, x="IRRADIATION", 

y="DC_POWER", title="Fault Identification", 
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color="STATUS", labels={"DC_POWER":"DC Power (kW)", 

"IRRADIATION":"Irradiation"}) 

fig.update_traces(marker=dict(size=3, opacity=0.7), 

selector=dict(mode='marker')) 

sns.set_style("white") 

sns.set_theme() 

fig.show() 

3.1. Days With Faults 

In [ ]: 
df_plant1[df_plant1["STATUS"]== 

"Fault"]["DATE"].value_counts() 

 

In [ ]: 
fig=px.bar(df_plant1[df_plant1["STATUS"]== 

"Fault"]["DATE"].value_counts(), title="Fault Events: 

Rule-based", labels={"value":"Faults", "index":"Date", 

"SENSOR_NAME":"Inverter"}) 

fig.update(layout_showlegend=False) 

3.2. Number Of Recorded Faults 

In [ ]: 
df_plant1.STATUS.value_counts() 

 

In [ ]: 
print("There are {} records of faulty operation!" 

.format(df_plant1.STATUS.value_counts().Fault)) 

3.3. Inverters with faults 

In [ ]: 
df_plant1[df_plant1["STATUS"]== 

"Fault"]["SENSOR_NAME"].value_counts() 

 

In [ ]: 
fig=px.bar(df_plant1[df_plant1["STATUS"]== 

"Fault"]["SENSOR_NAME"].value_counts(), title="Inverter 

Faults: Rule-based", labels={"value":"Faults", 

"index":"Inverter", "SENSOR_NAME":"Inverter"}) 

fig.update(layout_showlegend=False) 

 

3.4. Summary 

In [ ]: 
print("The most faults were recorded on {} and {}." 

.format(df_plant1[df_plant1["STATUS"]== 

"Fault"]["DATE"].value_counts().index[0], 
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df_plant1[df_plant1["STATUS"]== 

"Fault"]["DATE"].value_counts().index[1])) 

print("Inverter {} and {} had the most failures." 

.format(df_plant1[df_plant1["STATUS"]== 

"Fault"]["SOURCE_KEY"].value_counts().index[0],df_plant1[

df_plant1["STATUS"]== 

"Fault"]["SOURCE_KEY"].value_counts().index[1])) 

4. Fault Detection with Regression Models 

In [ ]: 

from sklearn.ensemble import RandomForestRegressor 

from sklearn.linear_model import LinearRegression 

from sklearn.svm import SVR 

from sklearn.pipeline import make_pipeline 

from sklearn.preprocessing import StandardScaler 

from sklearn.neural_network import MLPRegressor 

 

In [ ]: 

from sklearn.model_selection import GridSearchCV 

rf_params = { 

    'C': [1,10, 100], 

    "kernel":['poly','rbf','sigmoid'], 

    "epsilon":[0.01,0.1,1]} 

clf = SVR(gamma='scale') 

reg = GridSearchCV(clf, rf_params, cv=3, 

scoring='neg_mean_squared_error') 

 

In [ ]: 

# Model 

#reg = LinearRegression() 

#reg = RandomForestRegressor(max_depth=8, 

min_samples_leaf=5, max_features='auto') 

#reg = MLPRegressor(hidden_layer_sizes=(32,32,16), 

activation='relu', #  solver='adam', alpha=0.001, 

max_iter=500, learning_rate='adaptive',# 

learning_rate_init=0.01, shuffle=True) 

#reg = make_pipeline(StandardScaler(), SVR(C=10.0, 

epsilon=0.5)) 

# choose training data 

train_dates = ["2020-05-16", "2020-05-17","2020-05-18" 

,"2020-05-19", "2020-05-20", "2020-05-21"] 

df_train = 

df_plant1[df_plant1["DATE_STR"].isin(train_dates)] 

#fit & predict 

reg.fit(df_train[["IRRADIATION"]], df_train.DC_POWER) 

prediction = reg.predict(df_plant1[["IRRADIATION"]]) 

# save prediction, residual, and absolute residual 

df_train["Prediction"] = 

reg.predict(df_train[["IRRADIATION"]]) 
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df_train["Residual"] = df_train["Prediction"] - 

df_train["DC_POWER"] 

df_plant1["Prediction"] = 

reg.predict(df_plant1[["IRRADIATION"]]) 

df_plant1["Residual"] = df_plant1["Prediction"] - 

df_plant1["DC_POWER"] 

df_plant1["Residual_abs"] = df_plant1["Residual"].abs() 

 

In [ ]: 

from sklearn.metrics import mean_absolute_error, 

mean_squared_error 

mean_squared_error(df_train["DC_POWER"], 

df_train["Prediction"], squared=False) 

 

In [ ]: 

fig, axes = plt.subplots(nrows=1, ncols=1, 

figsize=(12,5)) 

plt.scatter(df_plant1.IRRADIATION, df_plant1.DC_POWER, 

label="Measured") 

plt.scatter(df_plant1.IRRADIATION, df_plant1.Prediction, 

color="r", label="LR Prediction") 

sns.set_style("whitegrid") 

plt.legend() 

plt.xlabel("Irradiation (kW/m²)") 

plt.ylabel("DC Power (kW)") 

plt.title("linear Model Prediction") 

plt.show() 

 

In [ ]: 

fig = px.scatter(df_plant1, x="DATE_TIME", y="DC_POWER", 

title="Fault Identification: Linear model (Zoomed in)", 

color="Residual_abs", labels={"DC_POWER":"DC Power (kW)", 

"DATE_TIME":"Date Time", "Residual_abs":"Residual"}, 

range_x=[datetime.date(2020, 6, 1), datetime.date(2020, 

6, 17)]) 

fig.update_traces(marker=dict(size=3, opacity=0.7), 

selector=dict(mode='marker')) 

fig.show() 

 

In [ ]: 

# choose data 

day = "2020-06-07" 

inverter1 = "2" 

inverter2 = "22" 

df_pred = df_plant1[(df_plant1["DATE_STR"] == 

day)].copy() 

sns.set_style("whitegrid") 

fig, axes = plt.subplots(nrows=1, ncols=2, 

figsize=(15,5)) 
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sns.lineplot(df_pred.DATE_TIME,df_pred[df_pred["SENSOR_NA

ME"] == inverter1].DC_POWER, label="Measured DC", 

color="b", ax=axes[0]) 

sns.lineplot(df_pred.DATE_TIME,df_pred[df_pred["SENSOR_NA

ME"] == inverter1].Residual, label="Residual", color="g", 

ax=axes[0]) 

sns.lineplot(df_pred.DATE_TIME,df_pred[df_pred["SENSOR_NA

ME"] == inverter1].Prediction, label="Predicted DC", 

color="r", ax=axes[0]) 

sns.lineplot(df_pred.DATE_TIME,df_pred[df_pred["SENSOR_NA

ME"] == inverter2].DC_POWER, label="Measured DC", 

color="b", ax=axes[1]) 

sns.lineplot(df_pred.DATE_TIME,df_pred[df_pred["SENSOR_NA

ME"] == inverter2].Residual, label="Residual", color="g", 

ax=axes[1]) 

sns.lineplot(df_pred.DATE_TIME,df_pred[df_pred["SENSOR_NA

ME"] == inverter2].Prediction, label="Predicted DC", 

color="r", ax=axes[1]) 

plt.gcf().axes[0].xaxis.set_major_formatter(xformatter) # 

set xaxis format 

plt.gcf().axes[1].xaxis.set_major_formatter(xformatter) # 

set xaxis format 

axes[0].set_xlabel("Time") 

axes[1].set_xlabel("Time") 

axes[0].set_ylabel("DC Power (kW)") 

axes[1].set_ylabel("") 

axes[1].set_ylim(-2500, 14000) 

axes[0].set_title("Example: Normal Operation") 

axes[1].set_title("Example: Fault Detected") 

plt.show() 

 

In [ ]: 

fig, axes = plt.subplots(nrows=1, ncols=1, 

figsize=(16,5)) 

inverter2= "22" 

df_pred2 = 

df_plant1[df_plant1["SENSOR_NAME"]==inverter2].copy() 

sns.lineplot(df_pred2.DATE_TIME,df_pred2.Prediction, 

label="Predicted DC", color="r") 

sns.lineplot(df_pred2.DATE_TIME,df_pred2.DC_POWER, 

label="Measured DC", color="b") 

sns.lineplot(df_pred2.DATE_TIME,df_pred2.Residual-5000, 

label="Residual (Offset)", color="g") 

plt.xlabel("Date") 

plt.ylabel("Power (kW)") 

plt.title("Fault Detection: Inverter 22") 

plt.show() 
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In [ ]: 

# set confidence range for residual for fault 

limit_fault=4000 

# Create new column to check proper operation 

# Return "Normal" if operation is normal and "Fault" if 

operation is faulty 

df_plant1["STATUS_LR"] = 0 

for index in df_plant1.index: 

    if  df_plant1["Residual"][index] > limit_fault: 

        df_plant1["STATUS_LR"][index] = "Fault"   

    else: 

        df_plant1["STATUS_LR"][index] = "Normal" 

 

In [ ]: 

df_plant1[df_plant1["STATUS_LR"]== 

"Fault"]["DATE"].value_counts() 

 

In [ ]: 

fig=px.bar(df_plant1[df_plant1["STATUS_LR"]== 

"Fault"]["DATE"].value_counts(), title="Faults: linear 

Model", labels={"value":"Faults", "index":"Date", 

"SENSOR_NAME":"Inverter"}, ) 

fig.update(layout_showlegend=False) 

 

In [ ]: 

fig=px.bar(df_plant1[df_plant1["STATUS_LR"]== 

"Fault"]["SENSOR_NAME"].value_counts(), 

title="Underperformance & Faults: linear Model", 

labels={"value":"Faults", "index":"Inverter", 

"SENSOR_NAME":"Inverter"}) 

fig.update(layout_showlegend=False) 

 

In [ ]: 

df_plant1[df_plant1["STATUS_LR"]== 

"Fault"]["SENSOR_NAME"].value_counts() 

 

In [ ]: 

fig = px.scatter(df_plant1, x="DATE_TIME", y="DC_POWER", 

title="Underperformance & Faults: linear Model (Zoomed 

in)", color="STATUS_LR", labels={"DC_POWER":"DC Power 

(kW)", "DATE_TIME":"Date Time", 

"STATUS_LR":"Status"},range_x=[datetime.date(2020, 6, 1), 

datetime.date(2020, 6, 17)]) 

fig.update_traces(marker=dict(size=3, opacity=0.7), 

selector=dict(mode='marker')) 

fig.show() 

 

In [ ]: 

print("The most anomalies were recorded on {} and {}." 

.format(df_plant1[df_plant1["STATUS_LR"]== 



 

86 

"Fault"]["DATE"].value_counts().index[0], 

df_plant1[df_plant1["STATUS_LR"]== 

"Fault"]["DATE"].value_counts().index[1])) 

print("Inverter {} and {} had the most events of 

failure/underperformance." 

.format(df_plant1[df_plant1["STATUS_LR"]== 

"Fault"]["SENSOR_NAME"].value_counts().index[0],df_plant1

[df_plant1["STATUS_LR"]== 

"Fault"]["SENSOR_NAME"].value_counts().index[1])) 

 

4.1. Non-linear Model 

According to Hooda et al. (2018) the generated power of a photovoltaic cell can 

be modeled by the nonlinear equation \begin{equation} P(t) = a E(t) \left(1-b (T(t) + 

\frac{E(t)}{800} (c-20) - 25) - d \ln(E(t))\right) \end{equation} with irradiance $E(t)$, 

Temperature $T(t)$ and coefficients $a,b,c,d$. 

In [ ]: 
def func(X, a, b, c, d): 

    '''Nonlinear function to predict DC power output from 

Irradiation and Temperature.''' 

    x,y = X 

    x=x*1000 

    y=y*1000 

    return a*x*(1-b*(y+x/800*(c-20)-25)-d*np.log(x+1e-

10)) 

# fit function 

p0 = [1.,0.,-1.e4,-1.e-1] # starting values 

popt, pcov = curve_fit(func, (df_train.IRRADIATION, 

df_train.MODULE_TEMPERATURE), df_train.DC_POWER, p0, 

maxfev=5000) 

sigma_abcd = np.sqrt(np.diagonal(pcov)) 

# predict & save 

df_train["Prediction_NL"] = func((df_train.IRRADIATION, 

df_train.MODULE_TEMPERATURE), *popt) 

df_train["Residual_NL"] = df_train["Prediction_NL"] - 

df_train["DC_POWER"] 

df_plant1["Prediction_NL"] = func((df_plant1.IRRADIATION, 

df_plant1.MODULE_TEMPERATURE), *popt) 

df_plant1["Residual_NL"] = df_plant1["Prediction_NL"] - 

df_plant1["DC_POWER"] 

 

In [ ]: 
from sklearn.metrics import mean_squared_error 
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In [ ]: 
mean_squared_error(df_train["DC_POWER"], 

df_train["Prediction_NL"], squared=False) 

 

In [ ]: 
fig, axes = plt.subplots(nrows=1, ncols=1, 

figsize=(12,5)) 

plt.scatter(df_plant1.IRRADIATION, df_plant1.DC_POWER, 

label="Measured") 

plt.scatter(df_plant1.IRRADIATION, 

df_plant1.Prediction_NL, color="r", label="NL 

Prediction") 

plt.legend() 

plt.xlabel("Irradiation (kW/m²)") 

plt.ylabel("DC Power (kW)") 

plt.title("Nonlinear Model Prediction") 

plt.show() 

 

In [ ]: 
# choose data 

day = "2020-06-07" 

inverter1 = "2" 

inverter2 = "22" 

df_pred = df_plant1[(df_plant1["DATE_STR"] == 

day)].copy() 

fig, axes = plt.subplots(nrows=1, ncols=2, 

figsize=(14,5)) 

sns.lineplot(df_pred.DATE_TIME,df_pred[df_pred["SENSOR_NA

ME"] == inverter1].DC_POWER, label="Measured DC", 

color="b", ax=axes[0]) 

sns.lineplot(df_pred.DATE_TIME,df_pred[df_pred["SENSOR_NA

ME"] == inverter1].Residual_NL, label="NL Residual", 

color="g", ax=axes[0]) 

sns.lineplot(df_pred.DATE_TIME,df_pred[df_pred["SENSOR_NA

ME"] == inverter1].Prediction_NL, label="NL Predicted 

DC", color="r", ax=axes[0]) 

sns.lineplot(df_pred.DATE_TIME,df_pred[df_pred["SENSOR_NA

ME"] == inverter2].DC_POWER, label="Measured DC", 

color="b", ax=axes[1]) 

sns.lineplot(df_pred.DATE_TIME,df_pred[df_pred["SENSOR_NA

ME"] == inverter2].Residual_NL, label="NL Residual", 

color="g", ax=axes[1]) 

sns.lineplot(df_pred.DATE_TIME,df_pred[df_pred["SENSOR_NA

ME"] == inverter2].Prediction_NL, label="NL Predicted 

DC", color="r", ax=axes[1]) 

plt.gcf().axes[0].xaxis.set_major_formatter(xformatter) # 

set xaxis format 

plt.gcf().axes[1].xaxis.set_major_formatter(xformatter) # 

set xaxis format 

axes[0].set_xlabel("Time") 
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axes[1].set_xlabel("Time") 

axes[0].set_ylabel("DC Power (kW)") 

axes[1].set_ylabel("") 

axes[0].set_ylim(-3000, 14000) 

axes[1].set_ylim(-3000, 14000) 

axes[0].set_title("Example: Normal Operation") 

axes[1].set_title("Example: Fault Detected") 

plt.show() 

 

In [ ]: 
fig, axes = plt.subplots(nrows=1, ncols=1, 

figsize=(14,5)) 

inverter2= "1" 

df_pred2 = 

df_plant1[df_plant1["SENSOR_NAME"]==inverter2].copy() 

sns.lineplot(df_pred2.DATE_TIME,df_pred2.Prediction_NL, 

label="NL Prediction", color="r") 

sns.lineplot(df_pred2.DATE_TIME,df_pred2.DC_POWER, 

label="Measured DC", color="b") 

sns.lineplot(df_pred2.DATE_TIME,df_pred2.Residual_NL-

5000, label="NL Residual (Offset)", color="g") 

plt.xlabel("Date") 

plt.ylabel("Power (kW)") 

plt.title("Fault Detection Example: Inverter 

{}".format(inverter2)) 

plt.show() 

 

In [ ]: 
fig, axes = plt.subplots(nrows=1, ncols=1, 

figsize=(14,5)) 

inverter2= "22" 

df_pred2 = 

df_plant1[df_plant1["SENSOR_NAME"]==inverter2].copy() 

sns.lineplot(df_pred2.DATE_TIME,df_pred2.Prediction_NL, 

label="NL Prediction", color="r") 

sns.lineplot(df_pred2.DATE_TIME,df_pred2.DC_POWER, 

label="Measured DC", color="b") 

sns.lineplot(df_pred2.DATE_TIME,df_pred2.Residual_NL-

5000, label="NL Residual (Offset)", color="g") 

plt.xlabel("Date") 

plt.ylabel("Power (kW)") 

plt.title("Fault Detection 

Example:Inverter{}".format(inverter2)) 

plt.show() 
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5. Model Comparison 

To compare the two models we can take a look at their respective residuals. The 

nonlinear model seems to perform slightly better than the linear model, especially at 

times of high irradiance. 

In [ ]: 
plt.figure(figsize=(8,8)) 

sns.scatterplot(df_train.Prediction, df_train.Residual, 

color="b", label="LI Residual") 

sns.scatterplot(df_train.Prediction_NL, 

df_train.Residual_NL, color="r", label="NL Residual") 

axes = plt.gca() 

plt.ylabel("Residual") 

plt.xlabel("Predicted DC Power") 

plt.title("Model Comparison") 

plt.show() 

 

5.1. NL Fault Detection 

Let's now use the irradiance and temperature data to predict the expected DC 

power with the nonlinear model. This allows us to identify addtional anomalies by 

comparing the measured DC power with the prediction. 

The additional anomalies indicate equipment underperformance or need for 

maintenance. 

 

In [ ]: 
# set confidence range for residual for fault 

limit_fault=4000 

# Create new column to check proper operation 

# Return "Normal" if operation is normal and "Fault" if 

operation is faulty 

df_plant1["STATUS_NL"] = 0 

for index in df_plant1.index: 

    if  df_plant1["Residual_NL"][index] > limit_fault: 

        df_plant1["STATUS_NL"][index] = "Fault"   

    else: 

        df_plant1["STATUS_NL"][index] = "Normal" 

 

In [ ]: 
fig=px.bar(df_plant1[df_plant1["STATUS_NL"]== 

"Fault"]["DATE"].value_counts(), title="Faults: Nonlinear 
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Model", labels={"value":"Faults", "index":"Date", 

"SENSOR_NAME":"Inverter"}, ) 

fig.update(layout_showlegend=False) 

 

In [ ]: 
fig=px.bar(df_plant1[df_plant1["STATUS_NL"]== 

"Fault"]["SENSOR_NAME"].value_counts(), 

title="Underperformance & Faults: Nonlinear Model", 

labels={"value":"Faults", "index":"Inverter", 

"SENSOR_NAME":"Inverter"}) 

fig.update(layout_showlegend=False) 

 

In [ ]: 
df_plant1[df_plant1["STATUS_NL"]== 

"Fault"]["SENSOR_NAME"].value_counts() 

 

In [ ]: 
df_plant1[df_plant1["STATUS_NL"]== 

"Fault"]["DATE"].value_counts() 

 

In [ ]: 
fig = px.scatter(df_plant1, x="DATE_TIME", y="DC_POWER", 

title="Underperformance & Faults: Nonlinear Model (Zoomed 

in)", color="STATUS_NL", labels={"DC_POWER":"DC Power 

(kW)", "DATE_TIME":"Date Time", 

"STATUS_NL":"Status"},range_x=[datetime.date(2020, 6, 1), 

datetime.date(2020, 6, 17)]) 

fig.update_traces(marker=dict(size=3, opacity=0.7), 

selector=dict(mode='marker')) 

fig.show() 

 

In [ ]: 
print("The most anomalies were recorded on {} and {}." 

.format(df_plant1[df_plant1["STATUS_NL"]== 

"Fault"]["DATE"].value_counts().index[0], 

df_plant1[df_plant1["STATUS_NL"]== 

"Fault"]["DATE"].value_counts().index[1])) 

print("Inverter {} and {} had the most events of 

failure/underperformance." 

.format(df_plant1[df_plant1["STATUS_NL"]== 

"Fault"]["SOURCE_KEY"].value_counts().index[0],df_plant1[

df_plant1["STATUS_NL"]== 

"Fault"]["SOURCE_KEY"].value_counts().index[1]))
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