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Abstract—Due to the variations in weather conditions, solar 
power integration to the electricity grid at a high penetration rate 
can cause a threat for the grid stability. Therefore, it is required 
to predict the solar radiation parameter in order to ensure the 
quality and the security of the grid. In this study, initially, a 1-h 
time series model belong to the solar radiation parameter is 
created for multi-period predictions. Afterwards, autoregressive 
moving average (ARMA) and autoregressive integrated moving 
average (ARIMA) models are compared in terms of the 
goodness-of-fit value produced by the log-likelihood function. As 
a result of determining the best statistical models in multi-period 
predictions, one-period, two-period and three-period ahead 
predictions are carried out for the solar radiation parameter in a 
comprehensive way. Many feasible comparisons have been made 
for the solar radiation prediction. 

Keywords—Solar radiation; multi-period prediction; ARMA; 
ARIMA 

I.  INTRODUCTION 
According to the Renewables Global Status Report 2015 

[1], the solar photovoltaic capacity in the world has reached to 
177 GW in 2014. Besides, it is projected to be 1721 GW by 
2030 [2]. So, solar energy is one of the most promising 
renewable energy sources and the solar power integration in 
electricity grids is constantly increasing all over the world [3, 
4]. However, solar power shows high variations due to the 
intermittency nature of solar energy [5]. For this reason, the 
generation schedules are mostly planned for hourly, daily, 
weekly, etc. in order to ensure reliable operation and economic 
dispatch of solar power systems [6]. As a result, it is 
indispensible to predict the solar radiation parameter in solar 
power plants. Since, the solar radiation parameter is 
considered as the most significant indicator for the solar 
energy conversion and for the sizing of stand-alone solar 
systems [7, 8]. The world map of global horizontal irradiation 
is shown in Figure 1. 

Several authors have proposed various models for solar 
radiation prediction in the literature. Yadav et al. and Qazi et 
al. reviewed artificial neural network techniques for solar 
radiation prediction and the prediction accuracy was found to 
be dependent on input parameter combinations, training 
algorithms and architecture configurations [9, 10]. Chen et al. 
investigated the feasibility of support vector machines in order 

to predict solar radiation using air temperatures and the 
impacts of inputs and kernel functions on the prediction 
accuracy were determined [11]. Bhardwaj et al. analyzed the 
inter-dependence of solar radiation and other meteorological 
parameters by the generalized fuzzy model and short-term 
prediction assessments were made under different climatic 
conditions [12]. Salcedo-Sanz et al. evaluated the 
effectiveness of temporal Gaussian process regression for the 
estimation of daily global solar radiation and a time-based 
composite covariance was presented in order to account for 
the relevant seasonal variations [13]. Licciardi et al. used the 
nonlinear principal component analysis to reduce the 
dimensionality of spatiotemporal input vector and improved 
the forecasting of ground horizontal irradiance from satellite-
based images [4]. Wu et al. proposed a multi-model 
framework for short-term prediction of solar radiation time 
series and the nonlinear relationship of different patterns were 
modeled for capturing the general trend of whole series [14]. 
Fatemi et al. utilized the zenith angle along with exponentially 
weighted recursive least squares method and the 
seasonal/daily effects in solar radiation data were removed 
[15]. Huang et. al. detected the solar irradiance fluctuations 
from cloud movements and the solar power volatility was 
mitigated in electric grids [16]. In addition, numerous hybrid 
methods such as grey-based support vector regression [17], 
wavelet-based recurrent neural networks [7], wavelet-based 
support vector machines [18], Kalman-based radial basis 
functions [19], Kalman-based neuro-fuzzy inference systems 
[20] etc. were employed for solar radiation prediction in the 
literature. Apart from these hybrid methods, many numerical 
weather prediction models such as MM5 (Mesoscale 
Modeling) [21], GFS (Global Forecasting System) [22], WRF 
(Weather Research and Forecasting) [23], NAM (North 
American Mesoscale) [24], ECMWF (European Centre for 
Medium-Range Weather Forecasts) [25], etc. were also 
utilized for solar radiation prediction in the literature. 

The main objective of this study is to analyze multi-period 
predictions of solar radiation using ARMA and ARIMA 
models in detail. As a distinct contribution to the literature, not 
only mean absolute errors and mean absolute percentage 
errors but also improvement percentages of prediction results 
are revealed in multi-period predictions. Since, most of studies 
in the literature ignore the persistence comparison that is 
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employed as a reference analysis for conducting a proper 
benchmark test. In addition, many reasonable comparisons 
have been realized among ARMA and ARIMA models in 
terms of their prediction accuracy.  

 
Fig. 1. The world map of global horizontal irradiation [26] 

II. MULTI-PERIOD PREDICTION APPROACH 
In this study, autoregressive moving average and 

autoregressive integrated moving average models have been 
used for multi-period predictions. ARMA and ARIMA models 
are applied to stationary and non-stationary stochastic time 
series data, respectively and ARIMA process is an ARMA 
process for the differenced time series [27]. The detailed 
theoretical instructions about ARMA and ARIMA models are 
included in [28]. The Log-Likelihood Function (LLF) has 
been employed for the goodness-of-fit determination among 
ARMA and ARIMA models in this paper. More statistical 
formulations about the LLF are found in [29]. In the log-
likelihood criterion, the closer the log-likelihood value is to 
zero, the more likely it is that the parameters could produce 
the observed data [30]. The LLF values belong to ARMA and 
ARIMA models are given in Table I. It is obvious that 
ARMA(1,2) and ARIMA(2,2,2) models  achieved the 
optimum log-likelihood values in here.  

TABLE I. LLF VALUES OF ARMA AND ARIMA MODELS 

Statistical Model LLF Value Statistical Model LLF Value 
ARMA(1,1) -97.95 ARIMA(1,2,1) -68.63 
ARMA(1,2) -96.82 ARIMA(2,1,1) -82.00 
ARMA(2,1) -98.84 ARIMA(1,2,2) -68.14 
ARMA(2,2) -97.77 ARIMA(2,1,2) -81.40 

ARIMA(1,1,1) -81.94 ARIMA(2,2,1) -68.12 
ARIMA(1,1,2) -81.31 ARIMA(2,2,2) -68.08 

In addition to the mentioned specifications above, mean 
absolute error (MAE) and mean absolute percentage error 
(MAPE) have been utilized for measuring the prediction 
accuracy of ARMA(1,2) and ARIMA(2,2,2) models in this 
study. These error metrics are given in Equation (1) and (2) by 
assuming � as the number of test data, ��  as the observed solar 
radiation and �� as the predicted solar radiation [31]. Besides, 
ARMA(1,2) and ARIMA(2,2,2) models have been compared 
with the persistence model in terms of the improvement 
percentage of prediction results. Since, the persistence 
comparison is made as a reference analysis for proper 
benchmark tests in the literature [32]. As well, the last three 
observations have been used as the most important predictors 
in each multi-period prediction approach. It should be noted 

that other ARMA and ARIMA models that are not included in 
Table I are not employed owing to their high errors.  
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In multi-period predictions, a 1-h time series model is 
created for the solar radiation parameter. Figure 2 shows the 
concept of a multi-period prediction with the 1-h time series 
model [33, 34]. In Figure 2(a), the mean hourly solar radiation 
at the subsequent interval of [03:00, 04:00) is predicted using 
the mean observed hourly solar radiation at the intervals of 
[00:00, 01:00), [01:00, 02:00) and [02:00, 03:00). In Figure 
2(b), the mean hourly solar radiation at the subsequent interval 
of [04:00, 05:00) is predicted using the mean observed hourly 
solar radiation at the intervals of [01:00, 02:00), [02:00, 03:00) 
and the previously predicted solar radiation at the interval of 
[03:00, 04:00). In Figure 2(c), the mean hourly solar radiation 
at the subsequent interval of [05:00, 06:00) is predicted using 
the mean observed hourly solar radiation at the interval of 
[02:00, 03:00) and the previously predicted solar radiation at 
the intervals of [03:00, 04:00), [04:00, 05:00). 

 
(a) One-period ahead prediction 

 
(b) Two-period ahead prediction 

 
(c) Three-period ahead prediction 

 
Fig. 2. The concept of a multi-period prediction with the 1-h 

time series model 

III. MULTI-PERIOD PREDICTION RESULTS 
In this section, it should be noted that one-, two- and three-

period ahead predictions represent the 1-h, 2-h and 3-h ahead 
solar radiation predictions, respectively. In addition, the 
starting time of the prediction process is different from each 
other in the conducted prediction analyses. Since, the solar 
radiation values averaged at the intervals of [00:00, 00:01), 
[01:00, 02:00) and [02:00, 03:00] are equal to zero. So, the 
prediction process starts at the time that has the first positive 
value measured for the solar radiation parameter and it 
continues up to the time that has the first zero value measured 
for the solar radiation parameter. As mentioned in the previous 
section, ARMA(1,2) and ARIMA(2,2,2) models are only 
considered in multi-period predictions for the reason of 
achieving optimum log-likelihood values.   
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A. One-Period Ahead Prediction Results 
One-period ahead prediction results and errors for solar 

radiation parameter are illustrated in Figures 3 and 4, 
respectively. The MAPEs of ARMA(1,2) and ARIMA(2,2,2) 
models are found as 18.11% and 7.87%, respectively. 
However, it is obtained as 38.44% for the persistence model. 
In case of making a benchmark test with respect to the 
persistence model, ARMA(1,2) and ARIMA(2,2,2) models 
have improved the prediction results  at the rates of 52.89% 
and 79.53%, respectively. From another perspective, it is 
obvious that ARIMA(2,2,2) model has outperformed 
ARMA(1,2) model in terms of the one-period ahead prediction 
of solar radiation parameter. In addition, the mean absolute 
error of ARIMA(2,2,2) model is acquired as 37.95 W/m2. The 
absolute percentage errors of ARMA(1,2) and ARIMA(2,2,2) 
models in one-period ahead prediction are listed in Table II. 

 
Fig. 3. One-period ahead prediction results for solar radiation 

 
Fig. 4. One-period ahead prediction errors for solar radiation 

TABLE II. ABSOLUTE PERCENTAGE ERRORS OF ARMA(1,2) AND 
ARIMA(2,2,2) MODELS IN ONE-PERIOD AHEAD PREDICTION 

Time ARMA(1,2) ARIMA(2,2,2) Time ARMA(1,2) ARIMA(2,2,2)
04:00 57.65 47.71 11:00 0.10 3.16 
05:00 14.45 7.08 12:00 12.93 9.93 
06:00 14.60 2.29 13:00 3.15 9.34 
07:00 6.78 3.40 14:00 16.48 4.77 
08:00 4.89 1.36 15:00 26.58 1.39 
09:00 0.52 3.45 16:00 74.56 5.11 
10:00 2.73 3.34 17:00 - - 

B. Two-Period Ahead Prediction Results 
Two-period ahead prediction results and errors for solar 

radiation parameter are depicted in Figures 5 and 6, 
respectively. ARMA(1,2) and ARIMA(2,2,2) models produce 
the MAPEs of 43.24% and 16.06%, respectively. Nonetheless, 
the persistence model gives it as 67.37%. In the stage of 
conducting a benchmark test against the persistence model, the 
improvement percentages for the prediction results have been 
achieved as 35.82% and 76.16% for ARMA(1,2) and 
ARIMA(2,2,2) models, respectively. Apart from these 
inferences, it is clear that ARIMA(2,2,2) model has surpassed 
ARMA(1,2) model in the two-period ahead prediction of solar 
radiation parameter. As well, ARIMA(2,2,2) model brings out 
the mean absolute error of  88.51 W/m2. The absolute 
percentage errors of ARMA(1,2) and ARIMA(2,2,2) models 
in two-period ahead prediction are listed in Table III. 

 
Fig. 5. Two-period ahead prediction results for solar radiation 

 
Fig. 6. Two-period ahead prediction errors for solar radiation 

TABLE III. ABSOLUTE PERCENTAGE ERRORS OF ARMA(1,2) AND 
ARIMA(2,2,2) MODELS IN TWO-PERIOD AHEAD PREDICTION 

Time ARMA(1,2) ARIMA(2,2,2) Time ARMA(1,2) ARIMA(2,2,2)
04:00 - - 11:00 5.16 5.52 
05:00 71.88 56.99 12:00 12.71 0.69 
06:00 32.57 9.58 13:00 31.84 20.36 
07:00 28.02 1.09 14:00 24.17 26.00 
08:00 15.71 0.54 15:00 75.23 48.80 
09:00 9.02 6.63 16:00 210.86 4.48 
10:00 1.75 12.11 17:00 - - 
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C. Three-Period Ahead Prediction Results 
 Three-period ahead prediction results and errors for solar 
radiation parameter are picturized in Figures 7 and 8, 
respectively. Similar to the one-period and two-period ahead 
prediction results, ARIMA(2,2,2) model provides lower 
prediction errors than ARMA(1,2) and persistence models. 
MAPEs of them are determined as 32.07%, 71.67% and 
92.81%, respectively. As a result of comparing ARMA(1,2) 
and ARIMA(2,2,2) models with the persistence model on the 
basis of the enhancement occurred in the prediction results, 
the improvement ratios have been accomplished as 22.78% 
and 65.45%, respectively. Besides, ARIMA(2,2,2) model have 
gave the mean absolute error of  172.07 W/m2. The absolute 
percentage errors of ARMA(1,2) and ARIMA(2,2,2) models 
in three-period ahead prediction are listed in Table IV. 

 
Fig. 7. Three-period ahead prediction results for solar radiation 

 
Fig. 8. Three-period ahead prediction errors for solar radiation 

TABLE IV. ABSOLUTE PERCENTAGE ERRORS OF ARMA(1,2) AND 
ARIMA(2,2,2) MODELS IN THREE-PERIOD AHEAD PREDICTION 

Time ARMA(1,2) ARIMA(2,2,2) Time ARMA(1,2) ARIMA(2,2,2)
04:00 - - 11:00 3.91 20.95 
05:00 - - 12:00 20.31 17.88 
06:00 80.17 63.26 13:00 31.52 1.62 
07:00 45.44 14.69 14:00 70.90 40.34 
08:00 38.29 2.12 15:00 90.34 62.65 
09:00 21.55 18.26 16:00 377.05 93.37 
10:00 8.92 17.58 17:00 - - 

 

IV. CONCLUSIONS 

 In this study, ARMA and ARIMA models are employed 
for one-period, two-period and three-period ahead predictions 
of the solar radiation parameter. In case of comparing all of 
multi-period prediction results, ARIMA(2,2,2) model provides 
the lowest mean absolute percentage errors and leads to the 
largest improvement percentages. It is followed by 
ARMA(1,2) and persistence models in terms of the prediction 
performance, respectively. In other words, the persistence 
model shows the worst prediction accuracy in all of multi-
period predictions. From a different perspective, it is revealed 
for persistence, ARMA(1,2) and ARIMA(2,2,2) models that 
the mean absolute percentage error increases and the 
improvement percentage decreases as the prediction period 
progresses. In addition, the first prediction errors are usually 
high in all of multi-period predictions for the reason that two 
of the first three important predictors equal to zero at the 
beginning of the prediction process. 

 In future studies, not only the solar radiation parameter but 
also air temperature and sunshine duration parameters should 
be considered for multi-time series and multi-time scale 
modeling. 
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