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ABSTRACT

In the article, we are concerned with the oscillatory solutions of a class of fractional differential equations.
By using generalized Riccati function and Hardy inequalities, we present some oscillation criterias. As a

result we give some examples that validity of the established results.

Anahtar Kelimeler: Oscillation, Oscillation Criterias, Fractional Derivative, Generalized Riccati

Function.

Kesirli mertebeden dogrusal olmayan diferensiyel denklemlerin salimmmlihigi iizerine

0z

Bu makalede, kesirli mertebeden diferensiyel denklemlerin bir sinifinin salinimli ¢éziimleriyle ilgilenildi.
Genellestirilmis Riccati fonksiyonu ve Hardy esitsizlikleri kullanilarak, baz salinimlilik kriterleri sunuldu.
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1. INTRODUCTION

Fractional differential equations have been proved
to be valuable tools in the modelling of many
physical and engineering phenomena such as
viscous damping, diffusion and wave propagation,
electromagnetism, polymer physics, chaos and
fractals, electronics, electrical networks, fluid
flows, heat transfer, traffic systems, signal
processing, system identification, industrial
robotics, genetic algorithms.economics, etc, [1-3].
For the many theories and applications of
fractional differential equations, we refer to the
books [4-7]. Recently, many authors studied the
numerical methods for fractional differential
equations, the existence, uniqueness, and stability
of solutions of fractional differential equations [8-
13].

Research on oscillation of various equations like
ordinary and partial differential equations,
difference equations, dynamic equations on time
scales and fractional differential equations has
been a hot topic in the literature, and much effort
has been made to establish new oscillation criteria
for these equations [14-24]. In these
investigations, we notice that very little attention
is paid to oscillation of fractional differential
equations [25-31].

In [32], Jumarie proposed a definition for a
fractional derivative which is known as the
modified Riemann-Liouville derivative in the
literature. In the later years, many researchers have
studied several applications of the modified
Riemann- Liouville derivative [33-35].

In [27,29], authors have established some new
oscillation criteria for the following equations:

Dy (r(t)(Df‘x(l))y)+p(l)(Df‘x(l )y
+q(1)f(x(1))=0
D Df (r () Drx(t)) |+ g () x(t) =0,

D (a(t)(Df‘ (r(t)D,"‘x(t)))y)+q(t) 7(x(1))=0.

b

for tet),0), 0<a<l and where D;(-)

denotes the modified Riemann-Liouville
derivative with respect to variable 7.
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In this study, we are concerned with the oscillation
of following fractional differential equations:

D? (a(t)(Dt“ (7/(1‘)[Df'x(t)}y1 ))hj
+q(1) f(x(1))=0

where ¢ €[t,,0), 0<a <1 and D/ () denotes the

(1.1)

modified Riemann-Liouville derivative with
respect to the variable 7, y, and y, are the quotient
of two odd positive number,the function
aeC“([tO,oo),R+), reCZ“([ZO,oo),R+),
ge C([to,oo),R+), the function of f belong to
C(R,R), f(x)/x=k>0 forall x#0,and C”
denotes continuous derivative of order « .

Some of the key properties of the Jumarie's
modified Riemann-Liouville derivative of order
o are listed as follows:

r(@)%ﬂ)("‘f)w (f(é)—f(O))dg,o <a<l
(s (t))(H)

DI (f(0)g(1)=g(e) Dr 1 (1) + £ (1) Dg(2)
DI €IS DO L OVH DTN WY

Datﬂ — I_1(ﬂ+1) l«ﬂ*a
T (pr1-a)

As usual, a solution x(z) of (I.1) is called

D f(t)=

J<n<a<n+1

oscillatory if it has arbitrarily large zeros,
otherwise it is called non-oscillatory. Equation
(1.1) 1is called oscillatory if all its solutions are
oscillaory.

In the rest of this paper, we denote for the sake of
convenience:

E=t"/T(1+a); &=t IT(1+a),
i=0,1,2,3,4,5; a(t)=a(&);  r(t)=7(&);
g(1)=3(£); 5 (&.6) =12 (17" (s))ds:
5(1.)=56,(£.).

And we use class of averaging functions
H e C(D,R) which satisfy

H(t,t)=0,H(t,s)>0 fort>s

Let H has continuous partial derivatives 0H /ot
and 0H /0s on D such that
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aH(t’S):—hl(t,s) H(ts)
ot
OH (t,s
8(S )=—h2(t,s) H(t,s)
where  D={(t,s) : {,<s<t<o| and h,
hzeLloc(D,R+)

2. MAIN RESULTS

Lemma 2. 1. Assume x(7) is an eventually

positive solution of (1.1), and

2 1

J.foalT(S)ds_oo (21)
0 1

Iéomds =0 (22)

1/n

7,
IZ[,:(Q)I:L(IT)&(S)"S} ‘”] 91 (23
s
Then, there exist a sufficiently large 7 such that
Df(r(t)[Df‘x(t)T‘)>o on [T,w) and either
D/ x(t)>0 on [T,) or lim, , x(z)=0.

Proof. Suppose x(7) is an eventually solution of
(1). Let a(t)=a(&), r(1)=7(&), x(1)=%(¢),
q(t)=g (&) where &£=¢"/T'(1+a). Then, we
know that D/ &(¢) =1, and furthermore, we have
Dfa(t)=Dfa(¢)=a (§)Dré(r)=a ()
Similarly we have Dir(t)=7 (&),

Dx(t)=x (&), Dq(t)=4 (£). So, (1.1) can
be transformed into following form:

pesart]] |,
+3(&) f(%(£))=0,62&>0

Then (&) is an eventually positive solution of
(2.4), and there exists & > & such that x(£)>0
on [&,®). So, f(i(g)) >0 and we have
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{d(f)[(f @ O) )j } (2:5)

Then, a(g)((ﬂg)[f(g)]“ )jy is strictly
decreasing on [&,), thus we know that
HGHGI ) is eventually of one sign. For
&>& s
(f(g)[f(z:)]" ) >0 on [£,®). Otherwise,
assume that there exists a sufficiently large &, > &,
such that (f(g)[x’(g)]” ) <0 on [£,). Thus,

F(& )[fc (& )T’ is strictly decreasing on [&;, ),
and we get that

FO[F ] -F&)[F ()]
L@ ()F[F )]

T

1/72 % ; g
EFEFE]) & ()"

FOLF ()] <7 (&)% (&)
v @)@ @) ‘Ciu%(s)ds

By (2.1), we have lim,_,, 7#(£)[ £ (£)]" =—.So
there exists a sufficiently large &, > &, such that
X (&£)<0, £€[&,,»). Then, we have

£ rl/;/l (S)

F(E)-%(&,) = jzx (s)ds = j@ T o) % (s)ds

1

A (954”. T(S)ds

sufficiently large, we claim

S

and so,
1

7(&) < (6)F (&) e

By (2.2), we deduce that liméwfc(.f):—oo,
which contradicts the fact that %(&) is an

eventually positive solution of (2.4). Thus,
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(’7(5)[’?(6&)]71);0 on [£,,), and then
Dta(r(t)[D[‘"x(t)T)>O on  [ne). So

D!x(t)=x (&) is eventually of one sign. Now we
assume X (£)<0 on [&,0) where & >&, is
sufficiently large. Since )E(cf) >0, we have
lim,  #(&)=4>0. We =0.
Otherwise, assume £>0. Then %(£)>/4 on

[&.0), f(x(&))2kx(E)>kB2M for M eR,
and by (2.5) we have

claim

<-q(&)M

Substituting & with s in above the inequality, and
integrating it with respect to s from & to o yields

_a(é)((f(f)[f 7 )j [ a(s)as
which means
(},(5)[;(5)]71 ) >{M&(1§)J':q(s)ds} 72 (2.6)

substituting & with 7 in (2.6), and integrating it
with respect to 7 from & to o yields

1y,
J-wé (s)ds} dr

il

That is,

) I%L ) . . s 1y, ]
x“){‘M f(x:)f{a(n”( )"} "]

substituting & with ¢ in above the inequality, and

1/n

integrating it with respect to ¢ from & to &
yields
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By (2.3), we have lim,  X(&)=—w, which

t—>0

causes a contradiction. So, the proof is complete.

Lemma 2. 2. Assume that x(¢) is an eventually
of (1) that

Df’(r(t)[Df’x(t)Tl)>O, D!x(t)>0 on [t,»),

positive  solution such

where ¢, > ¢, is sufficiently large. Then, for 7 >¢
, we have

1/

4
57 (1,1))

0 (o0 )
r'(t)

Proof. Assume that x is an eventually positive
solution of (1). So, by (2.5), we obtain that

Zt(f)((?@)[fc (5)]71 ) JVZ is strictly decreasing

on [&,). Then,

FOFE ] 27 ()5

Dfx(t)>

ds

@) o)
(O ©@]) 3(8)

and so,

r(O)[ Dex(t) ][ 2" () Dy (r(z)[Dfx(t)]” Ja (2.0

multiplying both sides of above the inequality by
1/r(t), we obtain

@' (0] ot (r ([ Pre(0)] )} 5V (1,8
7 (1)

Dfx(t)>

So, the proof is complete.

Lemma 2. 3. [36]: Assume that 4 and B are
nonnegative real numbers. Then,

AAB*' - 4" <(A-1)B"
forall A>1.

Theorem 2. 4. Assume that (2.1)-(2.3) and
7,7, =1 hold. If there exists ¢ € C* ([tO,OO),R+)
such that
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[ {ka()5(5)

)
477 (5)9(5)6" (5.8) 2.7)

where k€R_; ¢(&)=p(t); then, every solution

of (1) is oscillatory or satisfies lim, , x (t) =0.

Proof. Suppose the contrary that x(7) is non-

oscillatory solution of (1.1). Then without loss of
generality, we may assume that there is a solution

x() of (1) such that x(z) >0 on [#,,%), where ¢,
is sufficiently large. By Lemma 2. 1, we have
Dy (r(t)Df’x(t)) >0, te[t,,»), where £, >1, is
sufficiently large, and either D/x(7)>0 on
(¢)=0. Then, define the

following generalized Riccati function:

o0z (0 [2rx(0)] )
x(l)

[t,,0) or lim, x

72

+p(1)

o(t)=¢(1)

For 1 €[t,,»), we have

So,
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Do(i)=Dio(s )j%
o o

72

. (t)am(Df(r(t)[fjj(tgt)]")) (1)

Using Lemma 2.2 and definition of f, we obtain

Dlo(t)< D,“(p(t)%

—ko(t)q(1)+p(1) D7 p(1)

5 () [o() 1
w00

and so,

Dl (1)
o(1)
.\ 26/ (8,1,) p(1)
r'(t)
—ko(t)q(t)+o(t) D7 p(t) (2.8)
B 511/7‘(t,l‘2) a)Z(t)

' (1)e(1)
—co(t)—gllm (t8)

7 P

5 (1.t 12
Setting A=2, Az(%) a)(t),

p(t)r"" (¢

Dio(t)<w(t)

B = 20037 () o) M () Do) by a combination of

z(rl/;/l (t)(p(t)gll/yl (t,tz))m
Lemma 2. 3 and (2.8), we get that
Dlo(t)<—kq(t)p(t)+o(t) D7 p(1)

oL 29)

20(0)8" (612) (1)}
+r'" (1) Dl (1)
a0 () (0t
Now, let w(t)=&(&). Then we have

Diw(t)=& (&) and Do(t)=¢ (&). Thus (2.9)
is transformed into
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@ ()= (£)9(£)+#(£)7 (¢)

(e

(26(£)3" (£.6)5()+7" ()5 (£))

47 (£)9(£)0 (6.4,)
Substituting & with s in above the inequality and

integrating two sides of it from ¢, to &, we have

I {ki(s)a(s)

which contradicts (2.7). So, the proof is complete.

Theorem 2. 5. Assume that (2.1)-(2.3) and
77, =1 hold. If there exists ¢ € C* ([to,oo),R+),

such that for any sufficiently large 7 >¢&, there
exists a,b,c with T <a <c <b satisfying

kG (s)@(s)=(s)p (s)

1 ‘ Un
H(c,a) LH(S’a) )%52@) ds
P(s)p (s)
1/yl d
‘5 52 A e 5[ @
1 1/}/1 S)

>

( )“451/y'(s )
( (s.a)- ((p(j) 261/”1/4()~(S)) H(s,a)) ds

N 1 Iyl (S)gb(s)
H(b,c)?« 46" (s,%)

i 2y ~ 2
[ R N )
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where ¢ is defined as in Theorem 2. 4. Then,
every solution of (1.1) is oscillatory or satisfies
lim,_, x(7)=0.

Proof. Suppose the contrary that x(7) is non-

oscillatory solution of (1.1). Then without loss of
generality, we may assume that there is a solution
x(r) of (1.1) such that x(¢)>0 on [f,,0), where

t, is sufficiently large. By Lemma 2. 1, we have

Df(r(t)[D,"x(t)T)>O, telt,,©0), where
t, > t, is sufficiently large, and either D;x(z)> 0
on [z,,0) or lim,_, x(¢)=0. Then (2.8) holds.
Let w(t), @(&) be defined as in Theorem 2. 4.

Then we have Do(r)=ad (£) and

(%)
7(2)
L207(6,:6)p(¢)
77 (8)
—kp(£)q(£)+p(£)p (€)
5" (£.4)
e )

~ 5‘11/;/1 (é::é:z) ~2

¢(5) i;;l/]/l (5) P (5)
Choosing a, b, c arbitrary with a>b>c in
[52,00). Substituting & with s and multiplying
two sides of (2.10) by H (&,s) and integrating it

from ¢ to &, we get

R0 ()
ICH( ’S) +@(s J

(2.10)

a(s)|2), 207 (5:)5(5) ]
U{@(s) 7 (s) }

¢
+| H(E,s ds
J-c ( ) é‘ll/}/l (S,gz) -
@ (5)
L 77 (5)o(s) |
Using the method of integration by parts
1517
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¢(s)p (s)
l/;/l d
+6(s) 5%% 7"

<H § c c?)
(&) <§ ()
_c?) s (5,(5)_,_2511/71(59982)/5(5)
+I§H(§ s ( ){(7’(5) 77 (s)
¢ ) 31 (5,8, 7 (s)
| 77 (s)@(s)
So,

)

. 591 (5.) p(s 2
(o) {220 E) o
)a(

(77 (5)(s)
¢ 45" (s,&,)
o slin 2
(ite)-{5 25 )

Now letting £ — b~ and dividing both sides by

H (b,c), we obtain,

ds

ds
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~ /71 2
x(hz(b,s)_(;g;;+w) H(b,s)) ds

"1 (s)

On the other hand, substituting & with s and
multiplying two sides of (2.10) by H(s,&) and

integrating it from &
calculations, we get

to ¢, with

similar

Now letting & — a” and dividing both sides by

H (c,a), we obtain,

e o TS
<-ad(c)
1 J-c fl/j‘ (s)@(s)
H(c,a) a 45! (s,§2)

5 5'n (s 2
x(;ﬁ(s,a)_(ggp%gm)) H(s,a)) ds

So, we get the inequality
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kg (s)o(s)=(s)p (s)

1 ¢ /7
H(c.a) J‘aH(s,a) )§~W(ls g‘z)p (s) ds
#(s)p (s)
1/71 d
5 52 5 ()|
1 1/7/1 S)

) aam s )

( h(sa)= (M;) ”’1()
LR ()o(s)

H(b,c) 04511/7‘ (s,fz)
#(s) , 28" (s.5)A(s)

2
X(hz(b’s)_(«s(‘v) F(s) )H(b’s)) »

This is a contradiction. Thus,
complete.

Theorem 2. 6. Assume that (2.1)-(2.3), y,7, =1
hold and there exists a function G € C ([50 ,), R)
such that G (&,&)=0, for £>¢, G(&,5)=0 for

&>s>¢ and G has non-positive continuous

(v)) H(s,a))2 ds

+

the proof is

partial derivative G, (&,s). If @ is defined as in
Theorem 2. 4 and

1 . o
G(é,éo)L(,G(faS){kq(s)q)(s)

(s)-9(s) o) A (s)
(20(5)50" (56)5(5)+7 () (5)
4717 (s)gﬁ(s)glw' (s5,4,)

Then every solution of (1.1) is oscillatory or
satisfies lim,_,, x(¢)=0.

_(Z’(S)f’ A

2

ds =

Proof. Suppose the contrary that x(7) is non-

oscillatory solution of (1.1). Then without loss of
generality, we may assume that there is a solution

x(t) of (1.1) such that x(7)>0 on [z,,), where

t, is sufficiently large. By Lemma 2. 1, we have

D; (r()[D2x(0)]" ] >0,

t, > ¢, is sufficiently large, and either D"x(¢)> 0
on [t,,00) or lim,, x(¢)=0. Then (2.9) holds.

telt,,0), where
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Let o(t)
and D’

( ). Then we have D@ ()

¢ (&), s0

_ @ ($)
o(t)=
@ (£)<—k§(£)p(&)+o(8)p ()

e B8

L(20(9)87 (£.£)5(€)+ 77 ()7 (¢)
477 (8)P(£)67 (6.4,)

2

Substituting & with s in above the inequality and
multiplying two sides of it by G(&,s) and
integrating it from &, to &, we get

1= 6(.5) k()5 (5)-$(5) 5 (s)
—o(s 511/71 (Saétz) 5 (s
()" 2 )

1(26(5)87 (5.£) A(s)+7" ()6 (5))

4 P (s)P(s)0" (5:,)

$

i;l/;/l

ds

G;(f,s)c?)(s)As
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Corollary 2. 7. Under the conditions of Theorem

=[76(&.5){ka(5)7(5)-3(5) 5 (s) 2.6, if

P (S) lim sup

1
s (SZ_‘;:O)/I
_(;,(S)m/az (s)

[ (6=5) k() ()~ ()5 (5)

Fin (S)

[.6(&9){ka(5)p(s)=0(5) 7 (s) 12093 (5 £)p(5)+ P (F () |
0954 4 P (5)0(5)8 (5.:4)
(D(S) i (s) (S)

Then, every solution of (1.1) is oscillatory or

1£G(£.5)a(4)
+G(£.8)[ [ki(5)e(s)=5(s) 5 (s)

—(p(S)%S(‘;K;)ﬁ (S)
_1(2‘5(5)51”" (5.6)p(s)+7"" (s)9 (S))z‘

4 Fin (s)(ﬁ(s)é:lwl (s,fz)

Thus, we get

lim sup

s G(gago)
<a(s,)

+I§ ‘kq S D S)—(Z)(S)ﬁ,(s)

ORIt

1 (20(s )5“71 (5:£)A(s)+77 (5) (s))
OO A AN

<@(&) <o

This is a contradiction. So, the proof is complete.

From the Theorems, one can derive a lot of
oscillation criteria. For instance, consider

G(&.s)=(&-s)", or G(&s)=In(£) in the

Theorem 2. 6. Then, we have the following results.
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| ( ( )51/71 (S’gz)b(S)Jﬂ;l/m (S)(Z) (s))2 }ds satisfies lim,_,, x(¢)=0.

Corollary 2. 8. Under the conditions of Theorem
2.6,if

. 1 ¢ ~0 N~
g{losupmj‘éo(ln(f)—ln(s)){kq(s)go(s)

(97 ()00 55 )
()R (5 8)P6)+ 7 (P ) |
T e ()

Then, every solution of (1.1) is oscillatory or
satisfies lim, , x(¢)=0.

3. APPLICATIONS

Example 3. 1. Consider the fractional differential
equation,

1/3[ s 1/3[ /3 ( )}5/3 "
D"t (Dt D, x(t ) }
+t‘2/3x(t)(l+sin2(x(t)))zO
for ¢+>3. This corresponds to (1.1) with ¢z, =3,
=t ri=t n=hoal)=r" r()=1,
qg(t)=t" and  f(x)=x (1+sm x). So,
f(x)/x=1+sinx21=k, & =3"/I(4/3),

)/
a(£)=(er(4/3))". 4(&)=(r(4/3))". S0

3.1)
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5(&,8) j1/~”72 )ds

¢ 1
=[r(4/3)]" Ll

=[r(4/3)] (in(£)-1n(£))

which implies lim, ,, &, (£,& ) =00, and so, (2.1)
holds. Then, there exists a sufficiently large
T > &, such that 5 (&,6,)>1on [T,).In(2.2),

S—J. ds =0

J.; ,,1/711(

In (2.3),

1y, n

ol 1 | 1w
L L] o] e
= —[F(4 / 3)]‘7/5 J.; [J-:TSBCZTT/S i

=(3/5)"[r(4/3)] " [ s ae

Letting ¢(£)=¢ and p(£)=0 in Theorem 2.4,

e O] |,
()5”"( [

So, (3.1) is oscillatory by Theorem 2. 4.
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Example 3. 2. Consider the fractional differential
equation,

DV {13/7 (DW [tl/Zl (D1/7x(l‘))l/3j|)3}
t t t (32)
+17 ( (8/7)) exp(x2 (t))x(l) =0
for +>2. This corresponds to (1.1) with 7, =2,
7 V(t) — t_1/21

. 7,=3, a(t)=t"

q(t)=1"" (1“(8/7))3 and  f(x) =exp(x2)x.
1 & =2"/T(8/7),

@)=(a@m).  FE=(aE/7)"

5(&.8)=[ 1@ (s)ds

=[r(s/7)] [ sds
=[T(8/ } (In(&)-In(£,))

which implies lim,_, 51 (f, fz) =00 and so (2.1)
holds. Then, there exists a sufficiently large
T > &, such that 5‘1 (f,fz) >1 on [T,oo) .In (2.2),

© 1
Igo =Un (

In (2.3),

ds—[F 8/7 ]I sds =

Un

gt i) o]
=[r@E/7n]" L_WI [lj *ds}l/}
g

dr} dc

2 ) 51/3

_slt (8/ I [icag

=00
Letting ¢(&)=s", A=1
Corollary 2. 7, we have

and p(&)=0 in
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(sT(8/7))"
5]3 (Saégz)

Azmsup(é_léo)j;(g—s) .

: 1 1
= lim sup

1 4
R s

A =limsup

1
fon T (E-E))
. 1 L |1
fgo(‘:_s){l_r(sn)Sf(s,cfz)kds
¢ 1 ! !
+IT(§_S){1_F(8/7) 5‘13(&6:2):‘;61%_

> lim sup

g (5_50)

J;(SZ‘S){I‘ r(81/7) 5 (i,gz)EdS
fﬁ“”){l‘r<sl/7>ﬁds

= 0

So, we deduce that (3.2) is oscillatory by Corollary
2.7.

4. CONCLUSION

In this paper, we are concerned with the oscillation
for a kind of fractional differential equations. The
fractional differential equation is defined in the
sense of the modified Riemann-Liouville
fractional derivative. By use of the properties of
the fractional derivative, we consider a variable
transformation that the fractional differential
equations are converted into another differential
equation of integer order. Then, some oscillation
criteria for the equation (1.1) are established.
Finally, we give some examples to illustrate the
main results.
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