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Abstract Öz 
Solar energy power plants play a significant role 
in meeting the demand for sustainable and clean 
energy. However, variable weather conditions, 
seasonal effects, and similar factors can result in 
the need for energy overproduction to be stored 
or lead to costs associated with energy deficiency. 
These situations can result in inefficiencies in 
solar energy production. The objective of this 
study is to predict energy production, increase 
efficiency, and develop more sustainable energy 
strategies by using machine learning methods 
with data obtained from meteorological and solar 
energy panels. This study aims to assess the 
results achieved by existing models and compare 
their successes. The Random Forest algorithm, 
which achieved the highest R2 score, also obtained 
significantly lower values for MSE, RMSE, and 
MAE. This indicates that the Random Forest 
algorithm performs the best among the 
algorithms used in this study. This ranking of 
success is followed by Decision Trees and K-
Nearest neighbors. 
 

Güneş enerjisi santralleri, temiz ve sürdürülebilir 
enerji taleplerini karşılama konusunda önemli bir 
rol oynar. Ancak değişken hava koşulları, 
mevsimsel etkiler ve benzeri faktörler, fazla 
üretilen enerjinin depolanması veya eksik 
enerjiden kaynaklanan maliyetlerle 
sonuçlanabilir. Bu durumlar, güneş enerjisi 
üretiminde verimsizliklere yol açabilir. Bu 
çalışmanın hedefi, meteoroloji ve güneş enerji 
panellerinden elde edilen verileri kullanarak 
makine öğrenmesi yöntemleriyle enerji üretimini 
tahmin etmek, verimliliği artırmak ve daha 
sürdürülebilir enerji stratejileri geliştirmektir. Bu 
çalışma, mevcut modellerin elde ettiği sonuçları 
değerlendirmeyi ve başarılarını karşılaştırmayı 
amaçlamaktadır. En yüksek R2 puanını alan 
Random Forest algoritması, aynı zamanda MSE, 
RMSE ve MAE değerlerinde de önemli ölçüde 
düşük sonuçlar elde etmistir. Bu da Random 
Forest algoritmasının bu çalışmada kullanılan 
algoritmalar arasında en iyi performans 
gösterdiğini göstermektedir. Bu başarı 
sıralamasını Karar Ağaçları ve K-En Yakın Komşu 
izlemektedir. 
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1. INTRODUCTION 

Factors such as population growth, industrialization, and rising levels of prosperity are 
driving up energy demand. This increased demand is leading to the depletion of primary 
energy sources or an increase in our dependence on external resources [1]. Primary 
energy sources such as oil, coal, and natural gas serve as the leading resources to meet 
our energy needs. However, renewable energy sources remain underutilized and await 
further development [2]. 

Solar energy's environmentally friendly and unlimited nature is a significant factor 
influencing energy policies. Renewable energy sources, being inexhaustible, clean, and 
environmentally friendly, also have the potential to increase job opportunities. However, 
there are disadvantages, such as variability in energy sources depending on seasons and 
weather conditions and high investment and storage costs. More research is needed to 
make energy production efficient and effective. In the field of renewable energy 
production, studies are being conducted in mechatronics, computer science, and 
artificial intelligence to increase solar energy production and improve the conversion 
efficiency of mechanical systems [3]. The "Role of Artificial Intelligence in Energy 
Workshop and Panel " has emphasized the importance of using digital technologies in 
energy efficiency studies. Numerous studies have been conducted in different 
geographic areas worldwide and Turkiye using various statistical methods and 
approaches like fuzzy logic and artificial neural networks. 

1.1. Related Work 

Various artificial intelligence and machine learning-based studies that combine Solar 
Energy Systems (SES) with meteorological data have reached predictions that enhance 
efficiency in energy production. This study examines the challenges and 
recommendations by applying different algorithms across various regions and datasets. 
In a 2012 study, the Support Vector Machines model, combined with solar power plant 
and temperature data, achieved promising results in predicting power production[4]. 
The second phase of a study conducted in 2016 added meteorological data to SES data, 
applied a machine learning model, and observed a 75% reduction in error rates, 
improving predictions[5]. Research conducted in 2018 highlighted radiation, humidity, 
and time data as critical parameters in energy production forecasts. It was also 
recommended that the angle of solar panels be considered, as well as their maintenance 
and cleaning [6]. Another study suggested that using more data and different forecasting 
methods could further improve the accuracy of predictions [7]. One of the studies 
conducted in 2019 concluded that among various machine learning methods, artificial 
neural networks provided more reliable results in solar energy prediction [8];another 
suggested that incorporating other parameters such as temperature, pressure, and 
precipitation in future studies could enhance the learning processes of artificial 
intelligence methods[9]. A 2019 study focused on predicting disruptions in energy 
production due to solar power plants (SPP) being covered with optical obstructing 
materials like snow, sand, and mud. Early detection of disruptions through machine 
learning algorithms, using SES data along with humidity, precipitation levels, solar 
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radiation, and pressure data, would enable quicker maintenance activities [10]. A 2020 
study observed that the Decision Trees model displayed low prediction performance 
and a tendency for overfitting [11]. In 2021, the Random Forest algorithm provided the 
best prediction. The study found that relative humidity, temperature, and radiation 
significantly affected solar energy production, while the amount of daily precipitation 
was a less significant factor. Including cloudiness data in the training set was suggested, 
and removing nighttime meteorological data from the dataset could slightly reduce the 
error rate [12]. Another study examining the relationship between meteorological data 
and energy production offered suggestions to minimize the impact of adverse weather 
conditions on energy production and supply [13]. Another study's correlation analysis 
revealed a strong relationship between the energy produced by SPP and humidity, 
temperature, and solar radiation [14]. In 2022, an application was made on six different 
machine learning models using SES data and measured meteorological data such as 
cloudiness, wind speed, wind direction, temperature, and pressure. According to the 
study results, the Gradient Boosting Regression Trees and Artificial Neural Network 
models outperformed all other methods [15]. 

1.2. Aim and Objective 

The primary goal of this study is to improve efficiency in the energy sector and optimize 
energy production using machine learning methods with Solar Energy Systems (SES) 
and meteorological data. This involves making future-oriented energy production 
forecasts and evaluating the employed machine learning techniques through 
consistency and validity analyses, comparing the successes of existing models. This 
study combines data from solar energy systems and meteorological parameters to 
improve the prediction of solar energy production. 

Various machine learning algorithms, including Random Forest, Decision Trees, 
Polynomial Regression, K-Nearest Neighbors, Ridge Regression, Lasso Regression, and 
Multiple Linear Regression, are applied and their performance is compared. 
Comprehensive data cleaning, data aggregation, normalization, and handling of missing 
values are conducted to improve model performance. Cross-validation techniques are 
used to assess model robustness and accuracy, determining the optimal strategy. 

The study provides practical guidance for enhancing the efficiency of solar energy 
production and supporting sustainable energy practices. Different from existing 
literature, the study is unique in its use of region-specific SES data and 24 different 
meteorological parameters from the Bilecik, Bozüyük region of Turkiye, contributing to 
the originality and thoroughness of the research. This comprehensive approach to data 
integration, machine learning application, and detailed performance comparison creates 
a solid foundation for predicting solar energy production. 

By making solar radiation variability predictable, the study enhances the accuracy and 
reliability of energy production forecasts, contributing significant advantages in cost-
effectiveness, efficiency, and strategic planning within the energy sector. Precise 
prediction models help in better planning and management of the energy supply chain, 
reducing instabilities and ensuring continuous, stable energy production. This provides 
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energy companies with significant advantages in long-term strategic planning and 
investment decisions, leading to more efficient implementation and management of 
solar energy plants. This study also demonstrates the applicability of machine learning 
algorithms to energy production, contributing to interdisciplinary research and data 
analysis techniques for academia. It provides a foundation for other researchers by 
showing which methods are more effective under specific conditions, assisting in the 
development of comprehensive prediction models, and supporting model optimization. 

2. METHODOLOGY AND DATA PROCESSING 

 

Figure 1. Methodology. 

The raw data were merged and organized with the help of SQL, while all other processes 
were completed using the Python programming language within the Jupyter Notebook 
interface of the Anaconda program. SQL was essential for efficiently handling and 

• Solar Power Plant Data (09.06.2018-28.02.2022/Excel/67209 line)

• Meteorological Data (09.06.2018-28.02.2022/Excel/579743 line)

Data Ingestion

• Clean, Prepare Data/SQL 
• Missing Values/ Jupyter Notebook-Python
• Encoding Data/ One-Hot Encoder
• Normalization/ Min-Max Scaler

Data Preparing and Prosessing

• Python Libraries
• Heat Maps
• Feature Selection/Pearson Correlation

Analyze

• Modeling the data with Regression Models (Random Forest, K-
Nearest Neighbors (K-NN), Decision Trees, Polynomial 
Regression, Ridge Regression, Lasso Regression and Linear 
Regression)

• Cross Validation

Machine  Learning

• Seaborn, Matplotlib

Visualization
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transforming extensive datasets. Specifically, SQL was used to merge multiple large 
Excel files into single tables, create aggregations for the parameter tables, and clean 
irregular timestamps and null values by standardizing and imputing data based on 
seasonal averages. This step reduced processing time, sustained data integrity, and 
minimized data movement between systems. It is emphasized that 80% of the data 
analysis process is allocated to the data cleaning and preprocessing phase [16]. This 
study consists of five main stages: Data Entry, Data Preprocessing (missing data, 
transforming data, normalizing data), Analysis (feature selection, cross-validation, heat 
maps), Machine Learning Applications, and Visualization (Figure 1). 

2.1. Dataset  

In this study, data recorded in hourly periods from June 9, 2018, to February 28, 2022, 
from three solar power plants (CEM SPP, CEMKA SPP, and Osman Aydın Şenol SPP) have 
been utilized. These data include parameters such as Inverter Energy Generation 
Cumulative (MW), Inverter Energy Generation (MW), Radiation Energy (W/m²), and 
Cell Temperature (°C). Due to inconsistencies in the dataset's time parameters, it was 
decided to organize the data on a daily basis rather than using hourly intervals.  

Hourly meteorological data obtained from the Bilecik Central Meteorological Station, 
provided by the Meteorological General Directorate, were also used within the scope of 
the study. Table 1 presents the data types, row counts, data ranges, and missing data 
information for Soil Temperature (°C), Actual Pressure (hPa), and the other 22 
meteorological parameters, as well as Solar Energy System parameters. These data have 
been organized by considering the start and end times of solar energy production. As a 
result, a dataset consisting of 3,872 rows and 32 columns has been prepared (Table 1). 

2.2. Missing Values  

Incomplete, incorrect, or noisy data can negatively impact the performance of machine 
learning models, making preliminary exploratory analysis crucial before beginning data 
processing [17]. It is necessary to examine various details related to the dataset, such as 
the number of observations, types of variables, and amounts of missing data. Table 1 
includes a 'Missing Data' column that summarizes the missing data for each feature. 

The "Snow Depth" attribute contains the highest number of null values, totaling 3323. 
Since the Bilecik, Bozüyük region typically does not experience heavy snowfall, only the 
days with snowfall have been recorded, leaving records for days without snowfall 
missing. Thus, although more than 70% of this column contains missing data, it may not 
be appropriate to delete it completely. The missing data in this column have been 
assigned a snow depth value of 0, ensuring the dataset's consistency by assigning values 
to missing data. General assignment methods based on mean, median, and mode values 
have been considered to fill in missing data in other columns. However, since solar 
energy production varies with sunlight, it can exhibit dynamic changes between seasons 
and months.  Therefore, a more specific approach has been adopted to fill in missing 
data.  For all columns, missing data have been filled in, considering the mean, median, 
and mode values of the data in the same months as the missing data. 
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Table 1. Summary Table of Variables, Data Types, Ranges, and Missing Values. 

VARIABLE NAME PARAMETER NAME 
DATA 
TYPE 

RANGE 
MIN/MAX 

ROW 
MISSING 

DATA 

SITE 
Solar Energy Production 

Site 
OBJECT 

Cem/Cemka/O
AS 

67279 0 

DATE (DAY, MONTH, YEAR) Date 
DATE 
TIME 

9 June 2018/ 
28 Feb. 2022 

67279 0 

START_TIME 
Energy Production  

Start Time 
INT 5/18 67279 0 

END_TIME 
Energy Production  

End Time 
INT 10/22 67279 0 

IRRADIANCE Irradiance Energy FLOAT 0.0/742.244 67279 0 

CELL_TEMPERATURE Cell Temperature FLOAT -4.78/45.88 67279 0 

SOIL_TEMPERATURE_5CM 5 cm Soil Temperature FLOAT 0.393/33.58 30737 24 

ACTUAL_PRESSURE Actual Pressure FLOAT 932.25/970.22 31206 0 

VAPOR_PRESSURE Vapor Pressure FLOAT 2.80/22.382 30431 33 

EVAPOTRANSPIRATION 
Evaporation 

Evapotranspiration 
FLOAT 0.0/0.637 18699 1543 

CLOUD_BASE_HEIGHT Cloud Base Height FLOAT 0.0/2500.0 15374 504 

CLOUD_COVER Cloud Cover FLOAT 0.0/8.0 21357 0 

INSOLATION_INTENSITY Insolation Intensity FLOAT 0.0/55.276 13559 1480 

SUNBATHING_DURATION Sunbathing Duration FLOAT 0.0/0.988 11810 1795 

WET_GLOBE_TEMPERATURE Wet Globe Temperature FLOAT -7.176/22.96 21348 0 

GLOBAL_SOLAR_RADIATION Global Solar Radiation FLOAT 0.0/640.0 13559 1480 

MAX_RELATIVE_HUMIDITY 
Maksimum Relative 

Humidity 
FLOAT 30.75/98.062 27325 496 

MAX_TEMPERATURE Maksimum Temperature FLOAT -5.6/32.36 30971 48 

SNOW_DEPTH Snow Depth FLOAT 0.0/35.0 2574 3323 

MIN_RELATIVE_HUMIDITY 
Minimum Relative 

Humidity 
FLOAT 24.94/97.125 27324 496 

MIN_TEMPERATURE Minimum Temperature FLOAT -6.66/30.143 30971 48 

RELATIVE_HUMIDITY Relative Humidity FLOAT 26.615/97.562 31019 0 

TEMPERATURE Temperature FLOAT -6.16/31.1 31263 0 

TOTAL_GLOBAL_SOLAR_RADI
ATION 

Total Global Solar 
Radiation 

FLOAT 0.0/38400.0 13559  480 

TOTAL_PRECIPITATION Total Precipitation FLOAT 0.0/2.712 31064 33 

ABOVE_GROUND_MIN_TEMP
ERATURE 

Above Ground Minimum 
Temperature 

FLOAT -4.135/40.057 29589 192 

WIND_DIRECTION Wind Direction FLOAT 0.0/360.0 30005 4 

WIND_SPEED Wind Speed FLOAT 0.0/4.53 30005 4 

MAX_WIND_DIRECTION Maximum Wind Direction FLOAT 3.0/360.0 27997 39 

MAX_WIND_SPEED Maximum Wind Speed FLOAT 1.125/13.72 27997 39 

CUMULATIVE_ENERGY 
Cumulative Energy 

Production by Inverter 
FLOAT 0.0004/153.95 67279 0 

ENERGY Energy Production FLOAT 0.0/16.658 67279 0 
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2.3. Encoding Data 

Machine learning models generally work more effectively with numerical data. 
Therefore, converting categorical data into a numerical format is essential to help the 
model understand these data. Popular methods used for this transformation include 
ordinal encoding, label encoding, and one-hot encoding. 

One-hot encoding treats different levels of categorical variables independently, making 
it suitable for unordered (nominal) data. It is also useful for representing categorical 
data without any ranking or priority condition. As a result, converting categorical data 
into numerical data is a critical step in machine learning projects. In this study, the only 
column in the dataset containing categorical data is the "LOCATION" column, which 
includes the names of the SPP and contains 3 different data: "CEM", "CEMKA", and 
"OAS". The One-Hot Encoding method has been applied to process this column. As a 
result of this process, new columns have been created for the "CEM", "CEMKA", and 
"OAS" categories in the "LOCATION" column, with the value of the relevant column 
marked as 1 for the corresponding observations, while it is marked as 0 for all other 
observations. 

2.4. Normalization 

In this study, the min-max normalization method has been applied to normalize the 
dataset values between 0 and 1. This process ensures that the values of the features in 
the columns are on the same scale without altering their actual values, thereby aiding 
machine learning models in producing more consistent results and balancing the impact 
of different features in the model. It has been observed that the R2 scores obtained 
before normalization have increased after the normalization process. Equation 1 is used 
for Min-Max Normalization [18]. 

   𝑥𝑛𝑒𝑤 =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
 (1) 

2.5. Machine Learning Algorithms Used in the Study 

Machine learning algorithms are classified into three main categories: Supervised, 
unsupervised, and reinforcement learning [19]. Supervised Learning involves creating 
functions that map inputs to outputs, where training data include both inputs and their 
corresponding outputs. This category is primarily divided into two subcategories: 
classification and regression. Classification refers to the process of assigning input data 
to specific categories, whereas regression involves predicting a continuous output 
variable based on input data. 

In this study, supervised learning methods were used due to the presence of labeled 
features in the dataset, the ability to fully digitize the data, and the energy-related nature 
of the target output. These methods include classification and regression algorithms 
such as Random Forest, Decision Trees, Polynomial Regression, K-Nearest Neighbors (K-
NN), Ridge Regression, Lasso Regression, and Linear Regression. 

Linear Regression aims to model the linear relationship between a dependent variable 
(outcome) and independent variables (inputs), using this model to predict future values 
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[20]. It is commonly used to understand how one variable is affected by others or to 
make predictions about a dependent variable. However, if there is no linear relationship 
between independent variables or if the relationship is too complex, other regression 
methods or machine learning algorithms may be more appropriate. The linear 
regression equation is given in Equation 2 [21]. 

  𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ +𝑎𝑛𝑥𝑛 (2) 

Lasso Regression employs the multicollinearity problem in traditional linear regression 
using L1 regularization [22]. L1 regularization tends to shrink the regression model's 
coefficients towards zero, completely eliminating some while reducing others. This 
helps reduce the model's tendency to overfit, making it more stable. It also offers the 
ability to perform feature selection and can reduce the complexity of models in high-
dimensional datasets. Lasso regression is expressed as shown in Equation 3 [20]. 

𝑆𝑆𝐸𝐿1
= ∑ (𝑦𝑖−𝑦̂𝑖)

2 + 𝜆 ∑ |𝛽𝑗|𝑃
𝑗=1

𝑛
𝑖=1  (3) 

Ridge Regression uses L2 regularization to solve the multicollinearity problem 
encountered in linear regression [23]. L2 regularization reduces the estimate variances 
without completely nullifying them, making the model more stable and reducing the 
tendency to overfit. In Ridge Regression, increasing the alpha parameter, which 
measures the intensity of regularization, can lead to a simpler and smoother model 
structure. Conversely, decreasing alpha can activate more features, increasing the 
model's complexity. Ridge regression is expressed as shown in Equation 5 [20]. 

                     𝑆𝑆𝐸𝐿2
= ∑ (𝑦𝑖−𝑦̂𝑖)

2 + 𝜆 ∑ 𝛽𝑗
2𝑃

𝑗=1
𝑛
𝑖=1         (4) 

K-NN bases its predictions on the class or value of observed neighbors of data points, 
operating on the premise that similar data points are likely to belong to the same class 
or have similar values [24]. Parameter K, which affects the model's performance, 
determines how many neighbors are considered when making predictions. Small K 
values can lead to overfitting, while large K values can offer lower complexity at the 
expense of lower detail levels [25]. The calculation of Euclidean distance is used to 
measure the distance between two given points and is expressed by the formula in 
Equation 5 [26]. 

                                                            𝑑(𝑥, 𝑦) = √∑ √(𝑦𝑖 − 𝑥𝑖)2𝑛
𝑖=1                                                (5) 

Polynomial Regression is an extended version of Linear Regression that can represent 
more complex relationships [27]. It is particularly useful in scenarios where the 
relationship between data is not linear. However, it risks overfitting, as a very high 
polynomial degree can fit the data perfectly but reduce the ability to generalize to new 
data. The polynomial regression equation is usually expressed in the format of Equation 
3 [28]. 
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𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ +𝑎𝑛𝑥𝑛 (6) 

The Decision tree algorithm works by splitting the existing dataset into smaller groups 
of datasets through various decision rules [29]. Decision trees represent decisions and 
outcomes visually and logically in a hierarchical tree structure. Each node in the tree 
structure represents a feature, each branch represents a decision, and each leaf 
represents an outcome [30]. However, they can be sensitive to overfitting issues. Hence, 
the depth of the trees and other parameters should be carefully adjusted. 

 Random Forest can be effectively used for regression problems. As an ensemble model 
created by combining multiple decision trees, it allows for the production of more 
consistent and robust models. The model benefits from the aggregation of multiple 
decision trees, enabling a more accurate classification of the dataset [31]. Generally, 
using more trees can yield better results but may require more computational power. To 
determine which attribute is more decisive in predictions and to ensure the 
homogeneous distribution of nodes during the splitting and selection process, the Gini 
index, a criterion of the CART algorithm, is calculated [29]. As the Gini index decreases, 
the homogeneity of the class increases, and a branch is considered successful if the Gini 
index of the child node is lower than that of the parent node [32]. The calculation of the 
Gini index for a node is provided in Equation 7 [33]. 

    𝐺𝐼𝑁𝐼(𝑛) = 1 − ∑ (𝑝𝑗)
22

𝑗=1                                                            (7) 

2.6. Performance Evaluation Metrics 

In this study, machine learning algorithms were evaluated using performance metrics 
such as R-squared (R2), Mean Absolute Error (MAE), Mean Squared Error (MSE), and 
Root Mean Squared Error (RMSE). R2 measures the degree of variance of the 
independent variable on the dependent variable explained in regression analyses. This 
metric is used to assess how well the regression model fits and its predictive ability.  

The R2 value typically ranges between 0 and 1. A value of 0 indicates that the 
independent variables do not explain any variance of the dependent variable, while a 
value of 1 indicates that the independent variables fully explain the variance of the 
dependent variable. The R-square formula is given in Equation 8 [34].  

                                                   𝑅2 = 1 −
∑(𝑦𝑖−𝑦𝑖̂)2

∑(𝑦𝑖−𝑦𝑜𝑟𝑡)2                                                                             (8) 

 

MAE measures how much deviation there is from the actual values in the predictions of a 
regression model. It is calculated by taking the absolute difference between each 
prediction and the actual value and then averaging these absolute errors [35]. The MAE 
formula is given in Equation 9 [36]. 

                                                    𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑦𝑖̂|

𝑛
𝑖=1                                                                        (9) 

 

 

 

MSE is a metric where the square of the difference between each prediction and the 
actual value is calculated, and the average of these squares is taken [37]. The formula for 
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MSE is given in Equation 10 [38]. 

                                                           𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑛
𝑖=1                                                            (10) 

RMSE is calculated by taking the square root of the average of these squared errors. This 
provides a value expressed in the original units of the errors, helping to assess the 
model's predictive ability in a more understandable way [37]. The formula for RMSE is 
given in Equation 11 [38]. 

                                                               𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖̂)2𝑛

𝑖=1                                                 (11) 

 

 

 

The closer the MSE, RMSE, and MAE values are to zero, the closer the model's 
predictions are to the actual values, and lower values reflect better model performance.  

3. ANALYSIS  

3.1. Feature Selection  

In machine learning applications, selecting and creating the right features can enhance 
the model's performance and prevent overfitting. Therefore, using all features may not 
always be the best approach. The Pearson Correlation Method is commonly used to 
evaluate the relationship between numerical features. The correlation coefficient ranges 
between -1 and 1, indicating the nature of the relationship. A value of 1 represents a 
positive correlation, a value of -1 indicates a negative correlation, and 0 signifies no 
relationship. Heat maps help us understand the correlation relationships between data 
visually. 

In this study, the Pearson correlation method was used to examine the relationships 
between variables, and features with high linear relationships were removed from the 
dataset. The removed parameters include Temperature, Minimum Temperature, 
Maximum Temperature, Above Ground Minimum Temperature, Maximum Relative 
Humidity, Minimum Relative Humidity, Global Solar Radiation, and Total Global Solar 
Radiation. Figure 2(b) indicates that the removal of these features reduced the 
distribution of yellow-colored and navy-colored areas (high relationship) in the heat 
map. This observation indicates that features that could lead to overfitting have been 
successfully removed from the dataset. 
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a)                                                                                              b) 
Figure 2: Comparative Correlation Heatmaps Before a) and After b) Intervention. 

3.2. Cross Validation 

In the final data preparation stage, the primary objective is to complete the data 
preparation necessary for machine learning modeling successfully. This stage is crucial 
for assessing the accuracy and performance of the model and forms the foundation of 
machine learning projects. This process typically relies on the approach of splitting the 
data into 70% for training and 30% for testing. However, a disadvantage of this 
approach is that random splitting of the data can lead to deviations and errors in the 
model's training and testing phases. Cross-validation is used to solve this problem. It 
divides the data into equal parts according to a specified number of folds and uses each 
part for both training and testing. Cross-validation is a technique used to determine 
whether the model is sensitive to the data and if it faces an overfitting problem [39]. 

In this study phase, while dividing the data series into training and testing sets, the aim 
was to determine the most effective number of folds using cross-validation. During the 
cross-validation process, layers 3, 5, 7, and 10 were tested for each model. The R2 scores 
obtained for each of these layers were analyzed through graphs, and the layer yielding 
the highest R2 score was applied to the cross-validation method. Figure 3 indicates that, 
among the cross-validation experiments conducted for the Random Forest Algorithm, 
the layer achieving the highest efficiency was identified as layer 10. 
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Figure 3. Comparison of layer numbers in cross-validation of the Random Forest algorithma. 

For other models, the most efficient folds were as follows: 10 for Decision Trees, 5 for 
Polynomial Regression, 3 for K-Nearest Neighbors, 10 for Ridge Regression, 10 for Lasso 
Regression, and 5 for Linear Regression. 

4. EXPERIMENTAL RESULTS AND DISCUSSION 

The application of the Random Forest Algorithm with 10-fold cross-validation has 
presented performance metrics, as shown in Table 2. According to these results, the 
most successful fold achieved an R2 score of 0.977839, indicating a very close fit to the 
data, with an MSE value of 000470 and an MAE value of 0.010246. The model training 
time was 2.676702 seconds, and testing took 0.011588 seconds. The proximity of the R2 
score to 1 and the error metrics being near zero indicate that this model operates 
effectively, with predicted values very close to the actual values. Therefore, the Random 
Forest algorithm has been determined as the best-performing algorithm on our dataset. 
The close alignment and minimal deviation between the actual (green) and predicted 
(orange) values in Figure 4 effectively demonstrate the model's success. 

Table 2. Cross-validation scores of a 10-fold Random Forest. 

 
 
 
 
 
 
 

 

 

 

TRAIN TIME(sec) TEST TIME(sec) MAE MSE R2 
2.693017 0.011881 0.012725 0.000801 0.966911 
2.699743 0.012547 0.015406 0.001240 0.947507 
2.676702 0.011588 0.010246 0.000470 0.977839 
2.686624 0.011264 0.014322 0.000875 0.962936 
2.683924 0.011708 0.015851 0.001018 0.955305 
2.712291 0.011445 0.012858 0.001198 0.942472 
2.680358 0.011424 0.013175 0.001222 0.931541 
2.645197 0.011388 0.017708 0.001327 0.942999 
2.755475 0.009947 0.030055 0.002397 0.883474 
2.709051 0.011982 0.029534 0.002617 0.882043 
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Figure 4.  Actual vs. predicted values for Random Forest Algorithm. 

When the Decision Trees algorithm was applied with 10-fold cross-validation, the 
performance metrics presented in Table 3 indicate that the most successful fold reached 
the second-highest R2 score of 0.958071, with an MSE value of 0.001015 and an MAE 
value of 0.015920. The model's training time was 0.055333 seconds, and testing took 
0.001745 seconds. This efficiency demonstrates that the model works effectively, with 
predicted values being very close to the actual values. Hence, the Decision Trees 
algorithm has been identified as the second-best performing algorithm on our dataset. 
While the modeling time is shorter compared to the Random Forest Algorithm, the R2 
score is lower. Figure 5 presents the actual (green) vs. predicted (orange) values for the 
Decision Trees algorithm. 

Table 3. Cross-validation scores of Decision Trees with 10 folds. 

 
 
 
 
 
 
 
 
 

 

TRAIN TIME(sec) TEST TIME(sec) MAE MSE R2 
0.055333 0.001745 0.015920 0.001015 0.958071 
0.045795 0.001341 0.019678 0.002291 0.903002 
0.044398 0.001374 0.014378 0.001387 0.934640 
0.044352 0.001116 0.019781 0.002050 0.913171 
0.042404 0.001022 0.018410 0.001508 0.933808 
0.043641 0.001000 0.015193 0.002067 0.900792 
0.042462 0.001001 0.016553 0.001467 0.917832 
0.042120 0.000962 0.019907 0.001674 0.928063 
0.043777 0.000954 0.038023 0.003757 0.817405 
0.042618 0.000941 0.044692 0.006951 0.686678 
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Figure 5. Actual vs. predicted values for Decision Trees Algorithm. 

The polynomial algorithm, applied with 5-fold cross-validation, shows its performance 
metrics below in Table 4. According to these results, the most successful fold achieved 
the third-highest R2 score of 0.934440, with an MSE value of 0.001499 and an MAE value 
of 0.022007, indicating that the model operates effectively. The model training took 
0.043331 seconds, while the testing time was 0.000708 seconds. However, after 
applying polynomial regression to the dataset, the discrepancy between predicted 
values and actual values increased compared to other models, indicating a decrease in 
model performance (Figure 6). 

Table 4. Cross-validation scores for Polynomial Regression with 5-fold. 

 

 

 

 

 

Figure 6. Actual vs. predicted values for Polynominal Algorithm. 

The K-Nearest Neighbors (K-NN) algorithm, when applied with 3-fold cross-validation, 
has provided its performance metrics in Table 5. According to these outcomes, the most 
successful fold achieved a high R2 score of 0.943126, indicating a strong fit to the data, 

TRAIN TIME(sec) TEST TIME(sec) MAE MSE R2 
0.246620 0.000776 0.023647 0.001667 0.930401 
0.043331 0.000708 0.022007 0.001499 0.934440 
0.109142 0.000834 0.026565 0.001683 0.922892 
0.241825 0.001018 0.038778 0.003117 0.852737 
0.193275 0.000864 0.057116 0.009124 0.575508 
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with an MSE value of 0.001308 and an MAE value of 0.023127. The model training took 
0.004636 seconds, while the testing time was 0.057263 seconds. However, as indicated 
in the previous Figure 7, the discrepancy between predicted and actual values has 
increased compared to other models, signifying a decline in model performance. 

Table 5. Cross-validation scores for K-Nearest Neighbors with 3-fold. 

 
 
 
 
 

 

Figure 7. Actual vs. predicted values for K-Nearest Neighbors Algorithma. 

For the Ridge Regression algorithm applied with 10-fold cross-validation, the 
performance metrics presented in Table 6 indicate that the most successful fold reached 
the second-highest R2 score of 0.929428, with an MSE value of 0.001498 and an MAE 
value of 0.027092. The model training took 0.004549 seconds, while the testing time 
was 0.001214 seconds. The predicted and actual values for Ridge Regression are shown 
in Figure 8. 

Table 6. Cross-validation scores for Ridge Regression with 10-fold. 

 
 
 
 
 
 
 
 
 
 

TRAIN TIME(sec) TEST TIME(sec) MAE MSE R2 
0.004636 0.057263 0.023127 0.001308 0.943126 
0.001207 0.028936 0.047829 0.004600 0.798010 
0.001203 0.028476 0.031314 0.002932 0.862946 

TRAIN TIME(sec) TEST TIME(sec) MAE MSE R2 
0.017350 0.001596 0.034323 0.002038 0.915765 
0.004416 0.001207 0.032414 0.002561 0.891551 
0.004549 0.001214 0.027092 0.001498 0.929428 
0.005079 0.001236 0.035063 0.002390 0.898773 
0.004131 0.001203 0.036170 0.002433 0.893215 
0.004400 0.001530 0.033049 0.002144 0.897057 
0.004039 0.002012 0.030421 0.002481 0.861025 
0.004102 0.001081 0.036942 0.002902 0.875300 
0.004174 0.000986 0.049912 0.004374 0.787406 
0.004017 0.001562 0.049322 0.006135 0.723466 
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Figure 8. Actual vs. predicted values for Ridge Regression. 

The Lasso Regression algorithm, when applied with 10-fold cross-validation, showed its 
performance metrics in Table 7. According to these results, the most successful fold 
achieved an R2 score of 0.930667, an MSE value of 0.001471, and an MAE value of 
0.026507. The model training took 0.073838 seconds, while the testing time was 
0.001043 seconds. The predicted and actual values for the Lasso Regression are shown 
in Figure 9. 

Table 7. Cross-validation scores for Lasso Regression with 10-fold. 

 

 

 

 

 

 

 

 

Figure 9. Actual vs. predicted values for Lasso Regression. 

TRAIN TIME(sec) TEST TIME(sec) MAE MSE R2 
0.088474 0.001396 0.034482 0.002055 0.915055 
0.078327 0.001167 0.032605 0.002598 0.889981 
0.073838 0.001043 0.026507 0.001471 0.930667 
0.073755 0.001203 0.034960 0.002395 0.898565 
0.072219 0.001068 0.036647 0.002502 0.890186 
0.073340 0.001204 0.033124 0.002145 0.897031 
0.072662 0.001109 0.030473 0.002506 0.859606 
0.078145 0.001266 0.036719 0.002898 0.875467 
0.070600 0.001138 0.050945 0.004554 0.778652 
0.071725 0.001000 0.048838 0.006067 0.726527 
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For the Linear Regression algorithm applied with 5-fold cross-validation, the 
performance metrics presented in Table 8 indicate that the most successful fold reached 
the second-highest R2 score of 0.91252, with an MSE value of 0.002 and an MAE value of 
0.03169. The model training took 0.00375 seconds, while the testing time was 0.00127 
seconds. The predicted and actual values for Linear Regression are shown in Figure 10. 

Table 8. Cross-validation scores for Linear Regression with 5-fold. 

 
 
 

 
 
 

 

Figure 10. Actual vs. predicted values for Linear Regression. 

Comparing the results of Ridge, Lasso and Linear Regression, it is observed that despite 
the R2 scores being close to 1, these algorithms performed lower compared to other 
applications. Additionally, the increase in green areas in Figures 8, 9, and 10, which 
indicate the discrepancy between actual and predicted values, suggests that the 
performance of these models is lower compared to others. The comparison of R2, MSE, 
MAE, RMSE, training times, and testing times for all algorithms applied to the dataset 
has been presented in Table 9. 

Table 9. Performance comparison table of machine learning algorithmas. 

TRAIN TIME(sec) TEST TIME(sec) MAE MSE R2 
0.016861 0.001614 0.034770 0.002372 0.900943 
0.003758 0.001279 0.031693 0.002001 0.912526 
0.002433 0.001098 0.034438 0.002290 0.895052 
0.002113 0.001093 0.035152 0.002846 0.865547 
0.003341 0.001920 0.058762 0.007975 0.628970 

 R2 MAE MSE RMSE 
TRAIN 

TIME(sec) 
TEST 

TIME(sec) 

RANDOM FOREST 0,977839 0,010246 0,00047 0,021679483 2,679702 0,011588 

DECISION TREES 0,958071 0,01592 0,001015 0,031859065 0,055333 0,001745 

K-NEAREST NEIGHBORS 0,943126 0,023127 0,001308 0,036166283 0,004636 0,057263 

POLYNOMINAL 0,934440 0,022007 0,001499 0,038716921 0,043331 0,000708 

LASSO REGRESSION 0,930667 0,026507 0,001471 0,038353618 0,073838 0,001043 

RIDGE REGRESSION 0,915765 0,034323 0,002038 0,045144213 0,017350 0,001596 

LINEAR REGRESSION 0,912526 0,031693 0,002001 0,044732538 0,003758 0,001279 
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5. CONCLUSION  

The R2 scores are considered an important performance metric for assessing the success 
of an algorithm. While the R2 score is crucial, it alone may not suffice to determine a 
model's performance comprehensively. A model is considered to perform well if its R2 
score is close to 1 and its error metrics (MAE, MSE, and RMSE) are low. The graph of R2 
scores for machine learning models is provided in Figure 11. 

 

Figure 11. R2 score chart for machine learning models. 

As observed in Figure 11 and Figure 12, the Random Forest algorithm, which achieved 
the highest R2 score, also obtained significantly low values for MSE(Figure 12b), 
RMSE(Figure 12c), and MAE(Figure 12a). This indicates that the Random Forest 
algorithm performs the best among the algorithms used in this study. This ranking of 
success is followed by Decision Trees and K-Nearest Neighbors.  

 

       

Figure 12. MAE(a), MSE(b), RMSE(c) charts for machine learning models. 

The outcomes and findings of this study present a series of recommendations aimed at 
promoting sustainable transformation within the energy sector and supporting the 
efficient utilization of renewable energy sources. 
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Collaborations with Industry: Collaborations with industry and partnerships with the 
private sector can be established to facilitate the rapid development and 
implementation of renewable energy projects. 

Cooperation with the Meteorological Directorate: Ongoing cooperation with the 
Meteorological Directorate can ensure that energy production potential analyses are 
regularly updated using current climate data. This collaboration will help identify the 
most suitable regions for Solar Energy Plants and facilitate the conduction of feasibility 
analyses. 

Energy Source Diversification: It is suggested that studies focus not only on solar energy 
but also on other renewable energy sources such as wind energy. This approach 
encourages the diversification of the energy supply and enhances energy security. 

Optimization of Random Forest Algorithm: The Random Forest algorithm stands out for 
its modeling success and shorter training duration. However, limitations in tree depth 
could lead to overfitting issues. In future studies, the algorithm's parameters could be 
examined in more detail, and more effective solutions could be produced by exploring 
different methods. 

Automation of Maintenance and Cleaning: Recording maintenance and cleaning times in 
solar energy plants and using this data can contribute to the development of automation 
capable of performing automatic maintenance and cleaning tasks. Additionally, 
implementing automations that vary depending on the position of the sun and 
predicting the effects of these variables on energy production can enhance efficiency. 

These recommendations can enhance the sustainability of the energy sector and 
increase Turkiye's capacity to meet its energy demand through environmentally friendly 
and sustainable practices. 
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