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Abstract
Countries’ sectors are currently under great scrutiny for their response to the greenhouse gas (GHG) emission profile and 
the general effect of the sectoral activities on the environment. As in the agenda of all sectors, environmental concerns and 
investigations are of high importance in shipping and maritime transport. Amidst the rising forms of globalization, the need 
for sustainable transportation is constantly increasing. However, the machines that are the cornerstone of transportation 
largely depend on fossil fuels, thus resulting in environmental degradation. Notably, environmental-related degradation 
has continued to account for global warming, climate change, and ocean acidification. Shipping is considered the most 
environmentally friendly mode of transportation in terms of carbon dioxide  (CO2) emissions per ton per mile of transported 
unit load when compared against road transportation. In this study, six ferry lines (FLs) of Washington State Ferries were 
calculated to compare ship-generated carbon dioxide  (CO2) emissions with those from road transportation as if the carried 
vehicles had used the highway instead of transport by FL. While making these calculations, the Greatest Integer function 
(GIF) and Trozzi and Vaccaro function (TVF) were utilized. From the examined three scenarios, i.e., all passengers travel by 
car instead of ferry as scenario 1, all ferries carry both cars and passengers as scenario 2, and all car-free passengers travel by 
bus instead of ferry as scenario 3, the outlined results are as follows: (i) none of the cars were carried by the ferry, and car-
free passengers preferred traveling by their own cars as observed in scenario 1; (ii) hypothetical scenarios (1 to 3) in which 
the road vehicles carried on FLs had instead used the highway, and the total potential  CO2 emissions of these road vehicles 
were calculated as 2,638,858.138, 704,958.2998, and 1,394,148.577 tonnes per year, respectively. Policy-wise, this study 
revealed the management strategies for  CO2 emissions reduction for two transport modes, shipping and road transportation, 
under current conditions.

Keyword Environmental sustainability · Road and waterways · Trozzi and Vaccaro function · Greatest Integer function · 
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Introduction

With the provision or access to mobility of humans, goods, 
and services, transportation is arguably the most essential 
connector. By recognizing the impact of transportation on 
fostering inclusive growth through creating more access to 
essential services and mitigating the growing global effect 
of climate change, intergovernmental agencies are not will-
ing to relent in aiding the partnership of government and 
private institutions (World Bank, 2021a). However, there 

remain many challenges to achieving a sustainable global 
transportation system. For instance, the World Bank (2021a) 
reported that one billion people still live more than 2 km 
from accessible road transportation systems, thus causing 
about one and half million deaths annually. Moreover, in 
spite of the growing benefits and contributions of the global 
transportation system, there are other far-reaching problems 
associated with the current model. Arguably, the climate 
change-related issues associated with the global transpor-
tation system are increasingly worrisome. For instance, 
the global contribution of greenhouse gas emissions from 
transportation amounts to 16% of the global GHG emis-
sions amidst a $15 billion annual cost of direct damages 
to the transportation infrastructure from natural disasters 
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(World Bank, 2021a). Specifically, in the world’s largest 
economy, the United States, the energy sources mainly used 
for transport come from the burning of fossil fuels (mostly 
petrol, gasoline, and diesel); therefore, the sector contributed 
29% of the country’s 2019 total greenhouse gas emissions 
(United States Environmental Protection Agency, 2021).

Importantly, global warming, which accounts for the 
increase in average temperatures of land, sea, and air 
throughout the year, has continued to pose a serious chal-
lenge to the global transportation system. The reason is that 
the transportation networks across land, sea, and air are 
directly or indirectly impacted by the increase in the green-
house gases (GHGs), i.e.,  CO2,  H2O (water, which could 
be in the form of vapor), and  CH4 (methane, which is an 
organic compound), with the  CO2 emissions being the domi-
nant contributor to global warming (Winnes et al., 2015). 
The global average surface temperature increased between 
0.6 and 0.9 °C from 1906 to 2005, and the rate of tempera-
ture increase has almost doubled during this time range, 
especially within the last 50 years. According to a report 
from The National Oceanic and Atmospheric Administra-
tion’s (NOAA) National Centres for Environmental Informa-
tion (NCEI), nine of the world’s 10 hottest summers have 
occurred since 2005 (NOAA, 2020). Moreover, five of these 
10 summers have occurred since 2015. In 2019, the average 
temperature worldwide was 0.95 °C higher than the aver-
age temperature of the twentieth century and is only 0.04 
°C lower than the highest recorded temperatures of 2016 
(NOAA, 2020). With the COVID-19 pandemic that emerged 
in 2019, a decrease in (GHG) emissions has occurred that 
is largely associated with a slump in transportation logis-
tics (Magazzino et al., 2021; World Bank, 2021b). By early 
June 2020, global daily fossil fuel  CO2 emissions were 
mostly back to 5% below 2019 levels (UN Environment 
Programme, 2020).

As identified in the literature, fossil fuels are mainly 
responsible for the increase of GHGs (Alola, 2019; Ike 
et al., 2020; Usman et al., 2020; Koyuncu et al., 2021; Oni-
fade et al., 2021). Notably, vehicle-based  CO2 emissions 
are the largest factor driving the increase, which is espe-
cially the case for the United States transport sector (Umar 
et al., 2021). Therefore, the current study considers the 
case of the United States transportation sector because of 
its significant contribution to the country’s greenhouse gas 
emission profile (United States Environmental Protection 
Agency, 2021). Specifically, this study considers the fer-
ries and road transport systems in the state of Washington, 
whose transportation sector is the largest contributor to the 
state’s total greenhouse gas emissions, amounting to about 
99.6 million metric tons in 2018 (The Seattle Times, 2021; 
Reducing greenhouse gases, 2021). This study employs a 
novel approach for estimating the  CO2 emissions from vehi-
cles, thereby providing a comparative analysis of the United 

States’ Washington Ferries and road transport systems. By 
using the Trozzi and Vaccaro function (TVF) and Greatest 
Integer functions (GIF), this study offers a new approach for 
the ship-based  CO2 emissions and is compared with the tier 
method that is employed for road vehicles. By so doing, the 
current study expectedly contributes to the existing litera-
ture, thus narrowing the gap in the transport-environmental 
sustainability literature.

Additional background information highlighted with rele-
vant literature is provided in the “Background: sectoral emis-
sions” section. In the “Data collection and methods” section, 
the dataset and empirical methods employed are presented 
in a specified order. While the results of the study are high-
lighted in the “Results of the scenarios” section, the results 
are discussed in the “Discussion of results” section. The 
summary of the study with relevant policy suggestions is 
offered in the “Conclusion and policy implication” section.

Background: sectoral emissions

Beginning with the use of carbon-based fuels in transporta-
tion, an increase in anthropogenic greenhouse gas emissions 
has been observed. As of 2019, greenhouse gas emissions 
were 6558 million metric tons of carbon dioxide equivalents 
in the United States. Of that value, 29% was produced by the 
transportation sector. This value caused the transportation 
sector to appear at the top of the greenhouse gas emission 
producer sectors list in the United States (Environmental 
Protection Agency, 2021). According to 2019 figures from 
the United States, more than two-thirds of human-caused 
greenhouse gas emissions were  CO2 emissions. The origin of 
74% of GHG emissions and 92% of total anthropogenic  CO2 
emissions is associated with the utilization of carbon-based 
fuels in the United States (Energy Information Administra-
tion (EIA), 2021). It is observed that the rate of anthropo-
genic GHG emissions increased in the time period between 
2000 and 2010 and is much higher than the rate of increase 
seen in the previous three decades. As of 2010, anthropo-
genic greenhouse gas emissions reached 49 gigatons  CO2 
per year, which was the highest figure in human history 
(Intergovernmental Panel on Climate Change, 2021). As of 
2017, greenhouse gas emissions in the European Union were 
4.483 megatons of  CO2e, which was 21.7% lower than 1990 
values (European Environment Agency, 2019, 2021).

It is observed that studies on environmentally sustainable 
transportation strategies aiming to reduce greenhouse gas 
emissions are increasing. One approach proven to yield a 
decrease in GHG emissions is the use of renewable energy 
sources. The use of renewable energy in the transportation 
sector has been revealed as one of the reasons behind the 
increase in real disposable personal income, also causing a 
decrease in  CO2 emissions (Alola & Yildirim, 2019; Shafiei 
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& Salim, 2014). Environmentally sustainable transporta-
tion has been defined by The Organization of Economic 
Cooperation and Development (OECD) as “Transporta-
tion that does not endanger public health or ecosystems and 
meets mobility needs consistent with (a) use of renewable 
resources at below their rates of regeneration and (b) use of 
non-renewable resources at below the rates of development 
of renewable substitutes” (OECD, 1997).

Empirical literature highlight

Bouman et al. (2017) reviewed over 150 research papers 
related to GHG emissions reduction for the maritime trans-
port sector. The authors concluded that GHG emissions 
could be reduced by a factor of 4–6 per freight unit trans-
ported by only using the currently available technologies 
(Bouman et al., 2017). It has been observed that the use 
of automatic mooring systems at RoRo/Pax ports causes a 
decrease in  CO2 emissions, and it is predicted that a 97% 
reduction can be achieved at RoRo/Pax ports (Díaz-Ruiz-
Navamuel et al., 2018). Bridges over the straits are basically 
an alternative to short-sea shipping. Bridges over Dardanelle 
resulted in higher  CO2 emissions than those caused by the 
transit ships passing through Dardanelle (Mersin, 2020). 
When evaluating external costs of air emission, Lee et al. 
(2010) estimated that the use of short-sea transport instead 
of truck transportation is one of the most important alterna-
tives for reducing external costs.

Additionally, Svindland and Hjelle (2019) demonstrated 
that increasing the ship size would not cause an increase in 
 CO2 efficiency in every case of short-sea transport. Christo-
doulou and Cullinane (2020) showed evidence of the envi-
ronmental benefits of short-sea shipping. The technical and 
operational initiatives of shipping companies have been 
associated with the source of these benefits (Christodoulou 
& Cullinane, 2020). In a study conducted on ferry services 
to the islands, Baird and Pedersen (2013) indicated that 
 CO2 emissions would decrease if shorter sea routes were 
preferred over longer sea routes. However, another study 
on the comparison of approximately 900 short-sea shipping 
and road lines demonstrated that short-sea transport is not 
always more environmentally friendly than road transport, 
contrary to the popular generalization (Kotowska, 2015).

When comparing the result of  CO2 emissions from short-
sea and road transportation in the Marmara region, Ülker et al. 
(2020) revealed that a  CO2 emission comparison should be 
conducted for each line and region before any conclusions can 
be made. Hjelle and Fridell (2012) showed in their study that 
whether Ro-Ro transport achieved lower  CO2 emissions com-
pared to those of road transport mainly depended on the mar-
ket situation that is attained with load factors. Given the result 
of Hjelle and Fridell (2012) analysis, it is clear that the use 
of both low-sulfur fuel and the latest abatement technologies 

have not been sufficient for Ro-Ro transportation. As such, the 
study revealed that the outcome is not capable of providing 
superiority in environmental performance compared to road 
transport and that Ro-Ro ships should cruise well below their 
design speeds (Hjelle, 2011). Meanwhile, a study of the impact 
of both biomass energy and fossil fuel energy utilization in the 
entire transportation sector in the United States revealed inter-
esting results (Umar et al., 2021). Notably, Umar et al. (2021) 
revealed that biomass energy utilization in the transport sector 
mitigates  CO2 emissions, while the utilization of fossil energy 
sources is responsible for a surge in  CO2 emissions.

In the present study, environmental performance with 
regard to  CO2 emissions of Washington State Ferry lines 
has been examined and compared with those of road trans-
port systems. Given the uncommon direction employed when 
compared to existing literature, the study potentially makes a 
significant contribution to the body of knowledge available 
on the topic.

Data collection and methods

In this part of the study, the adopted method for estimating car-
bon emissions from transportation via Washington Ferries and 
road transportation are detailed with discussion of the results. 
However, we begin the description with the related dataset that 
is employed for the investigation.

Data collection

The Washington State Department of Transportation (2021a) 
website issues information about ferry lines and live ferry sta-
tus. Frequency of the ferry lines are also shown on the website. 
A map of the Washington State Ferry lines is demonstrated in 
Fig. 1. Car capacity, passenger capacity, speed, and displace-
ment of the vessels can be seen by visiting the above website, 
and the implemented information is outlined in Table 1 (Wash-
ington State Department of Transportation, 2021b).

Trozzi and Vaccaro method

A method for computing the total emissions of pollutants was 
introduced by and named after Trozzi and Vaccaro (1999). 
One advantage of this approach is its efficient use for the quan-
tification of emissions and diffusion of pollutants that emanate 
from different environmental scenarios. The formula employed 
for the estimation method of  CO2 emissions is given in Eq. (1).

where
E(ttotal): the total amount of  CO2 emissions for t-day 

sailing

(1)E
(

ttotal
)

=
∑3

i=1
C × f × t × pi
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Fig. 1  Washington State Ferry lines

C: fuel consumption (tonne)
f = 3200 kg/tonne  (CO2 emission factor)
t: time (day)

p1: sailing mode multiplier (0.8)
p2: maneuvering mode multiplier (0.4)
p3: hotelling mode multiplier (0.2)
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According to the above formula, three different situations 
should be examined while making calculations: sailing, port, 
and maneuvering. In this study, port and maneuvering emis-
sions are neglected because the time variable is taken as days 
in the calculations. If port time and maneuvering time are 
converted to days, there will be little change in the calcula-
tions. Thus, these changes can be neglected.

Trozzi and Vaccaro function

Fuel consumption is the largest contributor to  CO2 emis-
sions. There are some formulas for fuel consumption that 
neglect weight of the ship or changes in weight. By employ-
ing the approach from most recent studies, a new formula 
was built that does not neglect instant weight changing and 
shows the displacement tonnage at any time t (Mersin et al., 
2017). Thus, we imply that ∇(t) =

�

3
√

∇(0) −
�v3t

3

�3

 and fuel 

consumption for t day is C(t) = ∇(0) −
�

3
√

∇(0) −
�v3t

3

�3

 , 
where ∇ is displacement of the ship, in other words, weight 
of the ship. v is speed of the vessel, ∇(0) is the initial dis-
placement of the ship (at time t = 0), and λ is a parameter 
that is approximately equal to 1/120,000 for diesel machin-
ery installation. Therefore, this formula can be written as 
∇(0) −

�

3
√

∇(0) −
v3t

8640000

�3

 for the hourly emission.
In this part of the study, a function is built by modi-

fying the Trozzi and Vaccaro method. Accordingly, there 
is an emission factor for each exhaust gas such that the 
 CO2 emission factor is 3.2 tonnes per tonnes. Additionally, 
given the function modification, the mode multiplier is 0.8 
for sailing such that daily emission can be computed by 
multiplying daily fuel consumption with emission factor 
for  CO2 and mode multiplier. In light of the above facts, for 
this study, the modified function from the TVF is expressed 
in Eq. (2) as

Table 1  Properties of Washington State Ferry vessels

According to the Washington State Department of Transportation website, some vessels are not listed in the schedule. Therefore, these vessels 
are not included in the calculations for this study

Name Displacement 
(tonne)

Speed (kt) Car capacity Passenger 
capacity

Route Number of 
trips per 
year

Puyallup 6184 18 202 2500 Edmonds-Kingston 9464
Tacoma 6184 18 202 2500 Seattle-Bainbridge Island 8528
Walla Walla 4860 18 188 2000 Edmonds-Kingston 9100
Kaleetan 3634 17 144 2000 Seattle-Bremerton 6968
Yakima 3634 17 144 2000 Anacortes-San Juan Islands 7300
Chimacum 4384 17 144 1500 Seattle–Bremerton 5096
Samish 4384 17 144 1500 Anacortes–San Juan Islands 5475
Suquamish 4384 17 144 1500 Mukilteo–Clinton 5475
Tokitae 4384 17 144 1500 Mukilteo–Clinton 13104
Cathlamet 3310 16 124 1200 Fauntleroy-Vashon Island-Southworth 4004
Kitsap 3310 16 124 1200 Southworth-Fauntleroy-Vashon 14560
Sealth 3310 16 90 1200 Fauntleroy-Vashon-Southworth 5564
Kittitas 3310 16 124 1200 Mukilteo-Clinton 8528
Kennewick 2415 15.5 64 750 Port Townsend–Coupeville 7280
Salish 2415 15.5 64 750 Port Townsend–Coupeville 4368

(2)TVF(t) =

�

∇(0) −

�

3
√

∇(0) −
v3t

8640000

�3
�

× 3.20 x 0.80 =

�

∇(0) −

�

3
√

∇(0) −
v3t

8640000

�3
�

× 2.56

Calculation of potential  CO2 emissions of road vehicles (tier 
1 method)

Tier emission calculation methods are divided into various lev-
els according to their activity and technological features. Tier 1 

is a method that requires less data compared to the tier 2 or tier 
3 methods (Ülker et al., 2020). The tier 1 method can be used 
for  CO2 emission calculation if detailed features of the vehicle 
are not known. In this method, emission factors are based on 
fuel consumption for different vehicle types. The factors are 
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given in the EMEP/EEA Guidebook (2019). Accordingly, the 
formula of the tier 1 method is given in Eq. (3).

Ei: emission of i pollutant (g)
FCj, m: fuel consumption for the vehicle that is in category 

j and using fuel m (kg)
EFi, j, m: emission from the pollutant i for vehicle cat-

egory j and fuel m (g/kg)
In the United States, diesel-powered vehicles account for 4% 

of all motor vehicles (Chambers & Schmitt, 2015). Therefore, 
only gasoline cars and diesel-powered buses are considered in 
this study. Characteristic fuel consumption of cars and buses 
are assumed 70 g/km and 100 g/km, respectively, such that 
EFi, j, m is taken as 3.18 grams per gram of fuel consumption.

In light of the above facts, the tier 1 method can be 
modified as

where E(car) and E(bus) are  CO2 emissions of a car 
and a bus, respectively. d is distance between two points. 
In this study, distances are acquired from https:// www. 
rome2 rio. com/ map/.

(3)Ei =
∑

j

(

∑

m

(

FCj,m × EFi,j,m

)

(4)E(car) = 3.18 × 70 × d = 222.6 × d

(5)E(bus) = 3.18 × 100 × d = 318 × d

According to the function in Eq. (2), annual  CO2 emis-
sion of the ferries can be calculated. Thus, the annual 
emissions of ferry lines are given in Table 2 and graphi-
cally illustrated in Fig. 2.

Results of the scenarios

In scenario 1, it is assumed that all passengers travel by 
car instead of ferry and that each car has four passengers. 
In this case, the number of cars can be calculated by the 
Greatest Integer function (GIF). For all real numbers x, 
the Greatest Integer function returns the largest integer 
less than or equal to x. In essence, it rounds down a real 
number to the nearest integer. For example, GIF (3, 4) = 
3, GIF (5) = 5.

According to Table 1, the number of cars that will be 
on the road can be calculated by Eq. (6), and results of the 
calculation are given in Table 3.

where
NCR: number of cars that will be on the road
NP: number of passengers that are carried
NC: number of cars that are carried

(6)NCR = GIF(NP − 4 ∗ NC∕4) + 1.

Table 2  Annual ferry emission

Route CO2 emissions (tonne)

Edmonds-Kingston 21,799.1011
Seattle-Bainbridge Island 22,086.3667
Seattle-Bremerton 8563.53482
Mukilteo-Clinton 27,101.9346
Fauntleroy-Southworth 14,632.8255
Port Townsend-Coupeville 4337.48604

Fig. 2  Annual ferry emissions 
(measured  CO2 emissions, 
tonne)
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Table 3  Number of cars that will be on the road for each trip

Route Distance (km) Number of car

Edmonds-Kingston 168.1 736
Seattle-Bainbridge Island 148.2 780
Seattle-Bremerton 104.5 355
Mukilteo-Clinton 169.2 408
Fauntleroy-Southworth 95.4 563
Port Townsend-Coupeville 339 124

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



85119Environmental Science and Pollution Research (2023) 30:85113–85124 

1 3

According to Eq. (4), the potential annual  CO2 emissions 
from cars are given in Table 4 and Fig. 3. Of course, it is 
assumed that all cars have the same properties. For example, all 
cars have the same fuel consumption rate and are gasoline cars.

In scenario 2, all ferries carry both cars and passengers. 
In other words, ferries carry car-free passengers as well. 
In this scenario, it is assumed that all car-free passengers 
travel by bus instead of ferry and that each bus has 51 
passengers. These assumptions are conceived from the 
information provided by the maritime activities (available 
at https:// wsdot. wa. gov/ ferri es) in the examined cases. In 
this case, the number of buses that will be on the road is 
attained with the help of the GIF in Eq. (7) and outlined 
in Table 5.

NBR = GIF((NP − 4*NB)/51) + 1.(7)
where
NCR: number of buses that will be on the road
NP: number of passengers that are carried
NB: number of buses that are carried
Produced from Eq. (5), the potential annual  CO2 emis-

sions of buses is given in Table 6 and Fig. 4. Of course, 
it is assumed that all buses have the same properties. For 
example, all buses have the same fuel consumption rate 
and that all of them are diesel cars; this is an important 
assumption utilized in the computations.

In scenario 3, it is assumed that all car-free passengers 
travel by bus instead of ferry and that each bus has 51 
passengers. Furthermore, none of the cars are carried by 

ferry. For example, according to Table 5, 390 cars and 58 
buses are carried per trip in Edmonds-Kingston Ferry line. 
In scenario 3, passengers preferred traveling by their own 
car or by bus instead of ferry. Of course, scenario 3 oper-
ates on the same assumption as scenario 1 and scenario 2, 
i.e., that the cars/buses exhibit the same energy consump-
tion rates and utilize the same energy sources. The total 
annual emissions of this scenario (3) are given in Table 7 
and Fig. 5.

Discussion of results

The existing literature on the subject of the study shows the 
necessity of comparing  CO2 emission values on the basis 
of ferry lines. In parallel with the studies in the existing 

Table 4  Annual car emission

Route CO2 emissions (tonne)

Edmonds-Kingston 785,430.121
Seattle-Bainbridge Island 575,614.018
Seattle-Bremerton 123,943.734
Mukilteo-Clinton 704,347.846
Fauntleroy-Southworth 346,242.929
Port Townsend-Coupeville 103,279.49

Fig. 3  Annual car emissions 
(measured  CO2 emissions, 
tonne)
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Table 5  Number of buses that will be on the road for each trip

Route Cars Passengers Number 
of buses

Edmonds-Kingston 390 4500 58
Seattle-Bainbridge Island 346 4500 62
Seattle-Bremerton 208 2250 28
Mukilteo-Clinton 268 2700 32
Fauntleroy-Southworth 338 3600 45
Port Townsend-Coupeville 64 750 10

Table 6  Annual bus emissions

Route CO2 emissions (tonne)

Edmonds-Kingston 210,172.02
Seattle-Bainbridge Island 154,027.657
Seattle-Bremerton 33,538.5611
Mukilteo-Clinton 186,952.852
Fauntleroy-Southworth 92,369.842
Port Townsend-Coupeville 27,897.3677
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literature, this study includes six different Washington State 
Ferry lines and provides a separate evaluation made for each 
line. Three possible basic alternatives have been identified in 
the use of road transportation, but the first two alternatives 
consist of sole usage of private and public transportation 
vehicles, namely, cars and buses. The last alternative con-
sists of usage of cars and buses at the same time. Compari-
son between relevant alternatives has been conducted on full 
load assumption of ferries. Three scenarios are created, and 
each of them are compared with emissions caused by ferries, 
which is shown with the yellow row in Fig. 6.

According to scenario 1, none of the cars are carried 
by the ferry, and car-free passengers preferred traveling 
with their own cars. Annual emissions caused by scenario 
1 are shown with the gray row in Fig. 6. Scenario 2 occurs 

when all passengers preferred traveling by buses. The 
annual emissions caused by scenario 2 are shown with 
the orange row in Fig. 6. Finally, scenario 3 is the case 
when none of the cars are carried by the ferry, and car-
free passengers preferred traveling by buses. The annual 
emissions caused by scenario 3 are shown with the blue 
row in Fig. 6.

In the hypothetical scenarios 1, 2, and 3 where the road 
vehicles carried on FLs had used the highway, the total poten-
tial  CO2 emissions of these road vehicles are calculated as 
2,638,858.138, 704,958.2998, and 1,394,148.577 tonnes per 
year, respectively. The values observed from the investigation 
point led to a series of important conclusions and recom-
mendations. The first observed point is that the  CO2 emission 
ranking of the transportation options is the same for each of 
the six ferry lines. Studies from the literature have empha-
sized that in  CO2 emission comparisons, differences might 
be detected on the basis of lines and that it is necessary to 
perform separate analysis for each line (Baird & Pedersen, 
2013; Cooper, 2001; Pizzol, 2019; Ančić et al., 2020). For 
instance, Baird and Pedersen (2013) found a significant dif-
ference in the  CO2 emissions between the long-range ferry 
services (using the route from Aberdeen to Orkney Islands) 
and the short-range ferry services (across the Pentland Firth). 
Although the short-range ferry services consisted of a longer 
road journey for vehicles than the long-range ferry services, 

Fig. 4  Annual bus emissions 
(measured  CO2 emissions, 
tonne)

0

50000

100000

150000

200000

250000

Table 7  Total annual emissions of scenario 3

Route CO2 emissions (tonne)

Edmonds-Kingston 409,006.664
Seattle-Bainbridge Island 284,176.231
Seattle-Bremerton 66,659.3736
Mukilteo-Clinton 392,115.688
Fauntleroy-Southworth 188,433.4
Port Townsend-Coupeville 53,757.2206

Fig. 5  Total annual emissions 
(measured  CO2 emissions, 
tonne) of scenario 3
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findings revealed that there are greater  CO2 emissions for 
the long-range ferry services. Additionally, Cooper (2001) 
compared the pollutant emissions from three different on-
board high-speed passenger ferries that are all marine die-
sel engines and characterized with the following: the first 
one uses conventional, medium-speed; the second one is 
a gas turbine engine; and the third one is a conventional, 
medium-speed equipped with selective catalytic reduction 
(SCR) systems for NOx abatemen. The result revealed that 
the second ship showed lower emissions of NOx, PM, and 
PAH but not without higher fuel utilization and  CO2 emis-
sions. However, in the current study, the relevant situation 
was not determined. The results of the investigation yield the 
same conclusion for all the investigated ferry lines. Another 
important point revealed by the results of the analysis is that 
maritime transport causes the lowest  CO2 emissions on the 
relevant lines among other options. It should be noted that the 
calculations have been conducted on the maximum capacity 
for ferries. The figures show that higher  CO2 emission values 
will be endured if different road transport alternatives are 
preferred over ferries for the investigated lines. This situation 
supports the previous studies, which state the importance 
of high load factor requirements at short-sea transportation 
in order to achieve lower  CO2 emissions when compared to 
alternative transportation modes (Jebli & Belloumi, 2017; 
Ülker et  al., 2020; Dujmović et  al., 2022). Specifically, 
the investigation by Ülker et al. (2020) showed interesting 
results when comparison is made between  CO2 emissions 
from short-sea shipping and road transportation in a Turk-
ish region. The investigation showed that the total emission 
budget of the examined Ro-Ro and ferry lines is higher than 
the potential  CO2 emissions of the vehicles being carried. 
Thus, the study established that carbon emissions can be 
minimized by shifting trucks from the highway to the sea-
way. Meanwhile, among the other three scenarios in which 
highway alternatives are examined, the bus-only scenario has 
the lowest  CO2 emissions.

Conclusion and policy implication

Looking at the existing literature about the current study, 
there is a necessity to compare the  CO2 emission values 
on ferry line basis with road transportation. The case with 
the United States is crucial due to the economic prowess 
and carbon emission profile of the country. Considering this 
motivation, the current study examines six different Wash-
ington State Ferry lines (because of their importance in the 
country) by using a separate evaluation for each ferry line. 
Additionally, three possible basic alternatives were identified 
in the use of road transportation, where the first two alterna-
tives consist of sole usage of private and public transporta-
tion vehicles, namely, cars and buses. The last alternative 
consists of usage of cars and buses at the same time. Impor-
tantly, the result revealed that road vehicles carried on FLs 
had instead used the highway such that the total potential 
 CO2 emissions of these road vehicles are respectively com-
puted as 2,638,858.138, 704,958.2998, and 1,394,148.577 
tonnes per year. Comparison between relevant alterna-
tives was carried out on full load assumption of ferries on 
one hand and road transportation on the other. In a novel 
approach, the study adopted the Trozzi and Vaccaro function 
and Greatest Integer function; as such, the results offer rel-
evant policy implications with notable research limitations 
and recommendations.

Policy and recommendations for future study

Considering that the state of Washington produces a 
desirable amount of carbon-free electricity that poten-
tially meets about 90% of its demand (Washington Policy 
Center, 2020), a sector-specific legislation that is aimed 
at achieving such desirable success could be formulated 
to prevent transport emissions. Additionally, to comple-
ment the state’s more recent transport-related emission 
regulations (such as the Clean Car Law, Zero Emission 

Fig. 6  Comparison of annual 
emissions (measured  CO2 emis-
sions, tonne)
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Vehicle (ZEV) standard, and the Clean Fuel Standard), 
more partnership with the private sector could offer sig-
nificant energy and climate finance, such as the Volkswa-
gen Federal and State settlements (Reducing greenhouse 
gases, 2021). Moreover, in order to consistently reduce 
carbon emissions in both maritime and land transportation 
modes, there should be incentives for sea and land users to 
optimize the shortest possible routes.

The current study deals with carbon emissions in maritime 
and land transportation; other greenhouse gases and/or pollut-
ant emissions could be considered in a similar research frame-
work. Moreover, provided there is no data limitation, the study 
could be extended to other states and/or other economies.
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