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Abstract Although new information technologies
decrease information and transaction costs, transportation
problem of physical goods is still relevant. Globalization of
trade increased the uncertainty that companies are facing, it
also increased the importance of supply chain management
in world economies drastically. Because transportation
systems are crucial for operation management, the problem
of finding efficient and sustainable solutions under such
uncertain environments needs to be studied. Thus, this
paper focuses on “multi-objective solid transportation
problem (STP) in uncertain environment” and presents
some approaches to find the compromised optimal solution
of multi-objective STP. Then, compatible with uncertainty,
fuzzy programming and some techniques of the fuzzy set
theory are implemented to solve the problem by using
Maple 17.02. A numerical example is executed and pre-
sented here to illustrate suggested procedures.

Keywords Multi-objective solid transportation - Interval
numbers - Goal programming - Fuzzy programming -
Global criteria

1 Introduction
The traditional transportation problem (TP) in real life

deals with various issues such as selection of sources and
delivery routes giving the destinations; handling and
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packing; financing and insurance; duty and taxes, and is
related to other operations such as selection of production
place and capacity, decision on outsourcing of production,
hiring human capital, etc. Firms have to make related
complex decisions under highly competitive and uncertain
environments; this makes the transportation problem an
important issue which affects a firm’s competitive advan-
tage and ability to satisfy customer expectations.

Traditional transportation programming uses determin-
istic coefficients which are determined by experts. How-
ever, in real life, experts decide under uncertainty and their
knowledge is limited. That is why stochastic, interval and
fuzzy methods are used to treat imprecise elements in real
life decision tasks in operation research literature. While in
real life the membership functions of decision makers are
not well specified, in fuzzy programming, the membership
functions of constraints and objectives are presumed to be
known, and they are taken as fuzzy sets. In that case,
uncertain interval numbers may be transformed into crisp
numbers by using weight factors.

The solid transportation problem (STP) is an extension of
the traditional TP in which three-dimensional properties are
taken in the objective and constraint set instead of the supply
and destination. The obligation of considering this private
type of TP appears when heterogeneous conveyances are
available for shipment of products. In many real life problems,
a homogeneous product is obtained by its supply to a desti-
nation by way of distinct modes of transport called con-
veyances, such as trucks, cargo flights, goods trains, and ships.
These conveyances are considered as the third dimension.

The TP was first developed by Hitchcock (1941). Shell
(1955) first formulated the STP and then, Haley (1962)
introduced a solution procedure of the STP.

Because of the complexity of the real life problems, we
generally meet uncertain conditions in formulating the model
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of real applications. For such a case, we commonly employ the
uncertain variables (i.e., fuzzy, interval or stochastic) to the
models. The concept of the fuzzy set theory is introduced by
Bellman and Zadeh (1970). Zimmermann (1978) suggested
the fuzzy programming approach for solving several objective
functions. Up to now, the STP is studied and solved by many
investigators in deterministic as well as uncertain environ-
ments. The STP based on the concept of fuzzy sets was sug-
gested by Jimenez and Verdegay (1998, 1999). Bit et al.
(1993) obtained an efficient solution of the STP using a fuzzy
programming approach.

Nowadays, many types of multi-objective STP models
with uncertain variables are investigated by Dalman et al.
(2016), Kundu et al. (2014), Pramanik et al. (2013).

Model parameters in most mathematical programming
problems need to be addressed as interval parameters due to
weak data for a certain evaluation, but with familiar extreme
limits of the parameters. The interval uncertainty theory was
presented by Moore (1966). Ishibuchi and Tanaka (1990)
used it for solving linear programming problems with
interval objective functions by transforming those into the
multi-objective programming problem. Chanas and Kuchta
(1996) suggested o-level-cut of the intervals. Thus, they
obtained the deterministic non-linear functions in the
objective and constraints. In empirical science, some basic
data analysis can be done with linear methods, but in gen-
eral, these problems, also are non-linear, such as Ma and Lee
(2009), Ma and Fan (2011), Mohyud-Din et al.
(2009a, b, 2011a, b) and Noor et al. (2006). In interval
uncertainty, Dalman et al. (2013) suggested a solution pro-
cedure for solving non-linear multi-objective TP.

In this paper, a multi-objective STP in uncertain envi-
ronment is studied. The interval coefficients are replaced by
equivalent deterministic numbers using weighted factor for
any value between 0O and 1. Thus, a multi-objective STP in
an uncertain environment is transformed into a deterministic
one. Then, determining the upper and lower limits of each
objective function subject to constraints, membership func-
tions of each objective function are constructed using the
upper and lower limits of the objective functions. Thus, two
solution methods are used to obtain the optimal solution for
the multi-objective STP in uncertain environment. Finally, a
numerical example is presented to demonstrate the effi-
ciency of the suggested procedures.

The rest of this paper is organized as follows: In Sect. 2,
we recall some preliminary information about uncertain
constraint programming and we formulate multi-objective
uncertain STP with uncertain inequality constraint and also
provide general information about the fuzzy goal pro-
gramming method, global criterion method. Multi-objec-
tive STP with uncertain inequality constraints is introduced
in Sect. 2. A numerical example is solved using Maple
17.02 in Sect. 3.

P
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2 Problem Formulation

Definition 2.1 A interval number A is defined by known
lower limit and upper limit but with unknown deterministic
information for A. A interval number is denoted by

A= {ga}

Definition 2.2 Let A = {g, &} be a closed interval and 0
be any constant number such that 0<60<I1,
(i=1,2,...,n). A closed interval converted a determin-
istic number by 6-cut of A= (g@—i— (1- 0)&). This

transform is called a weight factor.

2.1 The Multi-objective Solid Transportation
Problem

In the solid transportation problem, the following concepts
are satisfied:

e m = number of sources of the TP.

e 1n = number of destinations of the TP.

e k= number of conveyances of different modes of
transportation.

. g,-,d,} uncertain amount of products available at ith

origin.

e b, l;j] uncertain demand at jth destination.

e ek, ék} uncertain total capacity of conveyances of the TP.

e X = the uncertain amount to be transported from ith
origin to jth destination by means of kth conveyance of
decision variables.

o . . . .
o [g il cl:jk} per unit uncertain transportation cost from ith

origin to jth destination by means of kth conveyance of
rth, the objective function.

Then, the mathematical model of multi-objective STP
can be given as follows:

n P
min Z°(X) = > 3" & Xin
i=1 j=1 k=1
m -
Z'xijkg giadi:|7 i= 1,2,...,}’}1
i=1 -
n
- . |
inij bj, ,}, j=1,2...n (1)
s.t. j=1 - 7
P -
injkg Nek7ék:|, k= 1727...,[)
k=1 -

Xijk > O, Vl]k
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Definition 2.3 The function z:— I (I € R) is called a
closed and bounded interval function on the R" and defined
as  Z'(X) = [Z;n:l Z]r‘lzl py/ E;kXijka:‘n:I Z;:l

E;ijijk] where 377, 3001 D0 E;kXijk and >0, 30
Srho, iy Xy are the lower limit and the upper limit of
interval, respectively. Then, we have Vx;; € X (X is the
feasible region of problem) 37", 377", D70, g:ikX,-jkg

Z;‘n:] 27:1 ZZ:] C~’fijijk'

Definition 2.4 x° € X is a non-dominate solution of
problem (1), if and only if there is no other x € X such that

m n P r ar r
D ict Zj:le:l [Ncijkaci/k] w < Do 121 pys 1[%’1@
o | y0 _ m n v
cijk}lek for all r=1,2,...k. and 77, > >,
rooar m n P r oo 0
{gijk’ci]k} i< D it 2t Dkt {Ncijkvcijk}xijk for some
r=1,2,... k.

Definition 2.5 x° € X is an efficient solution of problem
(1), iff there is no other x € X such that

R EAATTED 9 A EAAL

i=1 j=1 k= i=1 j=1 k=1
forallr =1,2,...,k,

n

~.

m n

DRHAERATADS

i=1 j=1 k= i=1
forallr =1,2,...,k.

=

Mﬁ

0
t]k7 l]k k

1

~
Il

1

~

Then, each closed and bounded interval is converted
into deterministic ones by means of the combination of
their left and right limits using weighted factor (from
Definition 2.2) as follows:

(o] = €l O+ (L= 030, (1=1,2,...,m),
G=1,2,...,n), (k=1,2,...,p), (r=1,2,...,k)

{g;,d,} %gl‘,oti+(1*0!i)6~li, (l: 1,2,...,]11),

|:N]75]:| gb}aﬁ]+(l_ﬂl)gl7 (/:1,2,,n),

lenr] = en ot (1-0)d  (k=1,2,..p),

where 07, %, B, 6 € [0, 1].

Using the deterministic parameters (2), the multi-ob-
jective STP in uncertain environment is converted to the
following deterministic multi-objective STP:

— 00, r=1,2,. .k

=1 =1 k=1 Uk

S.t.
m
Zx,jk<a o+ (1 —a)a;, i=1,2,....m
i=1
n ~
leijNb/ﬁj+(liﬁj)bj7 j:1723"'7n
=1 !

G= »
Zx,-jkgg ,5k+(1—51<)e~k, k=1,2,....p
=1 K
xijkzov i:1727"'7m1 j:1727"'7n7 k:1727' P

iaaiaﬂjao‘kvefﬂc € [0/ 1]

2.2 An Interactive Fuzzy Goal Programming
Approach for the Multi-objective STP

Bellman and Zadeh (1970) introduced the basic concepts of
fuzzy goals for fuzzy decision. Zimmermann (1978) sug-
gested a fuzzy programming approach to solve the multi-
objective problem and he obtained efficient solutions of the
multi-objective problem.

Here, we first introduce the fuzzy method for solving
multi-objective STP. After determining the upper and
lower limit values of each objective function (3), we can
construct the membership functions of each objective as
follows:

1
, Zy g W@
WZW0) = S e @)™ <2 < (2
7> (Zr)max
0
(4)
where (Z)™" = minZ’, (r=1,2,...,k), is the lower

limit of the objective function r and (Z")™ =
maxZ", (r=1,2,...,k) is the upper limit of each objec-
tive function r.

Using fuzzy decision of Bellman and Zadeh (1970),
multi-objective STP (3) can be constructed as a single
objective programming problem as follows:

2, @) Springer
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max A
A<u(Z)
Zx,jkgg”c(,-&-(l—x,)a” i=1,2,...,m
i=1
n
S xig> b B+ (1= B)bi, j=1,2,....n

s.t.

P
> xp< e+ (1-0)é, k=12,...p
k=1

21, By 8, 0 € 0,1], (i =1,2,..,m),
(=12 0m), (k=12...p)
x>0, i=12,...m j=12,..,n k=12,...,p

(5)

where 4 = min {u(Z"(x)}, (r =1,2,.. k)

Now, we will formulate a fuzzy goal programming
model. Tiwari et al. (1987) formulated a fuzzy goal pro-
gramming using the weighted sum method. Then, the fuzzy
goal programming approach to multi-objective program-
ming problems was introduced by Mohamed (1997). There
are many fuzzy goal programming approaches for many
mathematical programming problems such as El-Wahed
and Lee (2006) and Sakawa (1993).

Here, we will present a fuzzy goal programming method
for solving multi-objective STP (3). To construct the
problem (5) as a fuzzy goal programming problem, we
consider the negative deviational variables n” <0 and the
positive deviational variables p” >0 and goals of each
objective function in (3) can be written as follows:

Z—p < () (6)

where (Z")™" is the aspiration level of the objective
function r Then an interactive fuzzy goal programming
model can be formulated as follows:

max A

s.t.

A<z

75— p;k 4 ”,;k < (Zr)min

injkg éli,“i'f‘(l_“i)&iy i:1727"'7m
i=1
Z-xijkz bjaﬁj+(1_ﬂ1)5w j:1’27"'vn
=

P
injkg §k,5k+(175i)e~k7 k:172,...7]7
k=1

}"7 aivﬁﬁékve;jk € [07 1}7 (l =1,2,.. '7m)7
021727"'7}1)7 (k:1~277p)
xijk207 i:172"")m7

j:172a"'-,n7 k:lzvp

(7)

72, €\ Springer

where A = min{u(Z"(x)},(r=1,2,.. k)

This problem can be easily solved as a single objective
programming problem. Then, the optimal solutions of
multi-objective STP are obtained.

Moreover, if the decision maker is satisfied by the cur-
rent solution, then, the solution procedure terminates.
Otherwise, in (6), the aspiration level is changed with the
obtained solutions of problem (7).

2.3 Global Criteria Method for the Multi-objective
STP

The global criteria method gives a compromised optimal
solution of multi-objective programming problem. This
method is a way of achieving compromise in minimizing the
sum in derivations of the best solutions (ideal solutions) from
the relative objective functions. The solution procedure for
the multi-objective STP can be summarized as follows:

e Solve the multi-objective STP (3) for each objective

function with constraints of Z'(x),(r =1,2,...,k)
separately.

e Generate the ideal objective vector (Z)™" and (Z")™
(r=1,2,...k)

e Then, the multi-objective STP (3) can be converted to a
single objective problem using global criteria method
as follows:

min Z"(x),(r=1,2,...,k)

S.t.
Z)cijkgg”oc,—i—(l—oc,)d,7 i=1,2,...m
i=1
Zkaij,ﬁj+(l—ﬁg)5i7 Jj=L12...n
=1

G— JJ

- nykggk,5k+(l_5i)ék7 k=1,2,...,p
k=1
/laochﬁjaéhe;jk S [Oa 1])
xp <0, i=1,2,...m, j=12...,n,
k=1,2,...,p

(3)

rymin 1/q
where Z'(x) = min{zlr;l (%)q} or Z"(x) =

7\ min 1/‘1
min{zk (%)q} where 1 <g <oo. In this

r=1 Z,)lnax7<Z,)min

method, generally taken as ¢ = 2 in L, norms.
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3 A Numerical Example 45
a) = 7,27 5 (12:[30,36},
To illustrate the proposed approach, let us consider the data b — |15 41 by — 37 47 be — 27 39
in Tables 1 and 2. 1= il 2T BT 2
Transportation cost for 1st objective [g}jmfiljk} o] = {% 52] e = [52 g]
2 ) ) b 2 *
e ()
R 13210 5 Then, using these data tables, the multi-objective
| NCElz)z §§13>1 Nc(llg)z 7 11 8 STP in uncertain environment can be formulated as
£ = 1 1 y | = ) follows:
ijk e et el 9 212 13/2
RORSRUING oo NN
L2220 231 L2322 in7l — sl ,
() A minZ'(X) =3 > > [l X
11 €12 €1 10 14 10 =1 j=1 k=1
PR 13 B e
) dn dy 4 14 172 minZ’(X) => > > [gi/k’czjik]xijk
<) A1) (1) 11 332 17 i=1 j=1 k=1
€2 €31 Cmn
Transportation cost for 2nd objective [gfjk, cfik} subject to
@ @ .0 e {45 } 3.3
St Ciz2 S xp < =ay = |—=,27|, X1jk
CI RN R C) 19/2 12 13/2 /:ZI; 2 ]:21;
L1222 L1311 S132 13/2 21/2 27)2
g2 = = 3/ / 7/ ) < 02:[30736]7 0:17273): (k:l>2)a
i e e e 215 8
0 o 0 10 13 272 2 2 417 & &
€ L2311 C232 szilkZbl =|15= aZZXiZk >
& e dm resp2 o292 1 o , L,
2 &2 &2 10 12 12 b= |2 Y o> b= |22,
d? | G2 S G| 2= 1505 Z Xk 2 b3y = |55
ik =2) =2 =2 13 19 13 |’ =1 k=l
R 22 17 31)2 :
Con a1 Com (i=12), (k=1,2).
2 3 95 2 3
Here, insert data for origins and destination, two dif- szijl < e = [7,52] ’sz’ﬁ
ferent conveyances, respectively, as follows: =1 =l i=1 j=1
11
< e = |:52775:|7 (l_ 172)7 (J - 17273)7
Table 1 Interval cost functions for first objective function Z;
x>0, i=1,2, j=1,23, k=12
I J J )
=
1 2 3 1 2 3 13
minZ' = {7’ 10}x11, +[5,10]x121 + [11, 15]x134
1 [13/ [5, 10] [11, 15] [10, 14] [7,11] [8,13] 2
2,10] 13 17 33
2 [904] (13217 [1233  [2U (7, 11] [15,17] + 9 14 + [777}“221 + {1277}“231
2 2 2,14
K 1 ] ] ) ] + [10, 14])(112 + [7, 11])6122 =+ [8, 13])6132

Table 2 Interval cost functions

for second objective function Z, I /
1 2 3 1 2 3
1 [19/2,25/ [13/ [21/ [12,29/ [13/ [9,12]
2] 2.11] 2,12] 2] 2,10]
2 [12,13] [8,13] [13,17] [15,19] [10,27/ [27/2,31/
2] 2]
K 1 2

2, @) Springer
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21
—+ |:7,4:| X212 + [7, II]Xng +4 [15, 17]X232

19 13 21

min Z* = {77 13}6111 + [7, ll]xm + {7, 12}6131

+ [12, 13]X211 + [8, 13])6221 + [13, 17])(231

29 13
+ 12,7 X112 + 7, 10| x102 + [9, 12]x132+
27 27 31
(15, 19]x212 + [1077} X200 + [7,7])6232
45

Xin + X + X3 + X2 + X1 + X132 <ap = 7,27
Xon + Xoo1 + Xaz1 + Xo12 + Xozo + Xoz2 < az = [30, 36]

[ 41
Xin +Xou + X2 + X012 2 by = 157—}

[ 41
X121 +Xoo1 +Xopo + X120 > by = 157*}

s.t

X131 +Xo31 + X132 + X030 > b3 = }

Xjp>0,i=1,2j=123 k=12

3.1 Method 1

Using Definition 2.2 and Eq. (2), problem (9) can be con-
verted into deterministic programming problem as follows:

min Z' = (—;eﬁl,)l + lO)xm + (=560, +10)x1s
+ (—4030) + 15)x131 + (=505, + 14)x01,
+ (—29212), +177>x221 + (—29%)] +§>x231
+ (=465, + 14)x;15 + (=46, + 11)x1
+ (=501, + 13)x1 + (;egg + 14) X1
+ (*4992)2 + 11)x00 + (*2993)2 + 17)x232

. 25 9
minZ? = <—30§21)1 +2)x111 + <—29(22)1 + 11>x121

3
+ (—59523)1 + 12>x131 + (=05 + 13)x

+ (_50222)1 +13)x221 + (_49%)1 + 17)x231

5 29 7
+ (—59(121)2 +7>x112 + (—59(122)2 + 10)x122

22, Q) Springer

+ (=30'2 + 12)x130 + (=405, 4+ 19)x31
+ (—;9(222)2 + 2;) X2 + (—29%)2 + %) X232
X111 + X121 + X131 + X112 + X122 + X132

< —4.50; + 27,
Xa11 + Xo21 + Xoz1 + Xa12 + X222 + Xoz2

< —6.50 + 36,
— 6.5, +20.5<Xi11 +Xo1 + X112 + Xon2,
=58, +23.5<Xi21 + X221 + X022 + X122,
s.t.{d —6B3+19.5< X131 + Xo31 + X132 + Xo32,
Xi11 + X121 + X131 + X221 + X231 <4.561 + 52,
X112 + X122 + X132 + X212 + X232

< —6.55,457.5,

ai7ﬁj75k79£jlk)70§ji) € [0, 1], i= 1,2,
1,23, k=1,2.

Xp>0,i=1,2,j=1,23, k=12

(10)

The best lower limit and worst upper limits of each
objective function are calculated as follows:

(Zz"Y™™ = 329.5,(2")™ = 915 and (Z*)™"
= 415.75,(Z*)™* = 983.75

The upper and lower limits of each objective function
can be arranged as follows:

329.5<Z; <915 and 415.75 <Z, <983.75

The membership functions of each objective function in
Eq. (4) are determined as follows:

I
7' (x) <329.5
gl S
Wz () =4 3P3=Z ) 3395 77(x) <915,
915 — 329.5 7 =615
0
(11)
1 *(x)
Z2(x) < 415.75
_p <
W22 () = § AT =2 41595 < 722 (x) < 983.75
. >
(12)
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=
u(z') =1.56 —0. 00171(73 5001 + 10.)x11;
—0.00171(=5.\5 +10.)x121 — 0.00171(=4.5) + 15.)x13,
—0.00171(—
—0.00171(—4.500) + 16.5)x,31
—0.00171(—=4.0\%) + 14.)x,15 — 0.00171(—40')), + 11)x12
—0.00171(—=5.6\Y, + 13.)x13,
—0.00171(—

(-

—0.00171(-2. 0232 + 17. )XQ';Z

(13)

u(z%) = 1.73 = 0.00176(—3.0%) + 12.5)x;,
— 0.00176(—4.500'2 + 11.)x11
—0.00176(—1.500'%) + 12.)x13;
—0.00176(—1. 92” +13.)x211
—0.00176(—50%) + 13.)x21

—0.00176(—4.0%) + 17.)x3;
—0.00176(—2.500\2) + 14.5)x11
— 0.00176(—3.500'%, + 10.)x12
—0.00176(—3.0\%, + 12.)x13

— 0.00176(—4.0%) + 19.)x21
—0.00176(—3.500%2), + 13.5)x2,
—0.00176(—2.6%2, + 15.5)x23

Then, corresponding fuzzy programming model of

problem (10) is given as follows:

5.0 +14)x0, — 0.00171(—265) + 850)x2

3. 506212 + 14. )leg - 0. 00171( 4. 9222 + 11. )X222

s.t.

max A

4<1.56—0.00171(—3.500'", +10.)x;1,

—0.00171(=5.%, +10.)x11 — 0.00171 (4.5, +15.)x13,

—0.00171(=5.65), + 14.)x51; — 0.00171(—265Y, +850)x201

—0.00171(—4.506%%, + 16.5)x23,

—0.00171(=5.0{%, +13.)x13,

3. 500212 + 14. ))Cz]z -0. 00171( 40;12)2 + 11.))6222

(=5
(-
(-
—0.00171(—4. 95‘1)2 +14.)x11 — 0.00171 (=46, + 11)x10:
(-
—0.00171(—
(-

—0.00171(—2.05), + 17.)x23

4<1.73-0.00176(—3.00%), +12.5)x11; —0.00176(—4.500'3,

1) —0.00176(—1,500(123)1 +12.)x13,

—0.00176(—1.05), +13.)x211 — 0.00176(—565) + 13.)x22,

—0.00176(—4. agl +17.)x031

—0.00176(—2.500\%, + 14.5)x11

—0.00176(—4.05) +19.)x,1
—0.00176(—3.500%) + 13.5)x222

(-1
(-
(-
— 0.00176(—3.500'2) + 10.)x12 — 0.00176(—3.0'2 + 12.)x13,
(—4.0
(-
—0.00176(—2.0%), +15.5)x,3,

X+ X2+ Xz + Xiz + Xz + Xiz < — 450 +27,

Xo11 + X021 + X231 +Xo12 + X222 + X032 < — 6.500 + 36,

— 6.5 +20.5<Xi11 +Xa11 + X112 + X212,

=58, +23.5 <Xi21 + X221 +Xa22 + X122,

=683 +19.5 <Xi31 + X231 + X132 + X232,

Xi1 + Xi21 + X131 + Xoo1 + Xo31 <4.501 + 52,

X112 + X122 + X132 + Xo12 + X232 < — 6.50, + 57.5,

Xijk207(xi7ﬁj75k101(]lk)76yk € [071]7 l: 1727.j: 172737 k: 172

@ Springer
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The corresponding optimal solutions of problem (10) are:

Xir Xi2 X113 135 0 0
Xije = XX X | _ | 0 0 135
Xo11 X012 Xoo1 15 0 18/5
X0 X231 Xon 000
0\ 011 01y
R I )
Oy O 01 | |1 4
Osz) 033 Oz
o 01 0
g | ook [
057, 051) 053y 111

2 2 2
052s 0531 033

23 :0,062: lvﬁl :17ﬁ2: 15ﬁ3: 1751 :1552
=land1=1

The degree of membership functions (13) and (14) are
1(z") = 1 and p(z?) = 1, respectively.

Remark The feasible sets of problems (9) and (10) are
identical to each other. Assume that problems (9) and (10)
use the same solution procedures. Then (9) and (10) have
the same optimal solutions.

Therefore, the corresponding optimal values of objec-
tive functions for problem (9) are Z'(x) =
[329.5,488.75], Z*(x) = [415.75,590.75]

Now, to construct a fuzzy goal programming, we con-
sider the negative deviational variables n',n> >0 and the
positive deviational variables p', p?> >0 and goals of each
objective function in (10) can be written as follows:

Z'= <_%9(1]1>1 + 10>x111 + (—59(112)1 +10)x12
+ (740%)‘ +15)x31 + (75()(211)1 + 14)x11 + <720512)1 +g>x221
+ <—§9§|3)1 +§)x231 + (—40311)2 +14)x112 + (_49<1‘2>2 F1)xm
+ (*50%)2 +13)x132 + <7%0§11)2 + 14>x212

(_40(212)2 + 11)x00 + (—20(2;)2 +17)x3, —p' +n' =915

7= ( 36121>1 25>x1 1+ ( 20(31 + ll>x,21
" <_%6%)1 * 12))5131 + (_9221)1 +13)xn + (—59(222)1 +13)xp2
+ (740(2%)1 +17)x031 + (7%9521)2 +%>x112

7
+ (—59522)2 + 10)x122 + (=302 4+ 12)x13 + (—405) + 19)xy1

7 27 31
+ <*§0§22)2 +7>X222 + < 29232 + 3 )Xz}z *pz +n*=983.75
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Then the equivalent interactive fuzzy programming
problem is constructed as follows:

max A
s.t.

2= (—%05?1 + 10>x1|1 + (=50, +10)x11

+ (=400, 4 15)xy3, + (=565, + 14)x51,
( 2003+ 12>X221

+(-308+

7
+ (=400 + 1)xym + (— 50532+13)x132+<—§0§ﬁ>2+14>x2.2

33
5 >X221 +(— 495132 +14)x112

(=408 4 11)xam + (—2085) + 17)x230 — p' +0' =915
7= (’39521)1 +§>X11 < 9?22)1 +1 l)xm
<__9Ei)l " 12>x131 + (=050 +13)wa11 + (=505, + 13)x221
+ (—40%)1 +17)x231 + ( ;0(] 1)2 +229>x112

(7*9(122)2 + 10)){122 -+ (736523)2 + 12)X|32 + (*49&21)2 + 19))62]2

7 27 31
+ (— 3 0(222)2 + 7) X200 + (—20(22)2 + 7) X230

—p?+n*=983.75

A< 1.56 — 0.00171(—3.5001)) + 10.)x;14
—0.00171(=5.\%, +10.)x121 — 0.00171(—4.\) +15.)x13,
—0.00171(=5.65%), + 14.)x211 — 0.00171(—265) + 850)x22;
— 0.00171(—4.500%), + 16.5)x23;
—0.00171(~4.01%) + 14.)x115 — 0.00171(—40'Y), + 11)x12,
—0.00171(—=5.0\, + 13.)x3,
—0.00171(—3.500%), + 14.)x,1
—0.00171(~4.05%) + 11.)x2»
—0.00171(=2.0%%) + 17.)x23,
1< 1.73 = 0.00176(—3.0) + 12.5)x1),
— 0.00176(—4.500%) + 11.)x121
—0.00176(—1.500%), + 12.)x;3,
—0.00176(—1.65), + 13.)x21, — 0.00176(—560%) + 13.)x21
—0.00176(—4.053) + 17.)x23,
~0.00176(—2.500%), + 14.5)x11,
—0.00176(—3.5002), + 10.)x12,
(-3
(-
(-
(-2

(=
(=
(=
(=
(=
(=

—0.00176(—3.013) + 12.)x13,
—0.00176(—4.05), + 19.)x21
—0.00176(—3.500%), + 13.5)x22
—0.00176(—2.02) + 15.5)x23,
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X111 + Xi21 + X131 + X112 + X122 + X132 < — 450 +27,

Xo11 + Xoo1 + X031 + Xo12 + X2 + X030 < — 6.5 + 36,

— 6.5 +20.5 <Xy +Xo11 + X112 + X212,

— 5B, +23.5 <Xi21 + Xoa1 + X222 + X122,

— 65 +19.5<X31 + X031 + X132 + X032,

X +Xi21 + X131 + X1 + X231 <4.501 + 52,

X2+ Xi22 + X132 + Xo12 + X030 < — 6.56, +57.5,

X,-jk2(),171,p2,nl,712207 (oc,-,ﬁj,(sk,ﬁgjlk),ﬁf-]?))
€01, i=1,2,j=1,23 k=1,2

The problem is solved as a single objective program-
ming problem by using Maple 17.02 and the corresponding
optimal results of problem (10) were:

X1 X112 X113

135 0 0
X = Xip Xz X2 || 0 0 135
Xa11 Xo12 Xa21 15 0 18/5
X020 X231 X032 00 0
011 01y 01
o[£5E] 1
0311 0212 O 111
0o22 Os31 Os3)
o 01 01
s [as o
0511 051 ;) 111

2 2 2

0 08 0%,
i =0,00=18=1p=1p=10=120=17p
=3.726,p> = 5.422,n' =3.726,n> =2.390 and /. = |

The degree of membership functions (13) and (14) for
the decision maker are u(z')=1 wu(z')=1 and
o] :0,0CZ = 1,/))1 = 17ﬁ2 = l,ﬂ:; = 1,51 = 1,52 = 1,
respectively. The corresponding optimal values of objec-
tive functions for problem (9) are Z'(x) = [329.5,488.75],
Z%(x) = [415.75,590.75]

3.2 Method 2

Now, we consider the above global criteria method for
solving problem (10). According to global criteria algo-
rithm, we generate ideal objective vector of problem (10)
for each objective function.

Then ideal vectors are calculated from problem (10) as
follows:

((zl)mi“ =3295, (Z2)™" = 415.75)
and ((2")™ =915, (Z*)™* =983.75)

and then, using (8), the global criteria method for the multi-
objective STP (10) in L, norms can be written as follows:

nﬂn{<zwx)3295)2+(z%x)44575)2}”2

329.5 415.75

Xi1 + Xuo1 + X131 + X112 + X122 + X132 < — 4500 + 27,
Xon1 + X221 + Xo31 + Xon2 + Xo22 + Xo32 < — 6.50 + 36,
—6.58, +20.5 <Xy + Xan1 + X112 + Xan2,

= 5B, +23.5 <Xz + Xo21 + Xoz2 + X122,

sl —6B3+19.5<Xi31 + Xoz1 + X132 + Xo32,

Xi11 + X121 + X131 + Xoo1 + Xo31 £4.501 + 52,

X112 + X122 + X132 + Xop2 + X230 < — 6.50; + 57.5,

o, .00, 0, 057, € [0,1],i = 1,2,j = 1,2,3,k = 1,2.

Xjp>0,i=1,2,j=123, k=12

If this problem is solved as a single objective by using
Maple 17.02, the same results are obtained with previous
methods as follows:

X X1 X3

135 0 0
X — Xio Xz Xi;2| | 0 0 135
e Xo11 X212 X021 L5 0 18/5
X205 X231 Xom 00 0
OO0
051)1 9(11)2 9(12)1
o0 g g P
oV 2 Y Y
ik = )
9(1) 0(1) 9(1)
211 Yar2 Voo 111
) 1) 50
_9§2>2 953)1 923)2_
T o2) o2 a2) T
951>1 9%1)2 952)1
111
2) H2) A2
o o] [
ik =
v 9(2> 9(2) 9(2)
211 Yar2 Vog
111
2) 5(2) o2
| 0535 053 05,

o =0,m=1=1p=1F=1,06=10=1
The corresponding optimal values of objective functions
for problem (9) are Z!(x) = [329.5,488.75], Z*(x) =
[415.78,590.75]

4 Conclusion

The multi-objective solid transportation problem in
uncertain environment has been investigated in this paper.
Some soft computing methods have been applied to obtain
the optimal solutions of the models. First, an uncertain
solid transportation problem has been converted to a

2, @) Springer
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deterministic solid transportation problem, and so the
deterministic solid transportation problem has been solved
by using the fuzzy programming, fuzzy goal programming
and global criteria methods. Consequently, application of
the model is discussed with a numerical model and the
same results were obtained by three different methods. At
each stage of the solution procedures, Maple 17.02 opti-
mization toolbox was used. Furthermore, the suggested
interactive fuzzy goal programming method can be applied
to other complex transportation problem models (with
multi-item, safety factor) under uncertain environments.
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