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SUMMARY 

 

The economic and emission dispatch (EMD) problems have been investigated 

and considered as a research open topic and discussed in many studies and researches 

to find the optimum solution. In our study a new approach is made based on finding 

solutions by simulating the human’s behavior for thinking and approaching the results 

by multiple steps until reaching the lowest values of economic and emission.  

Fuzzy logic is the base of this study and it used by selecting random values and 

reflecting them on fuzzy interference system based on human knowledge for deciding 

the suitable values that should be applied for generators to obtain the value that 

produces less fuel cost and less emission.  The use of fuzzy logic decreases the search 

domain and leads the search process to certain zone related to power demand and 

generated power. For example, if the power demand is high, then it is logical that 

power supplied by generators must be at high levels to make sure that generated power 

is equal to power losses and power demand in the grid. Also, if power demand is at 

middle level, then it is logical that generated power should be at middle levels to ensure 

the equality of power demand and power loss. In this way, a directing of generated 

power is made to certain zone to decrease the search process and time consumed to 

find the solution which represents the lowest value of total cost needed for power 

demand. 

A various of power demands is discussed in order to modify the system so it 

could be applied for any case or power demand, all these modifications and results is 

applied on IEEE (30) grid to prove that algorithm is applied on real values of real grid. 

 

Keywords: Combined Economic Emission Dispatch (CEED), Power Values with 

Fine Tuning (PVFT), Power Values with Normal search (PVNS), Power Demand (PD)
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ÖZET 

Ekonomik ve emisyon dağılımı sorunu, optimum çözümü bulmak için birçok 

çalışmada ve araştırmada ele alınmıştır. Bu çalışmada, insan davranışını simüle ederek 

çözümler bulma temeline dayanan yeni bir yaklaşım benimsenmiştir ayrıca ekonomik 

ve emisyon değerlerinin en düşük seviyelere ulaşılana kadar birden fazla adımda 

yaklaşımla sonuçlara ulaşılmıştır. Bu çalışmanın temeli bulanık mantıktır. Rastgele 

değerler seçilerek, insan bilgisine dayalı bulanık bir müdahale sistemi üzerinde 

yansıtılarak, jeneratörlere uygulanacak uygun değerleri belirlemek için kullanılır. Bu 

şekilde daha az yakıt maliyeti ve emisyon üreten değerleri elde etmek mümkün olur. 

Bulanık mantığın kullanımı arama alanını azaltıp arama sürecini güç talebi ve üretilen 

güçle ilgili belirli bir bölgeye yönlendirir. Örneğin, güç talebi yüksekse, jeneratörler 

tarafından sağlanan gücün yüksek seviyelerde olması mantıklıdır, böylece üretilen 

güç, güç talebini eşitler ve iletken kayıplarını azaltır.  Ayrıca, güç talebi orta seviyede 

olduğunda, üretilen gücün orta seviyede olması mantıklıdır, böylece güç talebi ve güç 

kaybı eşitliği sağlanır. Bu şekilde, güç yönlendirmesi belirli bir bölgeye yapılır ve 

çözümün bulunması için harcanan süre azaltılır. Sistemi herhangi bir durum veya güç 

talebi için uygulanabilir hale getirmek için bir dizi güç talebi tartışılmaktadır ve tüm 

bu değişiklikler ve sonuçlar, algoritmanın gerçek 30 IEEE şebekesi üzerinde 

uygulandığını kanıtlamak için kullanılmaktadır. 

 

Anahtar kelimeler: Kombine Ekonomik Emisyon Dağıtımı (CEED), İnce Ayarlı 

Güç Değerleri (PVFT), Normal Aramalı Güç Değerleri (PVNS), Güç Talebi (PD)
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INTRODUCTION 

The electrical power system must be secure, meet environmental constraints, 

economically and with high reliability. Economic Dispatch (ED) can be defined as 

“the procedure of determining the needed load between the obtainable generators to 

achieve lowest operation cost” (Abido 2003).  Economic dispatch problem becomes 

an important responsibility in the planning and operation of the power generation 

systems (Halder and Chakrabarti 2010). It is a really complicated task to solve for a 

large number of constraints and a nonlinear objective function. 

The US Air Act modification of 1990 mandates that the electric industry should 

lower its SO2 emissions by 10 million tons per year and the NOx emission by 2 million 

tons per year the 1980 level (Sudwrongha karan, M., Slochanal, M.R.S., et al 2004). 

In addition, the Kyoto protocol does not have enough to produce even the minimum 

value of energy production, and it is substantial for this to be undertaken at the same 

time, sending out the minimum level of gas emissions (Hazra, J. and Sinha, A.K. 

2008). The target of CEED is to operate generators that produce energy in a power 

plant with both minimum emission levels and minimum fuel costs, at the same time, 

while satisfying operational constraints and the load demand. The aim of CEED 

problem is that the total load demand must be dispatched optimally to the generators 

(Z. Xin-gang, Z. Ze-qi.et al 2020), Researchers have been done a great effort to make 

a solution to the CEED problem using analytic or heuristic algorithms.  

Power stations that operate using fossil fuel generate about two third of 

electricity worldwide (M. Beno and Rex 2017).  

The electric power which is generated from fuel originate from fossil produces 

many harmful gases and wastes such as nitrogen oxide (NOx), sulfur dioxide (SO2), 

carbon dioxide (CO2), and particles which effect the atmosphere. The harmful gases 

can be minimized by suitably allocating the load to the available generating units (M.T. 

Hagh, S.M.S. Kalajahi et al 2020). 

But this will increase the generation cost for power generators for that reason a 

solution for balancing the emission and fuel cost must be introduced. It may be solved 

by the combined economic emission dispatch problem (CEED). The primary goal to 

solve this problem is to minimize both emission and fuel cost in the same tame with 
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satisfying load demand also inequality and equality constraints. Because of the two 

objectives that should be satisfied CEED problem is called two-objectives 

optimization research topic. Solution of this type of problems will produce a set of 

solutions and it's called Pareto solutions, instead of one solution (Guesmi et al. 2020). 

According to mathematics point of view solving CEED problem can be 

accomplished using one of three technics. In the first, the fuel cost and emission are 

combined in a single objective function by normalizing emission and fuel cost using 

penalty factors of prices (Bhattacharya, Bhattacharjee, and H. Dey 2014; J. Ji, and 

Wang 2015; Pazheri et al. 2015). The second is performed by assuming that CEED 

problem is a one-objective topic but mixing the emission in system constraint (Jevtic 

et al. 2017; Chakraborty and Palit 2019). Finally, the third technic is done by solving 

the two functions at the same time where set of Pareto is found in one cycle of the 

algorithm of optimization (Morsali et al. 2014). 

Researchers proposed many studies to find a solution for CEED problem using 

metaheuristic and classical algorithms. The classical optimization algorithms such as 

lambda (Aravindhababu and Nayar 2002), gradient (Dodu et al. 1972), multiplier of 

Lagrangian (El-Keib, Hart , and Ma 1994), linear  programming (Parikh and 

Chattopadhyay 1996) and traditional technique based on equations of coordination 

(Nanda 1994) is used to solve CEED. However, most of these researchers have their 

problems to solve ED problems because of nonconvexity and nonlinearity emission 

and fuel cost characteristics. The traditional optimization algorithms are sensitive to 

the initial starting value and prematurely converge to the local optimal solution. 

Furthermore, these algorithms do not have the capability to find an optimum solution 

in a considerable computational time interval for CEED (Belmadani, Benasla and 

Rahli 2014). 

Metaheuristic optimization methods has a critical role in relieving the problems 

of traditional classical  methods, Simulated Annealing (SA) (Fung and Wong 1993), 

Genetic Algorithm (GA)(Hamid et al. 2005), particle swarm optimization (PSO) (H. 

Faris, M. Mahmood, and O. Al-Omari, 2021), biogeography-based optimization 

(BBO) (Bhattacharya and Chattopadhyay 2010), Artificial Bee Colony (ABC) 

(Bhongade and Agarwal 2016), flower pollination algorithm (FPA) (Abdelaziz, Ali, 

and Abd Elazim 2016), lightning flash algorithm (LFA) (Kheshti et al. 2018), 
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backtracking search algorithm (BSA) (Bhattacharjee, Bhattacharya, and Halder nee 

Dey 2015) and real coded chemical reaction algorithm (RCCRO) (Bhattacharjee, 

Bhattacharya, and Halder nee Dey 2014). Many Metaheuristic methods are used to 

solve the CEED problem and it can be summarized as follows: 

Hybrid methods that combining two single-objective algorithms such as the SA 

algorithm with ABC (Sundaram, Saranya, and Sangeetha 2013), or two different 

metaheuristic techniques as firefly and PSO (Arunachalam, A. Bhomila, and R. Babu 

2014), bat and hybrid firefly (Gherbi, Bouzeboudja, and Gherbi 2016), and hybrid 

PSO-GSA (Radosavljević 2016).  

Hybrid methods of two multi-objective algorithms such as hybrid NSGAII-

MOPSO (Sundaram and Erdogmus 2017), multi-objective GA-PSO (Agarwal and 

Nanavati 2016) and the hybrid MOPSO Differential Evolution (DE) (Gong, Zhang, 

and Qi 2010). Although these heuristic algorithms give the best solution to the CEED 

problem, none of them insure the best optimal solution. In other algorithm a new 

method of optimization procedure without using penalty-based optimization was 

introduced by morphological filter algorithm (OMF using OWP-based) for solving 

CEED (Belmadani and Zaoui 2021). 
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                                    STATE OF THE ART 

1.1.  Literature Survey 

Optimization techniques are widely used in many fiels including energy 

optimization problems (S.  Karim, C. Ozturk, M. Mahmood. 2021). Today. 

Metahuristics, swarm, and human based optimizations are among the hot research 

topics in energy and power production (H. Faris. Et al., 2022).   

CEED problem still an open research topic because it has a great importance in 

both environmental and economic levels. The environmental effects of power 

generation units and the high cost of power distribution on power generation units 

gives the process of optimization of these two factors a great importance in operation 

of electrical grid and power plants. In practical point of view, the fuel cost and emission 

of generation stations must be both minimized simultaneously using multi-objective 

optimization formula (M. A. Abido,2003). Many methods have been introduced to 

solve the resulting multi-objective problem and many approaches concentrate on the 

use of evolutionary algorithms (EA) (J. G. Vlach Giannis and K. Y. Lee. et al.,2009). 

A new method called Dynamic economic emission dispatch is introduced to minimize 

the total cost of generated emissions and energy in a 24-h time interval. In the 

stochastic dynamic economic emission dispatch (SDEED), the problem is transferred 

to its corresponding deterministic dynamic economic emission dispatch. For that 

reason, solving the non-smooth, complex nonlinear and non-differentiable SDEED, a 

new approach called whale optimization algorithm (WOA) is introduced to minimize 

the overall cost and emission for wind operated thermal power system ( S. Padhi, B.P. 

Panigrahi, et al, 2020).  

Another paper proposes an environmental economic dispatch model for the 

coordinated operation of an integrated regional energy system, which consists of a a 

natural gas network and regional electricity supply network, along with district energy 

hubs. every energy hub contains a power unit and combined heat, a CO2-capture-

based power to gas facility, a gas furnace and a heat pump, different energy storage 

facilities. To accomplish an optimized balance between emissions and operational cost 

during the environmental economic dispatch of this regional energy system, a price-

https://www.sciencedirect.com/topics/engineering/economic-dispatch
https://www.sciencedirect.com/topics/engineering/energy-systems
https://www.sciencedirect.com/topics/engineering/power-to-gas
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based integrated demand response algorithm is introduced in the energy hub. Then the 

proposed model is converted into a mixed-integer linear programming problem to find 

solutions efficiently (L. He, Z. Lu et al,2020).  

A new hybrid optimization method named gravitational PSO algorithm 

(GPSOA), is introduced based on gravitational search algorithm (GSA) and PSO to 

solve CEED problem. In GPSOA method the velocity of particles caused by the 

dependent random cooperation of GSA and PSO velocity is updated. CEED model 

consists of fuel cost objective emission level needed produced by classical thermal 

generators and operational cost produced by wind turbines. The success Of GPSOA 

methods have been tested on traditional thermal generators and modified wind thermal 

power plant. The main disadvantages of EA are the possible premature convergence 

and high computational burden which results in large time consumption.  

Other study introduced all ELD, emission dispatch and CEED on renewable-

integrated and an islanded micro grid separately using a developed novel called Whale 

optimization Algorithm (WOA). Four various behaviors of load sharing among the 

DERs are investigated. Then the results are compared with other developed bio 

algorithms to confirm the efficiency of the proposed technique. Further Wilcoxon 

signed rank test and statistical analysis such as ANOVA test are done to prove the 

efficiency of the proposed algorithm over the various other optimization algorithms 

used (B. Dey, S.K. Roy et al 2019). There are some applications of Semi-Defined 

Programing (SDP) to EMD problems were the constraints and objectives are liner or 

quadratic (R. Fuentes-Loyola and V. H. Quintana et al.,2003) . 

A study implements a potent Multiobjective Multi-Verse Optimization 

algorithm to solve the high complicated combined economic emission dispatch and 

combined heat and power economic emission dispatch problems. Solving these 

problems operates the power system integrated with cogeneration plants economically 

and reduces the environmental impacts caused by the pollutants of fossil fuel-fired 

power plants. A chaotic opposition based strategy is proposed to explore the search 

space extensively and to generate the initial populations for the multiobjective 

optimization algorithm (A. Sundaram 2020). 

Other paper proposes a convex model of Combined Economic Emission 

Dispatch (CEED) in a microgrid environment considering RES. A new algorithm 

https://www.sciencedirect.com/topics/engineering/integrated-demand-response
https://www.sciencedirect.com/topics/computer-science/whale-optimization-algorithm
https://www.sciencedirect.com/topics/computer-science/whale-optimization-algorithm
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depends on Teaching Learning Based Optimization (TLBO) approach is applied on an 

islanded 3 unit microgrid system consist of three conventional thermal generators, one 

solar photovoltaic system and one wind site to assess the economic impact of inclusion 

of renewable sources in microgrid for CEED study situations. The proposed approach 

examines the proficient operation of a microgrid with minimal pollutant emissions 

considering multiple renewable power sources, which makes it a suitable methodology 

to apply in real-time operating situations ( E. B. Elanchezhian 2019). 

A new paper deals with the multi-objective economic-emission dispatch 

problem of combined power (CHP) and heat power (CHP) generation in a large 

microgrid (MG). The MG comprises many types of fossil fuel wind power units, 

generating units, and solar power units. The objective functions involve unit, emission 

tax, operating costs, emission level, and cost of power purchase from the main external 

grid. Interdependencies of valve-point effects of thermal units and heat and power 

outputs of CHP units force nonlinearities, non-convexities and complications in the 

dispatch modeling and optimization (M.I. Alomoush, 2019). 

Other study introduces an Exchange Market Algorithm (stocktickerEMA) 

algorithm for solving the Emission Economic Dispatch (EED) problem including wind 

farms in the power systems. The stocktickerEMA algorithm is a useful and powerful 

method for finding the optimal value of an optimization problem with high accuracy. 

In recent years, because of the emission of harmful gases from global warming and 

fossil fuels issues, the penetration level of cleaner energies such as the solar energy 

and wind has been increased in order to produce the electrical energy(M.T. Hagh, 

S.M.S. Kalajahi et al,2020). 

In another paper a new method is proposed called a DE-CQPSO (Differential 

Evolution-Crossover Quantum Particle Swarm Optimization) algorithm based on the 

fast convergence of the particle diversity of crossover operators of genetic algorithms 

and differential evolution algorithms. In order to obtain better optimization results, a 

parameter adaptive control method is used to update the crossover probability. And 

the problem of multi-objective optimization is solved by introducing a penalty factor 

(Z. Xin-gang, L. Ji, et al 2020). 

Other study aims to fill a gap in the literature by examining the impacts of 

an emissions trading scheme (ETS) in Vietnam, as the policy has been discussed for a 

https://www.sciencedirect.com/topics/engineering/wind-turbine
https://www.sciencedirect.com/topics/engineering/wind-turbine
https://www.sciencedirect.com/topics/engineering/power-engineering
https://www.sciencedirect.com/topics/computer-science/optimization-problem
https://www.sciencedirect.com/topics/computer-science/crossover-probability
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/emissions-trading
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decade in the country but the likely impacts on the economy and different sectors are 

still unidentified. The simulations are carried out in a global energy computable 

general equilibrium (CGE) model, an extension of the GTAP-E model, which treats 

Vietnam as a country region (D. Nong, T.H. Nguyen et al,2020).  

A study introduced applied Multi-Verse Multi-Objective Optimization 

algorithm to solve the complicated case of emission economic dispatch and combined 

heat. The application of SDP to EED problem requires dealing with emission objective 

by using a polynomial function (at least second degree) and an exponential function 

when it is correctly modeled. It is recommended to express the exponential part of the 

objective in form of power series and use the algorithm to grantee nonexistence of the 

class of polynomial functions.  

However, the exponential function is included in an infinite dimensional domain 

using the results in Devolder. The size of the matrix of the resulting SDP program 

increases prohibitively large with the degree of the polynomial (N.F. Aswan, M.N. 

Abdullah et al, 2019). This also increases the computational cost related to solve the 

resulting semi definite program. The problem difficulty can be moderated by using an 

alternative approximated function. This yields to a high accuracy and at the same time 

uses a rational function having lower degree of numerator and denominator. A key 

motivation for the approach adopted in that research the ability of optimal rational 

approximating function to achieve higher accuracy than the optimal polynomial 

approximation with same number of coefficients.  Recent advances in rational function 

optimization. 

 

1.2. Research Issues 

The CEED problem can be defined as the process needed to find optimal solution 

for finding minimum fuel cost and minimum emission cost and meet the conditions of 

keeping generating power that can produce power demand and power loss in the limits 

of generating power units. Other factors should be taken in considerations which are 

valve point effect and losses in the network or grid, size of network, number of 

generating units and type of generated power. The time consumed by proposed 
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algorithm also a very important factor due to changing power demand in real time 

application and this time interval should be reduced to minimum possible values. 

In this research the main problem is how in order to find the best solution without 

time consuming also how to find the Fuzzy Rules (FRs) for fuzzy interference system 

and finally how to find the best Membership Function (MF) shape and boundaries. 

 

1.3. Research Qustion 

The main questions of this research are: 

  Can Fuzzy Logic (FL) technique be a good alternative for other 

proposed algorithms? 

  Is Fuzzy able to provide a solution for CEED without time consuming? 

In results chapter and in comparing process with other algorithms these 

questions are answered definitely. 

1.4. Research Objectives and Scope  

Many research methods applied on economic and EMD problem based on 

artificial intelligent. In this research the method is based on fuzzy logic for finding the 

optimal solution in a short period of time. 

The process of finding solution for the problem is based on generating random 

values that represents the initial value of power generated by generators in a certain 

grid,  

 applying these values to a fuzzy interference system is made to generate an 

output based on Mamdani defuzzification method to select a proper output value for 

each generator. 

obtained values must satisfy the CEED problem conditions or constrains, many 

iterations are made to find optimal power values and lowest total cost value. 

This study is based on IEEE- 30 grid to simulate the process of solving CEED 

problem. 
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1.5. Importance of Research  

       The importance of this research is to find a new algorithm that can provide 

a minimum total cost for generating units to reduce the power generated so as to reduce 

fuel cost and emission cost in same time using fuzzy logic to simulate the human 

intelligent for solving problems and to reduce the search domain.  

 

1.6. Structure of the Thesis  

This thesis includes five chapters:  

- Chapter one includes general information about the thesis, including the 

problem statement, literature survey, and the objective of the thesis. 

- Chapter Two introduces the theoretical background for the thesis 

including fuzzy logic fundamentals and CEED formulation and theory. 

- Chapter Three outlines the methodology for the proposed method. 

- Chapter Four presents the results of the proposed method using 

simulation by MATLAB and shows a comparison between the proposed method with 

other methods. 

- Chapter Five contains a conclusion and proposed future works. 
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THEORETICAL BACKGROUND 

2.1 Minimizations of fuel cost 

One of the objectives for CEED problem is to reduce the fuel cost consumed by 

power generators, the ED problem defined as the sum of a quadratic function, fuel cost 

function is taken the sum of power produced by any generator multiplied by 

coefficients of cost as shown in the formula (Wilbert Ruta, 2018): 

 

    


GN

i GiGiiiGiiGiiiGi PPedPcPbaPF
1

min2 sin)(  

where  𝑖 = 1 , 2 , 3 … . . 𝑁𝐺 

GiP
: power of thi . Generator 

GN : number of generators  

,, ii ba and ic  are cost coefficients of the thi unit, ( ie ) and ( id ) are only used if 

the valve point effect is taken into consideration.  

 

2.2 Minimizations of Emission  

      The complete quantity of emissions, like NOx or SO2, released by fossil 

fuels burning in thermal power stations, can be introduced by the total summation of 

a quadratic function and an exponential function. In this research,  just NOx emission 

is taken into consideration for calculations simplification. This function is explained 

as (U. Guvenc, Y. Sonmez, 2012): 

)exp()( 2

1

GiiiGi

N

i

iGiiiGi PPPPE
G

 


 

i , i and i  are cost coefficients of the thi . unit, ( i ) and ( i ) are calculated if 

the valve point effect is considerable. 

2.3 Limitations  

 Through the procedure of minimization, some inequality and equality 

conditions must be taken in consideration. In this procedure, an equality condition is 

called a balance of power.    Therefore, the complete power introduced by generators 

must supply the complete power losses and complete power demand in the network. 

              

(2.1) 

                       (2.2) 



 

11 

Also, an inequality constraint is the capacity of generation. According to this, the 

generator's output powers are limited by a minimum and a maximum power limitation 

(Bharathi, R., Kumar, M.J. et al.,2012). These two constraints can be shown as:  

(I) Total power constraint  

,0
1




lossid

NG

i

Gi PPP
               

 where ( lossP )is called network losses  

where ( idP ) is power demand, which can be estimated by B matrix and formulated 

as: 

Gjij

N

i

N

j Giloss PBPP   


1 1
 

where   𝑖 = 1 ,2, ,3 , … . . , 𝑁𝐺  

where   𝑗 = 1 ,2, 3 , … . . , 𝑁𝐺 

ijB
: represents the transmission loss coefficients 

GjP
: power of 

thj . Generator 

(II)  Generation capacity constraint: 

maxmin

GiGiGi PPP   

min

GiP
:  minimum acceptable generation power of thi . Generator 

max

GiP :  minimum acceptable generation power of thi . Generator` 

2.4 CEED formulation 

          To achieve the two goals in one dispatch a combination between EMD 

and economic methods is used where the main issue is how to find so-called price 

penalty factor. It is a complicated process to find these penalty values and how to select 

them in a suitable way. With important penalty values, a local minimum appears when 

a minimization algorithm is used. Furthermore, low penalty values cannot find the 

optimum solution in an easy way. The penalty values are adjusted according to the 

equality/ inequality conditions. The penalty factors (h), can be determined from the 

heuristic method given in (Palanichamy & Srikrishna, 1991). The two objectives of 

CEED problem are introduced in form of one objective problem. To solve the CEED 

                   (2.4) 

          (2.3) 

                 (2.5) 
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problem a minimization of fuel cost and emission should be done while satisfying the 

constraints mentioned earlier, the one objective CEED problem can be expressed as: 

      Minimize hE+F=CEEDF           

             

 

)))exp((

))(sin(()(

2

min2

1

GiiiGiiGiiii

GiGiiiGi

N

i

iGiiiCEED

PPPh

PPedPcPbaFMin
G

 




 

      Where   𝑖 = 1, 2, 3 , … … , 𝑁𝐺                                                      

ih
 is the price penalty factor units ($/h) which represents ratio between maximum fuel 

cost and maximum emission, and is illustrated as (Bharathi, R., Kumar, M.J. et al., 

2012) 

        
)(

)(
max

max

Gi

Gi
i

PE

PF
h   

                      

 

)exp(

)(sin
max2maxmax

maxmin2maxmax

GiiiGiiGiii

GiGiiiGiiGiii

PPP

PPedPcPba

 




 
 

The objective of an EED problem has non discriminable points regarding the 

change of fuels and valve-point effects; for that reason, the objective formula could 

be consisting of a set of non-liner cost functions. Therefore, non-liner cost functions 

are accounted due to two main cases. One case is with valve-point loading problem 

where the objective formula is generally introduced as the combination of sinusoidal 

functions and quadratic functions. The other case is a multiple-fuel problem where 

the objective formula is introduced as the multi-defined quadratic cost functions. In 

the two cases, the solution presents multiple minimums, for that reason, the task of 

finding the global solution remains unsolved (C. E. Lin and G. L. Viviani, 1984).   

The generator with multivalve steam turbines has very diverse input-output 

curve compared to the smooth cost function. The valve point occurs when every steam 

valve begins to open which causes curves and ripples as shown Figure 1. To take the 

valve point effects in consideration, sinusoidal functions are added to the quadratic 

function (Ismail Marouani, Tawfik Guesmi et al 2022). Figure 1 displays the valve-

point effects on the nonlinearity of the cost function. besides the effects of valve's 

position, any other costs such as maintenance costs or contaminants can be added to 

(2.6) 

 (2.7) 
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the cost function. A representing first valve, B represents second valve, C represents 

third valve, D represents forth valve and E represents fifth valve. 

A
B

C

COST ($/MW)

P(MW)

D

E

 

                                  Figure 1.Valve point effect curve 

Some generators are supplied with various fuel sources (oil and gas), and 

determination of the most economical fuel to burn problem is faced. As fossil fuel 

costs augment, it becomes even more important to have a good model for the 

production cost of each generator so, a more accurate formulation is acquired for the 

ED problem by using the hybrid cost function and hybrid incremental cost function as 

shown in Figure 2 (Ismail Marouani, Tawfik Guesmi et al 2022). 

FUEL 3
FUEL 2

FUEL 1

P(MW)

COST($/MW)

MIN P1 P2 MAX

 

Figure 2.Incremental cost function 

The x-axis represents upper and lower power limits of generated power, while 

y-axis represents total cost in dollar per megawatt. The main aims of “Economic 
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dispatch with multiple fuel options” is to know which kind of fuel is most economical 

to use. The multi-defined quadratic function is used to represent many fuel options and 

the incremental behavior of cost functions as illustrated in Figure 2. 

ED may be classified as a static optimization and dynamic problem. The static 

where the cost of generators outputs change is ignored. While, a dynamic dispatch is 

a method that the change in costs is taken in consideration (B. H. Chowdhury, Sulfur 

Rahman,2012). The dynamic ED takes the ramp rate limits and prohibited operating 

zone of the generating units into consideration. 

 

2.5 Fuzzy logic 

Fuzzy logic is a part of traditional Boolean logic that has been expanded to 

handle the concept of partial truth to truth values between “completely true” and 

“completely false”. The FL method can be defined as: “The information was always 

vague or fuzzy or inexact. Science treated the gray or fuzzy information as if they were 

the white-black facts of math. Yet no one had put forth a single fact about the world 

that was 100% false or 100% true” (Kosko B.,1988). Usually, engineering likes using 

an accurate mathematical representation. This statement matches with exact 

information, such as “3 ≤ u ≤ 7”, “x = 5.0,” or “y = 4t + 20.” The value of “x = 5” has 

a relation membership can be compared with 100% equals (1); for other values (2.9, 

3.1, 2.8, 3.2), the relationship of membership in the result is zero. However, the 

percentage of membership is wrong due of the influence of the observer, nonspecific 

of tools as example. (Zadeh LA.,1965) proposed a theory to make a rapprochement 

between the inexact information from the real life and the precision of real 

mathematics. This theory is known as fuzzy Sets (FSs) and deals with the relationship 

of membership of x included in A, that is, µA(x), is taken from F set (Birkhoff 

G.D.,1948). Generally, F is the interval [0, 1]. (Goguen JA. 1967) proposed a wider 

generalization of the theory using values of the membership taken from the set 𝐿 ∈

[−1, 1] for a normalized set) or [-∞, ∞]. FL emulates the human brain by imitating that 

in smart machines, so an approximate human being thinking method is introduced. FL 

analysis systems with control perhaps electro-mechanical in nature, or related just to 

data, instance economic data, in all cases navigable by "If-Then rules" declared in 

human being's language. 
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2.6 Fuzzy Set 

FSs have a so-called membership, which is defined as a value in [0, 1] interval. 

For example, if we take a color like 'green' we can define the color of any certain apple 

as a relation included in this fuzzy set. We can assume that it is 40% green so it has a 

Truth Value of fuzzy (FTV) relation value of 0.4. The relationship between FTV and 

real values depends on the desired random reflection coming from actual-life facts to 

the membership range varies from 0 to 1. FSs depend on an elastic sense of 

membership of portion to a set. While in the crisp set, a part either included or not in 

a set, where any degree of membership (between 0 and 1) is applicable in fuzzy set. 

For that, a MF µÃ (x) is related to a set of fuzzy Ã such that the function reflects 

members of the universe of discourse X to an interval between 0 and 1. 

FSs includes: i. Union ii. Complement iii. Intersection iv. Associativity v. the 

law of De Morgan vi. Commutatively vii. Distributive union: X OR Y = Maximum of 

the truth values of fuzzy (FTVs) i.e., (0.6), Intersection: X AND Y = Minimum value 

of the FTVs i.e., (0.4), Negation NOT X = 1 – FTV X i.e., (0.6). 

2.7 Membership Function  

The MF can be represented graphically by a continuous function instead of 

discrete values function. It relates a weighting with each of the inputs that are 

processed, describe the functional overlap amongst inputs, and finally determines an 

output response (Wilbert Ruta,2018). The Fuzzy Membership Function (FMF) for 

“cool” term pertaining to temperature can be explained in Figure 3, where the  cool 

MF represents a numerical value between 0 and 1 to indicate the deviation from the 

full membership to no membership (S.Rajasekaran , G. A. Vuayalkashmi ,2003).  

In figure 3 cool boundaries starts from 20 and ends in 45 with membership varies 

from 0 to 1 to indicate the relationship of actual values to temperature.  Many different 

shapes of MFs exist. The widely adopted shape to represent MF is triangular, also 

trapezoidal and normal can also be used as in Figure 4 (with difference). A Gaussian 

function was used for the MF is given mathematically as )14.3()1/(1)( 2  xxA  

(Vijayalakshmi. G.A., Raj Sekaran. S,1998).  

Humans generally make decisions according to rules if-them (as computer 

programing). For example, we go out if the weather is expected to be good, otherwise 

https://www.google.iq/search?hl=es&tbo=p&tbm=bks&q=inauthor:%22G.+A.+VIJAYALAKSHMI+PAI%22
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we stay at home. Rules relate ideas and inter-relate events together (Li, L.-L.; Liu, Z.-

F. et al 2021). Fuzzy machines act in the same way where the decisions and rules are 

replaced by sets and rules of fuzzy. FRs are operating using iterative if-then loops. For 

example, if F is negative then B, and if E is positive then A where A and B are all sets 

of E and F. Fuzzy patches is represented by FRs, which is the idea in fuzzy theory. 

0 5 10 15 20 25 30 35 40 45 50

1

Temperature

cool

ϻ(x) 

Degree of 
membership

 

Figure 3.MF for 'cool' 

X

ϻ(X) 

 
Figure 4.Different shapes of MF 

2.8 Fuzzy Set Versus Crisp 

Crisp sets need a good realization of the exact equation, system, and precise 

numeric value. FL presents another way of thinking, which allows modeling 

complicated system using a higher level of abstraction originating from human 

experience and understanding. FL gives a term to this knowledge with individual 

notions like very cold, bright green and a high time delay that are reflected into 

numeric ranged values. For example, the sentence “Is water colorless?” The answer to 
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this is question is definite no/false or yes/true as related to the situation. If “no/false” 

is a value of 0 and “yes/true” is a value of 1, this statement produces a 0/1 type 

situation. A treatment based on binary (0 or 1) is called crisp in the domain of fuzzy 

set algorithm. 

For that reason, a statement like “the running time of program is 4 seconds”, 

“temperature is 320 C” are examples of crisp situations. The differences between crisp 

and fuzzy may be easily understood as shown in Figure 5 which represents the FMF 

in comparison with crisp MF, in fuzzy membership value could be 0.5 or 0.3 but in 

crisp logic only two values are available 0 or 1.  

Classical (crisp) set A

Fuzzy set A

ϻ(x) 

X

1

0

Membership 
function ϻ(x)

 

Figure 5.the differences between crisp and fuzzy logic 

2.9 Feature of Fuzzy Logic       

FL gives many important characteristics, making it a good choice for control 

systems: 

1. Noise-free, and exact inputs are not required, so, system can be programmed 

to fail safely if a sensor destroyed or fails. The output results are soft control functions 

in spite of a wide range of input variations. 

2. The FL control processing is user-defined rules governing the target control 

system, it can be adjusted easily to improve system performance. New sensors can be 

incorporated into the system simply by generating suitable governing rules. 
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3. FL is having no limitations to feedback inputs or to control outputs. Thus, it 

is not urgent to compute rate-of-change or measure parameters to be executed. Any 

amount of sensor data giving description of a system's reactions/actions may be 

enough. This allows designer to use inexpensive and inexact sensors which keeps the 

overall system complexity and cost.  

4. Any input number can be treated (1-8) or more and many outputs (1-4) or 

more can be initiated. The rule-based operation, while defining the linguistic rule base 

quickly becomes complex if too many outputs and inputs are selected for one 

application, since rule's objective is to define their inter, relation must also be defined. 

It is better to break the control system into small segments and use several smaller FL 

controllers on the system. 

5. The main advantage of FL is its capability to control nonlinear systems for 

which it is difficult or impossible to find a convenient mathematical model.  

2.10 Fuzzy Expert System 

A fuzzy expert system is a skilled system that employs a collection of fuzzy and 

rules MFs, without using Boolean logic, to reason data. The rules are generally of a 

form similar to the following conditions: if a is low and b is high then c is medium 

where a and b are input variables, c is an output variable, low term is a MF represents 

a, high term is a MF represents b, and medium term is a MF represents on c. The 

previous gives the degree the rule applies, when the conclusion specifies a MF to each 

of one or more output variables. 

Generally, the knowledge base or rule base is the name used for the set of rules 

in fuzzy expert system, where most of the tools permit more than one conclusion for 

each rule. The general inference procedure is done in four steps:  

1. The Fuzzification step: The MFs introduced on the input variables are applied 

to their actual values, to define the degree of truth for each rule hypothesis.  

2. The Inference step: The real value for the is calculated, and applied to the 

conclusion for each rule. This is done on one fuzzy subset to be selected to every output 

variable for each rule. Generally, only PRODUCT or MIN are applied as inference 

rules. In MIN, the output MF is cut off at a height related to the rule premise's 
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calculated for degree of truth. In PRODUCT inference, the output MF is mapped by 

the rule premise's degree of truth. 

3. The Composition step: Fuzzy subsets for each output are collected together to 

form one fuzzy subset, where usually MAX or SUM are used. In MAX, the collected 

output fuzzy subset is gathered by taking the point wise maximum over all of the fuzzy 

subsets allocated to variable by the inference rule. In SUM composition, the combined 

output fuzzy subset is gathered by taking the point wise sum over all of the fuzzy 

subsets allocated to the output variable by the inference rule.  

4. The Defuzzification: It is used when needed to assign the fuzzy output set to a 

crisp number. There are more defuzzification ways in which two of the more common 

techniques are the MAXIMUM and CENTROID methods. In the CENTROID 

method, the crisp value of the output variable is completed by finding the variable 

value of the center of gravity of the MF for the fuzzy value. In the MAXIMUM 

method, one of the variable values at which the fuzzy subset has its maximum truth 

value is chosen as the crisp value for the output variable.  

 

2.11 Fuzzy Control 

Control based on Fuzzy, that uses the FRs, is an important implementation in 

fuzzy method. Using a method proposed by Ebrahim Mamdani, there are three steps 

that should be done to establish a fuzzy controlled system:  

(1) Fuzzification (Using MFs to visually describe a condition),  

(2) Rule assessment (use of FRs),  

(3) Defuzzification (getting the actual results or crisp) Advantages (i.) permits 

the use of fuzzy linguistic terms in the rules. (ii.) FL solutions can be easily confirmed 

and modified. 

main disadvantages (i.) optimize MF is very difficult to be achieved. (ii.) There 

are many ways to design the rules of fuzzy, a set of combination of output of many 

FRs and de fuzzifying the outputs. 
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METHODOLOGY 

3.1. Implementation 

 present section, we will describe the techniques that are applied for attaining the 

goals of the thesis. The used technique includes the application of Fine-tuned FL 

method in economic dispatch considering emissions. 

The main Idea of using FL in this study is to make approximate decision about 

the amount of generated power to achieve minimum of both economic and emissions 

in power plants. The procedure of finding best solution of CEED problem can be 

summarized as below: 

Step 1: Assuming initial numbers for power generated in power plant. 

Step 2: Taking these random initial numbers as an input for fuzzy system. 

Step 3: Fuzzy system will generate values according to the inputs and FRs with 

the De-Fuzzification process using Mamdani method (decision is made by using center 

of gravity for intersection area in output MF to give a crisp value for output power). 

Step 4: The generated power values will be calculated to match the constrains of 

CEED inclusive power generators limits and the power equality to demanded power 

and loss power. 

Step 5: A number of inner iterations is made to approximate the output values to 

the needed power to compensate the demand and losses for the system. 

Step6: A number of outer iterations is made to discover lower values for total 

cost of the system. 

Step7: A fine tuning method is applied for the final results to obtain better 

approximate values and achieve best results. Noticed that used membership functions 

are Gaussian and triangular MF.  
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3.2. Fuzzy system 

        In this research FMF consist of Gaussian as shown in fig. 6 (for generator 

2). The input represents random numbers as an initial value for the power of generators 

(the simulation is made depending on IEEE (30) which contains 6 generators and 30 

bus).  

Degree f 

membership

0

   

   

   

   

1

Low out
Mid out High out

80 120 14020 40 60 100 Generator 2

 

Figure 6.Input MF for generator (2) 

 

The boundaries of MFs were selected to satisfy the minimum and maximum 

power for each generator given for IEEE (30) system which is given by a matrix 

obtained from a simulation program applied for load flow and it has a parameter as 

follows:  

coffmat= [ 10    125    0.15240    38.53973   756.79886   0.00419    0.32767   

3.85932 

                   10   150   0.10587   46.15916   451.32513    0.00419   0.32767   

3.85932 

                   35   225   0.02803   40.39655   1049.9977    0.00683   -0.545     

40.26690 

                   35   210   0.03546   38.30553   1243.5311    0.00683   -0.545     

40.26690 
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                  130   325  0.02111   36.32782    1658.5596    0.00461    -0.511     

42.89553 

                  125  315  0.01799   38.27041   1356.6592   0.00461     -0.511      

42.89553] 

The first two columns represent minimum and maximum power provided by 

each generator so the first constrain is to limit the output power by the given values. 

The third, fourth and fifth columns represents  𝐚𝐢 , 𝐛𝐢 ,𝐜𝐢  which are the cost 

function parameters or coefficients as shown in (Wilbert Ruta,20 18): 

iiiii cPbPaCost  2

  

The sixth, sevens and eighth columns represents  i
 , i  , i   which are the emission 

function parameters or coefficients as shown in (Wilbert Ruta,20 18): 

iiiii PPEC   2

 

The main process in this research for fuzzy system is to take random values, applying 

it on FMF using FRs as follows: 

 

Rule 1: "generator1==midout & generator2==lowout & generator3==midout & 

generator4==lowout & generator5==midout & generator6==midout & 

demand==middemand => p1=verylow, p2=very low, p3=very low, p4=very low, 

p5=verylow, p6=verylow (1)"  

 

Rule 2: "generator1==lowout & generator2==midout & generator3==lowout & 

generator4==midout & generator5==lowout & generator6==midout & 

demand==middemand => p1=verylow, p2=low, p3=verylow, p4=low, p5=verylow, 

p6=low (1)"     

          

                   (3.2) 

                   (3.1) 
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Rule 3: "generator1==midout & generator2==lowout & generator3==midout & 

generator4==lowout & generator5==midout & generator6==lowout & 

demand==middemand => p1=low, p2=verylow, p3=low, p4=verylow, p5=low, 

p6=verylow (1)" 

              

Rule 4: "generator1==highout & generator2==lowout & generator3==highout & 

generator4==lowout & generator5==highout & generator6==lowout & 

demand==highdemand => p1=high, p2=low, p3=low, p4=mid, p5=verylow, p6=high 

(1)"  

               

Rule 5: "generator1==highout & generator2==midout & generator3==highout & 

generator4==midout & generator5==lowout & generator6==midout & 

demand==highdemand => p1=high, p2=low, p3=verylow, p4=low, p5=high, p6=low 

(1)"     

       

Rule 6: "generator1==midout & generator2==lowout & generator3==midout & 

generator4==lowout & generator5==midout & generator6==lowout & 

demand==highdemand => p1=verylow, p2=low, p3=verylow, p4=low, p5=verylow, 

p6=low (1)"        

 

Rule 7: "generator1==midout & generator2==midout & generator3==midout & 

generator4==midout & generator5==midout & generator6==midout & 

demand==highdemand => p1=low, p2=low, p3=low, p4=high, p5=low, p6=high (1)"    

                 

Rule 8: "generator1==midout & generator2==highout & generator3==midout & 

generator4==highout & generator5==midout & generator6==highout & 

demand==highdemand => p1=low, p2=mid, p3=low, p4=mid, p5=low, p6=mid (1)"       
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Rule 9: "generator1==highout & generator2==highout & generator3==midout & 

generator4==highout & generator5==highout & generator6==midout & 

demand==highdemand => p1=mid, p2=mid, p3=high, p4=mid, p5=mid, p6=high 

(1)"   

                 

Rule 10: "generator1==highout & generator2==highout & generator3==highout & 

generator4==highout & generator5==highout & generator6==highout & 

demand==highdemand => p1=high, p2=high, p3=high, p4=very high, p5=very high, 

p6=very high (1)"  

 

The output MFs consist of triangular functions the following in fig. 7  

Rule one states that if random value is given to Generator1 in the middle region 

and Generator2 the in low region and Generator3 in middle region and … Etc., then 

the output will be 𝐩𝟏=low region, 𝐩𝟐=very low region, 𝐩𝟑=low region, 𝐩𝟒=very low 

region, 𝐩𝟓=low region, 𝐩𝟔=very low region according to Mamdani and center of 

gravity calculation. 

Noticed that these rules are estimated depending on human being experience and 

way of decision-making style. 
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Figure 7.output MF for generator (1) 

After finding power output values which are limited to every generator minimum 

and maximum values because the boundaries of MF s are made according to these 

limits. After that a process will be repeated number of times to find the suitable values 

and to satisfy the second condition which is given by EQ. 3.3. 
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L

NG

i

Di PPP 
1  

wherever DP  represents power demand and LP  represents power loss for transmission 

line so the produced power values should equal to power demand and power loss 

values to achieve the minimum cost values. 

 A second iteration loop is made to locate the lowest cost function values generated 

from Fuzzy system. After finding the most accurate value and for get the best value a 

fine-tuning procedure is applied to modify the accuracy of the system to get best 

generated power values from our system. 

The main the base goal in solving CEED problem is to minimize the function:  





N

i

T hBAFMinimize
1

)()(

 

A representing the function of fuel-cost, B representing the emission function, and h 

represents the factor of penalty. Also, the EQ 3.4 Above can be expressed by EQ. 3.5 

))()(()(
1

22

iii

N

i

iiiiiIiT PPhcPbPaFMinimize  
  

So, the price penalty factor can be expressed by the following formula: 

iiiii

iiiii

i
PP

cPbPa
h

 




(max)

2

(max)

(max)

2

(max)

 

Where generator limit in (MW) is represented by 𝐩𝐢(max).  

3.3. Economic Emissions Dispatch with Valve-Point Effect 

The valve-point impact is the effect of switching between valves in generating 

units, valve point happens when each steam valve starts to open which cause ripples 

as in Fig.1. The formula of economic emission dispatch problem with valve-point 

effect taken into consideration is illustrated in EQ. (3.7) (Wilbert Ruta, 2018)  

NhBAFMinimize
N

i

T 



1

)()(  

                    (3.4) 

            (3.3) 

 (3.5) 

                    (3.6) 

                 (3.7) 
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A  is fuel cost function, B is emissions function and h is price penalty factor and they 

are given by equations (3.8 – 3.10) and N  is the total number of generating units. 

 

 

))(sin( min2

iiiiiiiii PPfecPbPaA            )($lhr            (3.8) 

)exp(2

iiiiiiii PdPPB                      )/( hrKg  

)exp(

))(sin(

(max)(max)

2

(max)

(max)(min)(max)

2

(max)

iiiiiiii

iiiiiiiii

i
PdPP

PPfecPbPa
h







      )/($ Kg  

Where ie  and ( if )are parameters of fuel cost while ( id ) and ( i ) are the emission 

parameters with valve point effect. 

3.4. Economic Emission Dispatch with NOX, SOX and COX 

The primary goal of the object function is to make the fuel cost as minimum as 

possible, considering the three main emitted gases generated by a plant that include 

NOX , SOX  andCOX . There are three emissions and one fuel cost “objective” 

functions. Optimization is performed in parallele by considering the multi objective 

as single objective optimization using the price penalty factor into consideration for 

every single emission as following in EQ. (3.11) (Wilbert Ruta, 2018)   

 

Minimize (Total cost)   ccssNNf EhEhEhF     )/($ hr  

Whereby 𝑭𝒇 , 𝑬𝑵 , 𝑬𝑺 and 𝑬𝑪 are fuel cost, 𝑵𝑶𝑿 emission, 𝑺𝑶𝑿 emission and 

𝑪𝑶𝑿 emission objective functions respectively are given by equation (3.12 – 3.15), 

while 𝒉𝑪, 𝒉𝑵 and 𝒉𝑺 are price penalty factor of 𝑪𝑶𝑿 emissions, 𝑵𝑶𝑿 emissions and 

𝑺𝑶𝑿emissions respectively given by equation (3.12 – 3.15)  

iiiiif cPbPaF  2
     )/($ hr  

)()(

2

)( NiiNiiNiN PPE        )/( hrKg  

     (3.9) 

 (3.10) 

       (3.11) 

               (3.13) 

               (3.14) 

         (3.12) 



 

27 

)()(

2

)( SiiSiiSiS PPE           )/( hrKg  

)()(

2

)( CiiCiiCiC PPE         )/( hrKg  

 

here 𝛂𝐢(𝐍), 
)( Ni

𝐢 and )( Ni are coefficients of NOX  emission of the 
thI generating 

unit )(Si
, )(Si  and )(Si  are coefficients of SOX emission of the 

thI generating 

unit )(Ci , )(Ci  and )(Ci are coefficients of  COX emission of the 
thI  generating 

unit.    

   

)((max))(

2

(max))(

(max)

2

(max)

)(

NiiNiiNi

iiiii

Ni
PP

cPbPa
h

 


   )/($ Kg  

)((max))(

2

(max))(

(max)

2

(max)

)(

SiiSiiSi

iiiii

Si
PP

cPbPa
h

 


     )/($ Kg  

)((max))(

2

(max))(

(max)

2

(max)

)(

CiiCiiCi

iiiii

Ci
PP

cPbPa
h

 


    )/($ Kg  

    

3.5. System Constraints 

The boundaries of every optimization research topic are generally named as the 

system boundaries or constraints. The procedure of optimization in this research is 

related to both inequality and equality constraints which limits the factors of 

optimization by the both of them which is represented by power. The power 

stabilization of the electrical grid consecrates on the equality constraint where the 

produced power generated in power plant was equal to power demand ( DP ) and 

system losses as it given in EQ. (3.3). Test systems Depending on the presence of data, 

application of this thesis was made according to IEEE (30) bus test system without 

taking the valve-point into consideration. 

               (3.15) 

          (3.16) 

            (3.17) 

            (3.18) 
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3.6. IEEE-30 Bus Test System 

The IEEE-30 bus test case represents a plain approximation of the American 

Electric Power system as it was in December 1961, it consists of 6 generators and 30- 

bus. The test system is applied in the problem under study implementation. The 

required data for the study which consist of emission and cost coefficients of each 

generating unit, generators upper and lower limits and B-loss coefficient matrix are 

also introduced. 

3.7. Data Table of Test System for IEEE-30 Bus  

Table -1 shows the values of the matrix coefficients or parameters of the cost 

function and the power values of each generator the (max and min). While, Table-2 

shows the nitrogen emission coefficients for each of the six generators, which we 

other than other gases to simplify it in calculations.  

Table  1. Fuel cost Coefficients and generator boundaries of IEEE (30) bus system 

Pmin 

(MW) 
Pmax (MW) ci ($/hr.) bi ($/MWhr) 

ai ($/MW 

hr.) 
unit 

10 125 756.7988600 38.5397300 0.1524700 1 

10 150 451.3251300 46.1591600 0.1058700 2 

40 250 1049.3251300 40.3965500 0.0280300 3 

35 210 1243.531100 38.3055300 0.0354600 4 

130 325 1658.569600 36.3278200 0.0211100 5 

125 315 1356.2704100 38.2704100 0.0179900 6 
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Table  2. Coefficients of NOX emissions in IEEE (30) bus system 

 

 i 

(Kg/ hr) 

i 

(Kg/MWhr) 

i 

(Kg/MWhr) 
Unit 

13.8593200. 0.3276700. 0.0041900. 1 

13.8593200. 0.3276700. 0.0041900. 2 

40.266900. -0.5455100. 0.0068300. 3 

40.266900. -0.5455100. 0.0068300. 4 

42.8955300. -0.5111600. 0.0046100. 5 

42.8955300. -0.5111600. 0.0046100. 6 

 

3.8. Calculation of Penalty Factor Load Price (h) of IEEE-30 Bus Form 

The penalty is evaluated for IEEE-30 bus as in Table 3. By which multi-objective 

optimization is converted into a single objective optimization (Wilbert Ruta, 2018). 

Table  3.Calculated price penalty Coefficients of IEEE (30) bus system  

h6 h5 h4 h3 h2 h1 

44.786300 43.153300 47.822200 39.001600 62.035700 66.147000 

 

applying   



N

i

Di PP
1

(max)  

 In Table- 4, the price penalty factors are written in the ascending by using 

formula 3.6 for each generator in the system order to identify the power penalty 

parameters of load price. The maximum demand of the individual price penalty factor 

was added one after another whereby the price penalty factor which consort to the 

cumulative maximum demand which is equal or greater to the system load qualified 

as a system load price penalty factor. 

  

                  (3.19) 
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Table  4. Price penalty Coefficients at multiple load demand of IEEE-30 bus system 

 

Price penalty factor. (h) Load demand 

43.1533 500MW 

44.7863 700MW 

47.8222 900MW 

 

3.9. Proposed method 

          The proposed method consists of generating initial values for power 

generators randomly then making it as input for fuzzy interference system as shown in 

fig 8. This is in order to give crisp values based on given input to reduce the search 

space by applying human sense for deciding the appropriate generating values. The 

main idea is to estimate generating power values depending on power demand, if 

power demand is high then normally generating units should be in a region from mid. 

To high and if power demand is low then normally generating units should be in a 

region from low to mid, all these estimated values are included in FRs. After 

considering the output values a calculation is made to find the nearest values to achieve 

the goal for providing generated power equals power demand plus power loss in the 

system, many iterations are made to find the optimum values. At the beginning of the 

flowchart, we define the matrix coefficients for IEEE -30 bus system for the values of 

the generators and the losses the obtained from a simulation program applied for load 

flow. The initial values of the generators will generate power values according to the 

inputs of the fuzzy interference system (FIS) by using Mamdani method to detecting 

the best power values that do not exceed the limits of each generator in the matrix 

(highest and lowest). Then you enter the process of internal iterations to approximate 

the output values to the required power, if the result satisfies the condition (YES) will 

detecting the total cost values, and if the values are otherwise (NO), it will return to 

the of step generating the initial values. Then you enter the process of external 

iterations to discover the lowest value of the total cost of the system, if it is a 

satisfactory result (YES) will arrange or sort the best total cost values, and if it is (NO) 

will return again by generating initial values for the values of the generators, and in 

the end the show results of the best cost values. 



 

31 

Start

Define coefficient matrix ,power 

generator limits and loss matrix for
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Generate initial values for power 

generators
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Figure 8.proposed method flowchart 
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CHAPTER FOUR 

SIMULATION AND RESULTS DISCUSSION 

4.1.  General 

       In order to develop a power generation value that satisfies the constraints to 

introduce the best power with the best economic and emission values, a fuzzy 

interference system with a Gaussian membership function is utilized for the CEED 

problem Discover the better solution. In the IEEE (30) system, initial power values are 

generated randomly, and the fuzzy interference system subsequently uses rules created 

specifically for this purpose to provide the best power 

 values. To discover the optimal value of generated power, the Mamdani method 

is used. It is a defuzzification method that produces output values for a number of inner 

and outer iterations. The power demand must be provided with minimum fuel 

consumption and lower emission values. Thus, requires minimum power losses 

accomplished through a search procedure to investigates the optimal solution. For this 

study, the necessary values are located using two different methods. The first is the 

Power Values with Fine Tuning (PVFT), while the second is the Power Values with 

Normal search (PVNS).  

PVFT depends on determining the difference between generated power values, 

power demand, and power loss. Dividing this difference by the number of generators 

(in this case, six), adding the delta power values to each power, and then recalculating 

power loss.  

The goal of PVFT is to reduce the difference between generated power and 

(demand plus power loss). PVNS method depends on finding the minimum difference 

between generated power values and power demand plus power loss until reach the 

minimum total cost and best power values needed. 

4.2. IEEE (30) grid 

 The IEEE (30) grid is shown in Figure 9 which contains 6 generators and 30 bus 

bars, where all the Results in this research are based on this grid. The IEEE (30) -bus 

test case represents a simple approximation of the American Electric Power system as 

it was in December 1961. The (11 kV) and (1.0 kV) base voltages are estimate, and 
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may not reflect the actual data. The model In fact, has these buses at either 132 or 33 

kV; what is worth mentioning is that the 30-bus test case does not have line limits. 
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       Figure 9.IEEE-30 grid 
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4.3. simulation 

     In the simulation section, we use a fuzzy interference system using the 

Gaussian function for the input and a triangular function for the output to find the best 

solution to the CEED problem. The main process in this research for fuzzy system is 

to take random values applying it on FMF using FRs depending on human being 

experience. 

Three values of power demand (500, 700, and 900 MW), three widths of the 

Gaussian function (10 ,20 30), and with internal iterations equal to (10 ,100) are taken. 

Different values of the outer iterations are used to calculate the power loss and sum of 

generated power, and to find the maximum accuracy and minimum total cost. The 

detailed simulations that have been tested and summarized in Table 5. 

Table  5.simulation cases for multiple power demand, iterations and methods 

Case No. 
Proposed 

method 

Power 

demand 

Inner 

iteration 

Gaussian 

width 

(2 sigma) 

Case1 PVFT 500MW 10 10 

Case2 PVFT 500MW 10 20 

Case3 PVFT 500MW 10 30 

Case4 PVFT 500MW 100 10 

Case5 PVFT 500MW 100 20 

Case6 PVFT 500MW 100 30 

Case7 PVNS 500MW 10 10 

Case8 PVNS 500MW 10 20 

Case9 PVNS 500MW 10 30 

Case10 PVNS 500MW 100 10 

Case11 PVNS 500MW 100 20 

Case12 PVNS 700MW 10 10 

Case13 PVNS 700MW 10 20 

Case14 PVNS 700MW 10 30 

Case15 PVNS 700MW 100 20 

Case16 PVNS 700MW 100 30 

Case17 PVNS 900MW 100 20 

 

4.3.1.  Case 1 

The input and output MFs are used to calculate the target values.  The input is a 

Gaussian function while the output is a triangular function as shown in Figure 10. For 

the input, the x-axis is the initial random values for generator1, and y-axis presents the 
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degree of membership. In the other hand, for the output x-axis is the power value for 

generator 1 given by the fuzzy system, while y-axis is the degree of MF. 

The rule used to estimate power values is as follows: 

rule = [2 1 2 1 2 2 2 1 1 1 1 1 1 1 1; 

            1 2 1 2 1 2 2 1 2 1 2 1 2 1 1; 

            2 1 2 1 2 1 2 2 1 2 1 2 1 1 1; 

            3 1 3 1 3 1 3 4 2 2 3 1 4 1 1; 

            3 2 3 2 1 2 3 4 2 1 2 4 2 1 1; 

            2 1 2 1 2 1 3 1 2 1 2 1 2 1 1; 

            2 2 2 2 2 2 3 2 2 2 4 2 4 1 1; 

            2 3 2 3 2 3 3 2 3 2 3 2 3 1 1; 

            3 3 2 3 3 2 3 3 3 4 3 3 4 1 1; 

            3 3 3 3 3 3 3 4 4 4 5 5 5 1 1]; 

  

  

 

 

 

 

                            

Figure 10.Input and output MF 

Different outer iteration values, calculated power loss, generated power sum, 

accuracy, and the total cost are presented in Table 6. The best iteration outer value for 

accuracy is found to be 500, while for the total cost is 90. It is clear from the table that 

small numbers of iterations (≥10) give good values with minimum computing time. 

  

                              (a)                                                                        (b) 
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Table  6.Case 1 data 

Total cost 

(𝟏𝟎𝟒) 
accuracy Generated power Power loss 

outer 

iteration 
N 

5.2237 78.1045 651.6159 42.1386 1 1. 

4.1568 99.8362 527.0274 26.2085 10 2. 

4.1568 99.8362 527.0274 26.2085 30 3. 

4.1568 99.8362 527.0274 26.2085 50 4. 

4.1560 99.8405 526.9765 26.1788 70 5. 

4.1549 99.8585 526.7619 26.0546 90 6. 

4.1568 99.8362 527.0274 26.2085 100 7. 

4.1551 99.8484 526.8304 26.0724 200 8. 

4.1551 99.8593 526.7628 26.0591 500 9. 

 

4.3.2. Case 2 

The input is the Gaussian while the output is the triangular functions that are 

shown in Figure 11. The power loss represents the power dissipation in the IEEE (30) 

grid transmission line. 

The rule used to estimate power values is as follows: 

 rule = [ 2 1 2 1 2 2 2 1 1 1 1 1 1 1 1; 

            1 2 1 2 1 2 2 1 2 1 2 1 2 1 1; 

            2 1 2 1 2 1 2 2 1 2 1 2 1 1 1; 

            3 1 3 1 3 1 3 4 2 2 3 1 4 1 1; 

            3 2 3 2 1 2 3 4 2 1 2 4 2 1 1; 

            2 1 2 1 2 1 3 1 2 1 2 1 2 1 1; 

            2 2 2 2 2 2 3 2 2 2 4 2 4 1 1; 

            2 3 2 3 2 3 3 2 3 2 3 2 3 1 1; 

            3 3 2 3 3 2 3 3 3 4 3 3 4 1 1; 

            3 3 3 3 3 3 3 4 4 4 5 5 5 1 1]; 
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Figure 11.Input and output MF 

 

Table 7 presents the different outer iteration values, power loss, generated 

power, accuracy, and the total cost. The best outer iteration value for accuracy is found 

to be 500, while the total cost is 70 and 200. It is clear from the table that for a number 

of iterations (≥30), acceptable values with minimum computing time are found. 

                                                      Table  7 . Case 2 data 

Total cost 

(𝟏𝟎𝟒) 
accuracy 

Generated 

power 
Power loss 

outer 

iteration 
N 

5.155600 77.722100 647.6628 36.2733 1 1. 

4.360100 95.221900 552.9827 29.0921 10 2. 

4.159700 99.783600 527.5140 26.4318 30 3. 

4.156600 99.834000 527.0114 26.1813 50 4. 

4.155300 99.854900 526.8035 26.0780 70 5. 

4.155500 99.850600 526.8137 26.0666 90 6. 

4.159200 99.798500 527.4030 26.3958 100 7. 

4.155300 99.855600 526.7983 26.0762 200 8. 

4.155400 99.858600 526.7637 26.0569 500 9. 

 

4.3.3. Case 3: 

The input and output MFs are used to calculate the target values as presented in 

Figure 12. 

The rule used to estimate power values is as follows: 

rule = [ 2 1 2 1 2 2 2 1 1 1 1 1 1 1 1; 

            1 2 1 2 1 2 2 1 2 1 2 1 2 1 1; 

                             (a)                                                                       (b) 
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            2 1 2 1 2 1 2 2 1 2 1 2 1 1 1; 

            3 1 3 1 3 1 3 4 2 2 3 1 4 1 1; 

            3 2 3 2 1 2 3 4 2 1 2 4 2 1 1; 

            2 1 2 1 2 1 3 1 2 1 2 1 2 1 1; 

            2 2 2 2 2 2 3 2 2 2 4 2 4 1 1; 

            2 3 2 3 2 3 3 2 3 2 3 2 3 1 1; 

            3 3 2 3 3 2 3 3 3 4 3 3 4 1 1]; 

 

 

 

 

 

 

 

Figure 12.Input and output MF 

Different outer iteration values, calculated power loss, generated power sum, accuracy, 

and the total cost are presented in Table 8. The best outer iteration value for accuracy 

is found to be 500, while for the total cost is 90 and 500. It is clear from the table that 

small numbers of iterations (≥70) give good values with minimum computing time. 

  

                             (a)                                                                       (b) 
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                                                     Table  8 .Case 3 data 

Total cost 

(𝟏𝟎𝟒) 
accuracy 

Generated 

power 
Power loss 

outer 

iteratio

n 

N 

4.6668 88.2410 591.6201 32.8250 1 1. 

4.1676 99.6969 528.3551 26.8398 10 2. 

4.1610 99.7788 527.5592 26.4532 30 3. 

4.1595 99.7892 527.3053 26.2513 50 4. 

4.1579 99.8181 527.1722 26.2629 70 5. 

4.1578 99.8185 527.1549 26.2475 90 6. 

4.1580 99.8176 527.1779 26.2657 100 7. 

4.1579 99.8188 527.1637 26.2578 200 8. 

4.1578 99.8196 527.1547 26.2527 500 9. 

 

4.3.4. Case 4:  

The input Gaussian and the output triangular functions are shown in Figure 13. 

The rule used to estimate power values is as follows: 

rule = [2 1 2 1 2 2 2 1 1 1 1 1 1 1 1; 

            1 2 1 2 1 2 2 1 2 1 2 1 2 1 1; 

            2 1 2 1 2 1 2 2 1 2 1 2 1 1 1; 

            3 1 3 1 3 1 3 4 2 2 3 1 4 1 1; 

            3 2 3 2 1 2 3 4 2 1 2 4 2 1 1; 

            2 1 2 1 2 1 3 1 2 1 2 1 2 1 1; 

            2 2 2 2 2 2 3 2 2 2 4 2 4 1 1; 

            2 3 2 3 2 3 3 2 3 2 3 2 3 1 1; 

            3 3 2 3 3 2 3 3 3 4 3 3 4 1 1; 

            3 3 3 3 3 3 3 4 4 4 5 5 5 1 1]; 
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Figure 13.Input and output MF 

Simulation outputs are depicted in Table 9. The best outer iteration value for 

both accuracy and the total cost is 500. The Table shows that for iterations ≥10, good 

values with minimum computing time are found. 

                                                        Table  9.Case 4 data 

Total cost 

(𝟏𝟎𝟒) 
accuracy 

Generated 

power 
Power loss 

outer 

iteration 
N 

4.1790 99.5121 530.2782 27.8385 1 1. 

4.1568 99.8362 527.0281 26.2089 10 2. 

4.1568 99.8362 527.0274 26.2085 30 3. 

4.1568 99.8362 527.0277 26.2087 50 4. 

4.1568 99.8362 527.0274 26.2085 70 5. 

4.1566 99.8376 527.0109 26.1989 90 6. 

4.1568 99.8362 527.0274 26.2085 100 7. 

4.1568 99.8362 527.0274 26.2085 200 8. 

4.1551 99.8584 526.7613 26.0533 500 9. 

 

4.3.5. Case 5   

The input is a Gaussian function while the output is a triangular function as 

shown in Figure 14. 

The rule used to estimate power values is as follows: 

rule = [2 1 2 1 2 2 2 1 1 1 1 1 1 1 1; 

            1 2 1 2 1 2 2 1 2 1 2 1 2 1 1; 

                           (a)                                                              (b) 
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            2 1 2 1 2 1 2 2 1 2 1 2 1 1 1; 

           3 1 3 1 3 1 3 4 2 2 3 1 4 1 1; 

            3 2 3 2 1 2 3 4 2 1 2 4 2 1 1; 

            2 1 2 1 2 1 3 1 2 1 2 1 2 1 1; 

            2 2 2 2 2 2 3 2 2 2 4 2 4 1 1; 

            2 3 2 3 2 3 3 2 3 2 3 2 3 1 1; 

            3 3 2 3 3 2 3 3 3 4 3 3 4 1 1; 

            3 3 3 3 3 3 3 4 4 4 5 5 5 1 1]; 

 

 

 

 

 

   

                           

          

Figure 14.Input and output MF 

From table 10, the best iteration outer value for accuracy is found to be 500, 

while for the total cost is 100.        

                                               Table  10.Case 5 data 

Total cost (𝟏𝟎𝟒) accuracy 
Generated 

power 
Power loss 

outer 

iteration 
N 

4.1827 99.4591 530.8051 28.1006 1 1. 

4.1667 99.6731 528.5865 26.9519 10 2. 

4.1556 99.8554 526.8035 26.0804 30 3. 

4.1557 99.8518 526.7951 26.0540 50 4. 

4.1561 99.8465 526.8662 26.0986 70 5. 

4.1586 99.8077 527.3116 26.3501 90 6. 

4.1552 99.8555 526.7937 26.0710 100 7. 

                              (a)                                                                        (b) 
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4.1558 99.8457 526.8879 26.1162 200 8. 

4.1555 99.8560 526.7804 26.0605 500 9. 

 

4.3.6. Case 6 

The input and output MFs are presented in Figure 15. Rule values are:  

             [ 2 1 2 1 2 2 2 1 1 1 1 1 1 1 1; 

            1 2 1 2 1 2 2 1 2 1 2 1 2 1 1; 

            2 1 2 1 2 1 2 2 1 2 1 2 1 1 1; 

            3 1 3 1 3 1 3 4 2 2 3 1 4 1 1; 

            3 2 3 2 1 2 3 4 2 1 2 4 2 1 1; 

            2 1 2 1 2 1 3 1 2 1 2 1 2 1 1; 

            2 2 2 2 2 2 3 2 2 2 4 2 4 1 1; 

            2 3 2 3 2 3 3 2 3 2 3 2 3 1 1; 

            3 3 2 3 3 2 3 3 3 4 3 3 4 1 1; 

            3 3 3 3 3 3 3 4 4 4 5 5 5 1 1]; 

 

 

 

 

 

 

Figure 15.Input and output MF 

 

Table 11 outlines data collected from case 6. The best outer iteration is 90 for both 

accuracy and total cost.  

  

                 (a)                                                                  (b) 
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                                                  Table  11 .  Case 6 data 

Total cost 

(𝟏𝟎𝟒) 
accuracy 

Generated 

power 
Power loss 

outer 

iteration 
N 

4.1802 99.470600 529.2161 26.5691 1 1. 

4.1731 99.570900 528.6896 26.5441 10 2. 

4.1685 99.652800 528.0795 26.3434 30 3. 

4.1717 99.586300 529.5170 27.4485 50 4. 

4.1739 99.605300 529.2175 27.2438 70 5. 

4.1690 99.653500 528.8654 27.1330 90 6. 

4.1709 99.586300 528.8722 26.8035 100 7. 

4.1691 99.6306 528.7517 26.9045 200 8. 

4.1694 99.6337 528.9787 27.1473 500 9. 

 

As a conclusion for PVFT method, the accuracy, and total costs are presented 

through Figures 16 to 19. Given the high convergence of the accuracy, it is found that 

4 iterations are enough to represent various cases. 

 Figure 16 shows that better accuracy starts from width 30 for Gaussian 

Membership Function (GMF) at the second iteration then at third iteration all values 

for accuracy will be approximately the same. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16.Accuracy in multiple width of GMF iter. 10 PVFT method 

                                        

It is noticed that the maximum accuracy starts from widths 30 and 10 for GMF at the 

first iteration as shown in Figure 17. After the third iteration, all values for accuracy 

will be approximately the same but with a slight difference as in Tables. 
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Figure 17.Accuracy in multiple width of GMF iter. 100 PVFT method 

 

The total cost from width 30 is decreasing at the first iteration as shown in figure 

18. At the  

second iteration, both width 30 and width 10 will be at approximately their 

minimum, while, for width 20 this minimum is accomplished at iteration 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18.Total cost in multiple width of GMF iter. 10 PVFT method 
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Figure 19 presents the total cost for the inner iteration equal to 100. It is noticed that 

for width 20, the cost starts at a high value in comparison with other widths. The cost 

for width 30 is still higher than the others. The convergence is slower compared with 

the case of 10 inner iterations. 

 

 

 

 

 

 

 

 

 

 

 

Figure 19.Total cost in multiple width of GMF iter. 100 PVFT method 

4.4. PVNS method 

4.4.1. Case 7: 

The input Gaussian and the output triangular functions are shown in Figure 20. 

The rule used to estimate power values is as follows: 

rule = [ 2 1 2 1 2 2 2 1 1 1 1 1 1 1 1; 

            1 2 1 2 1 2 2 1 2 1 2 1 2 1 1; 

            2 1 2 1 2 1 2 2 1 2 1 2 1 1 1; 

            3 1 3 1 3 1 3 4 2 2 3 1 4 1 1; 

            3 2 3 2 1 2 3 4 2 1 2 4 2 1 1; 

            2 1 2 1 2 1 3 1 2 1 2 1 2 1 1; 

            2 2 2 2 2 2 3 2 2 2 4 2 4 1 1; 
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3 2 3 2 3 3 2 3 2 3 2 3 1 1; 

      3 2 3 3 2 3 3 3 4 3 3 4 1 1; 

            3 3 3 3 3 3 4 4 4 5 5 5 1 1]; 

 

 

 

 

 

 

               

 

Figure 20.Input and output MF 

Table 12 shows that the best iteration outer value for accuracy is found to be 70, 

while the total cost is 200. 

                                               Table  12.Case 7 data 

Total cost 

(𝟏𝟎𝟒) 
accuracy 

Generated 

power 
Power loss 

outer 

iteration 
N 

4.7021 88.1188 596.7728 37.3666 1 1. 

3.9117 97.4748 542.2438 29.6176 10 2. 

3.9779 99.1565 522.8309 27.0482 30 3. 

3.9108 97.7925 540.4278 29.3903 50 4. 

3.9108 99.5946 525.5305 27.5577 70 5. 

3.9108 99.3510 531.5329 28.2879 90 6. 

3.9108 98.7690 534.8512 28.6962 100 7. 

3.9020 99.2663 523.6645 27.3330 200 8. 

- - - - 500 9. 

 

  

                          (a)                                                                 (b) 
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4.4.2. Case 8       

The input is a Gaussian function while the output is a triangular function as 

shown in Figure 21 

The rule used to estimate power values is as follows: 

rule = [  2 1 2 1 2 2 2 1 1 1 1 1 1 1 1; 

            1 2 1 2 1 2 2 1 2 1 2 1 2 1 1; 

            2 1 2 1 2 1 2 2 1 2 1 2 1 1 1; 

            3 1 3 1 3 1 3 4 2 2 3 1 4 1 1; 

            3 2 3 2 1 2 3 4 2 1 2 4 2 1 1; 

            2 1 2 1 2 1 3 1 2 1 2 1 2 1 1; 

            2 2 2 2 2 2 3 2 2 2 4 2 4 1 1; 

            2 3 2 3 2 3 3 2 3 2 3 2 3 1 1; 

            3 3 2 3 3 2 3 3 3 4 3 3 4 1 1; 

            3 3 3 3 3 3 3 4 4 4 5 5 5 1 1] 

 

 

 

 

 

     

 

Figure 21.Input and output MF 

various outer iteration values, calculated power loss, generated power sum, 

accuracy, and the total cost are presented in Table 13. The best iteration outer value 

for accuracy is found to be 30, while for the total cost is 100.  

  

                             (a)                                                                        (b) 



 

49 

                                         Table  13.Case 8 data 

Total cost 

(𝟏𝟎𝟒) 
accuracy 

Generated 

power 
Power loss 

outer 

iteratio

n 

N 

3.9776 96.7487 509.3680 25.6247 1 1. 

3.9283 98.6235 520.0139 26.8965 10 2. 

3.8995 99.9948 527.3062 27.2803 30 3. 

3.9134 99.7450 529.2806 28.0056 50 4. 

3.9020 99.8677 527.1372 27.7988 70 5. 

3.9263 99.6958 528.9889 27.4678 90 6. 

3.8991 99.7460 529.2745 28.0046 100 7. 

3.9009 99.9576 528.0765 27.8646 200 8. 

- - - - 500 9. 

.   

4.4.3. Case 9:  

The input is a Gaussian function while the output is a triangular function as 

follows in Figure 22. 

The rule used to estimate power values is as follows: 

rule = [  2 1 2 1 2 2 2 1 1 1 1 1 1 1 1; 

            1 2 1 2 1 2 2 1 2 1 2 1 2 1 1; 

            2 1 2 1 2 1 2 2 1 2 1 2 1 1 1; 

            3 1 3 1 3 1 3 4 2 2 3 1 4 1 1; 

            3 2 3 2 1 2 3 4 2 1 2 4 2 1 1; 

            2 1 2 1 2 1 3 1 2 1 2 1 2 1 1; 

            2 2 2 2 2 2 3 2 2 2 4 2 4 1 1; 

            2 3 2 3 2 3 3 2 3 2 3 2 3 1 1; 

  3  3 2 3 3 2 3 3 3 4 3 3 4 1 1; 

              3 3 3 3 3 3 3 4 4 4 5 5 5 1 1]; 
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Figure 22.Input and output MF 

From the following table  14 , the best outer iteration value for accuracy is found 

to be 200, while for the total cost is 100. 

                                              Table  14.Case 9 data 

Total cost 

(𝟏𝟎𝟒) 
accuracy 

Generated 

power 
Power loss 

outer 

iteration 
N 

4.7428 86.9525 602.9455 37.7081 1 1. 

3.9447 99.4990 529.0652 26.5600 10 2. 

3.9313 99.9856 526.5846 26.5124 30 3. 

3.9533 99.4957 530.7326 28.2114 50 4. 

3.9418 99.9336 526.3847 26.7165 70 5. 

3.9315 99.9493 526.6250 26.3717 90 6. 

3.9207 99.9789 526.8675 26.9728 100 7. 

3.9262 99.9880 527.8084 27.8681 200 8. 

- - - - 500 9. 

                                 

4.4.4. Case 10: 

The input is the Gaussian while the output is the triangular functions that are 

shown in Figure 23 

The rule used to estimate power values is as follows: 

rule = [2 1 2 1 2 2 2 1 1 1 1 1 1 1 1; 

            1 2 1 2 1 2 2 1 2 1 2 1 2 1 1; 

            2 1 2 1 2 1 2 2 1 2 1 2 1 1 1; 

                             (a)                                                                       (b) 
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            3 1 3 1 3 1 3 4 2 2 3 1 4 1 1 

           3 2 3 2 1 2 3 4 2 1 2 4 2 1 1; 

            2 1 2 1 2 1 3 1 2 1 2 1 2 1 1; 

            2 2 2 2 2 2 3 2 2 2 4 2 4 1 1; 

            2 3 2 3 2 3 3 2 3 2 3 2 3 1 1; 

            3 3 2 3 3 2 3 3 3 4 3 3 4 1 1; 

            3 3 3 3 3 3 3 4 4 4 5 5 5 1 1]; 

 

 

 

 

 

 

Figure 23.Input and output MF  

 Table 15 presents the different outer iteration values, power loss, generated 

power, accuracy, and total cost. The best outer iteration value for both accuracy and 

the total cost is 200. 

                                           Table  15.Case 10 data 

Total cost 

(𝟏𝟎𝟒) 
accuracy 

Generated 

power 

Power 

loss 

outer 

iteration 
N 

4.0137 97.6417 514.3912 26.1827 1 1. 

3.8992 99.9258 527.4053 27.7761 10 2. 

3.9283 99.9759 527.8036 27.9243 30 3. 

3.9210 99.9330 528.1490 27.8139 50 4. 

3.9389 99.9906 527.6598 27.7066 70 5. 

3.9250 99.9875 527.9079 27.8456 90 6. 

3.9086 99.9906 527.6598 27.7066 100 7. 

3.8974 99.9921 527.8889 27.8496 200 8. 

- - - - 500 9. 

 

                         (a)                                                                 (b) 
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4.4.5. Case 11:  

The input and output MFs are used to calculate the target values as presented in 

Figure 24. 

The rule used to estimate power values is as follows: 

rule = [ 2 1 2 1 2 2 2 1 1 1 1 1 1 1 1; 

          1 2 1 2 1 2 2 1 2 1 2 1 2 1 1; 

          2 1 2 1 2 1 2 2 1 2 1 2 1 1 1; 

          3 1 3 1 3 1 3 4 2 2 3 1 4 1 1; 

          3 2 3 2 1 2 3 4 2 1 2 4 2 1 1; 

           2 1 2 1 2 1 3 1 2 1 2 1 2 1 1; 

           2 2 2 2 2 2 3 2 2 2 4 2 4 1 1; 

           2 3 2 3 2 3 3 2 3 2 3 2 3 1 1; 

           3 3 2 3 3 2 3 3 3 4 3 3 4 1 1]; 

 

 

 

 

 

 

 

Figure 24Input and output MF 

As shown in Table 16, the best iteration outer value for accuracy is found to be 

30 and 70 while for the total cost is 200. 

  

                     (a)                                                                   (b) 
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                                            Table  16 . Case 11 data 

Total cost 

(𝟏𝟎𝟒) 
accuracy 

Generated 

power 
Power loss 

outer 

iteration 
N 

4.1093 99.9660 527.6379 27.8080 1 1. 

4.0576 99.9380 526.0130 26.3231 10 2. 

4.0431 99.9985 526.8476 26.8401 30 3. 

4.0568 99.9708 527.0812 26.9352 50 4. 

4.0650 99.9985 527.8735 27.8658 70 5. 

4.0192 99.9944 526.5017 26.5299 90 6. 

4.0192 99.9944 526.5017 26.5299 100 7. 

4.0163 99.9723 526.5017 26.9811 200 8. 

- - - - 500 9. 

As a conclusion for PVNS method all with power demands equal to 500 MW, 

the accuracy and total costs are presented in Figures 25 to 28. Given the high 

convergence of the accuracy, it is found that 8 iterations are enough to represent 

various cases.  

The best values are given when the width of (GMF) is 20 dues to the suitable 

intersection area in input membership which gives good reliability and more accurate 

output results as shown in Figure 25. 

 

 

 

 

 

 

 

 

Figure 25.Accuracy in multiple widths of GMF iter. 10 PVNS method 

It is noticed from the Figure 26 with outer Iteration of 100, the width of 20 gives 

a low accuracy in the starting and gives better results as much as inner iteration 

increases. 



 

54 

The total cost for the cases of 10 and 100 inner iterations are presented in Figures 

26 and 27. The width of 20 gives a good result in low inner iteration values and high iteration 

values. In Figure 27, it is presented that width of 20 gives a good result in low inner 

iteration values and high iteration values. The convergence is lower than the case of 

ten inner iterations. 

 

 

 

 

 

 

 

 

Figure 26Accuracy in multiple widths of GMF iter. 100 PVNS method 

 

 

 

 

 

 

 

 

Figure 27.Total cost in multiple widths of GMF iter. 10 PVNS method 
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Figure 28.Total cost in multiple widths of GMF iter. 100 PVNS method 

 

As shown in above obtained results (graphs and tables) that the (PVNS) method 

is more accurate than (PVFT) method so and application is done on IEEE (30)  grid 

for (700MW and 900MW) in order to compare the results to other algorithms to prove 

that the proposed method is better than other algorithms so below the rest of results 

will be included.  

4.4.6. Case 12 

For this case the input Gaussian and the output triangular functions are shown in 

Figure 29. Here the power demand is increased to be 700 MW. 

The rule used to estimate power values is as follows: 

rule = [2 1 2 1 2 2 2 1 1 1 1 1 1 1 1; 

            1 2 1 2 1 2 2 1 2 1 2 1 2 1 1; 

            2 1 2 1 2 1 2 2 1 2 1 2 1 1 1; 

            3 1 3 1 3 1 3 4 2 2 3 1 4 1 1; 

            3 2 3 2 1 2 3 4 2 1 2 4 2 1 1; 

            2 1 2 1 2 1 3 1 2 1 2 1 2 1 1; 

            2 2 2 2 2 2 3 2 2 2 4 2 4 1 1; 
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            2 3 2 3 2 3 3 2 3 2 3 2 3 1 1; 

            3 3 2 3 3 2 3 3 3 4 3 3 4 1 1; 

            3 3 3 3 3 3 3 4 4 4 5 5 5 1 1]; 

 

 

 

 

 

 

 

                                                                 

Figure 29.Input and output MF 

Table 17 presents the different outer iteration values the best value of outer 

iteration is 70 for accuracy and 100 for total cost. 

                                                  Table  17. Case 12 data 

Total cost 

(𝟏𝟎𝟒) 

accuracy Generated 

power 

Power loss outer 

iteration 

N 

6.7855 94.5036 808.6136 70.1386 1 1. 

5.8350 96.9108 757.0440 35.4200 10 2. 

5.8350 99.9109 765.6593 65.0357 30 3. 

5.8350 99.9909 752.4764 52.5399 50 4. 

5.7316 99.9976 738.2376 38.2541 70 5. 

5.7507 99.8486 766.3439 65.2839 90 6. 

5.6616 99.7610 766.9789 65.3058 100 7. 

5.7369 99.9768 764.8170 64.9795 200 8. 

- - - - 500 9. 

 

4.4.7. Case 13 

The input and output MFs are used to calculate the target values as presented in 

Figure 30. 

                             (a)                                                               (b) 
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The rule used to estimate power values is as follows: 

rule = [2 1 2 1 2 2 2 1 1 1 1 1 1 1 1; 

            1 2 1 2 1 2 2 1 2 1 2 1 2 1 1; 

            2 1 2 1 2 1 2 2 1 2 1 2 1 1 1; 

            3 1 3 1 3 1 3 4 2 2 3 1 4 1 1; 

            3 2 3 2 1 2 3 4 2 1 2 4 2 1 1; 

            2 1 2 1 2 1 3 1 2 1 2 1 2 1 1; 

            2 2 2 2 2 2 3 2 2 2 4 2 4 1 1; 

            2 3 2 3 2 3 3 2 3 2 3 2 3 1 1; 

            3 3 2 3 3 2 3 3 3 4 3 3 4 1 1; 

            3 3 3 3 3 3 3 4 4 4 5 5 5 1 1]; 

 

 

 

 

 

 

 

Figure 30.Input and output MF 

Different outer iteration values, calculated power loss, generated power sum, 

accuracy, and the total cost are presented in Table 18. The best outer iteration value 

for accuracy is found to be 90, while for the total cost is 70. 

  

                             (a)                                                                        (b) 
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                                                Table  18.Case 13 data 

Total cost 

(𝟏𝟎𝟒) 
accuracy 

Generated 

power 
Power loss 

outer 

iteration 
N 

6.3376 99.7224 762.4900 64.4331 1 1. 

5.9965 99.9581 764.1023 64.3953 10 2. 

5.8350 99.9687 753.5900 53.3707 30 3. 

5.8581 99.8258 766.4081 65.1885 50 4. 

5.5978 99.8734 763.0297 63.9158 70 5. 

5.6576 99.9937 763.5414 63.5858 90 6. 

5.8357 99.8608 763.8469 64.8213 100 7. 

5.6527 99.9664 764.1268 64.3618 200 8. 

- - - - 500 9. 

 

4.4.8. Case 14: 

The input is the Gaussian while the output is the triangular functions that are 

shown in Figure 31. 

The rule used to estimate power values is as follows: 

rule = [2 1 2 1 2 2 2 1 1 1 1 1 1 1 1; 

            1 2 1 2 1 2 2 1 2 1 2 1 2 1 1; 

            2 1 2 1 2 1 2 2 1 2 1 2 1 1 1; 

           3 1 3 1 3 1 3 4 2 2 3 1 4 1 1; 

            3 2 3 2 1 2 3 4 2 1 2 4 2 1 1; 

            2 1 2 1 2 1 3 1 2 1 2 1 2 1 1; 

            2 2 2 2 2 2 3 2 2 2 4 2 4 1 1; 

            2 3 2 3 2 3 3 2 3 2 3 2 3 1 1; 

            3 3 2 3 3 2 3 3 3 4 3 3 4 1 1; 

                      3 3 3 3 3 3 4 4 4 5 5 5 1 1]; 

  



 

59 

 

 

 

 

 

 

                

Figure 31.Input and output MF 

                           

Table 19 presents the different outer iteration values, that the best value of outer 

iteration is 90 for accuracy and 50 for total cost.   

                                                     Table  19.Case 14 data 

Total cost 

(𝟏𝟎𝟒 ) 
accuracy Generated power Power loss 

outer 

iteratio

n 

N 

6.0536 98.3241 738.6129 50.3440 1 1. 

6.0163 99.8232 759.3665 58.1287 10 2. 

5.9921 99.9828 764.0647 64.1847 30 3. 

5.8089 99.9822 764.8398 64.9642 50 4. 

6.0155 99.9971 759.9006 59.8803 70 5. 

5.8341 99.9994 751.0858 51.0898 90 6. 

5.9733 99.9848 764.9315 65.0376 100 7. 

5.9199 99.9957 760.1186 60.1490 200 8. 

- - - - 500 9. 

 

4.4.9. Case 15:  

The input and output MFs are presented in Figure 32. Rule values are:  

rule = [2 1 2 1 2 2 2 1 1 1 1 1 1 1 1; 

            1 2 1 2 1 2 2 1 2 1 2 1 2 1 1; 

                             (a)                                                                        (b) 
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            2 1 2 1 2 1 2 2 1 2 1 2 1 1 1; 

            3 1 3 1 3 1 3 4 2 2 3 1 4 1 1; 

            3 2 3 2 1 2 3 4 2 1 2 4 2 1 1; 

            2 1 2 1 2 1 3 1 2 1 2 1 2 1 1; 

            2 2 2 2 2 2 3 2 2 2 4 2 4 1 1; 

            2 3 2 3 2 3 3 2 3 2 3 2 3 1 1; 

            3 3 2 3 3 2 3 3 3 4 3 3 4 1 1; 

                      3 3 3 3 3 3 4 4 4 5 5 5 1 1]; 

 

 

 

 

 

 

                      

Figure 32.Input and output MF 

Simulation outputs are depicted in Table 20. The best outer iteration value for is 

10 and 100 for accuracy and 90 for total cost. 

  

                             (a)                                                                 (b) 
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                                              Table  20 . Case 15 data 

Total cost 

(𝟏𝟎𝟒) 
accuracy 

Generated 

power 
Power loss 

outer 

iteration 
N 

6.2118 99.9920 752.602 52.5465 1 1. 

6.2890 99.9980 763.1483 63.1346 10 2. 

6.1280 99.9238 765.6646 65.1313 20 3. 

6.0697 99.9602 738.0168 38.2953 50 4. 

6.0469 99.9963 738.2732 38.2475 70 5. 

5.9907 99.9937 763.5414 63.5858 90 6. 

6.0352 99.9980 763.1483 63.1346 100 7. 

6.0289 99.9963 738.2732 38.2475 200 8. 

- - - - 500 9. 

             

4.4.10. Case 16:   

Next table contains an outer iteration of different values, The input and output 

MFs are presented in Figure 33. Rule values are:  

rule = [2 1 2 1 2 2 2 1 1 1 1 1 1 1 1; 

           1 2 1 2 1 2 2 1 2 1 2 1 2 1 1; 

           2 1 2 1 2 1 2 2 1 2 1 2 1 1 1; 

           3 1 3 1 3 1 3 4 2 2 3 1 4 1 1; 

           3 2 3 2 1 2 3 4 2 1 2 4 2 1 1; 

           2 1 2 1 2 1 3 1 2 1 2 1 2 1 1; 

           2 2 2 2 2 2 3 2 2 2 4 2 4 1 1; 

           2 3 2 3 2 3 3 2 3 2 3 2 3 1 1; 

           3 3 2 3 3 2 3 3 3 4 3 3 4 1 1; 

          3 3 3 3 3 3 3 4 4 4 5 5 5 1 1]; 
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Figure 33.Input and output MF 

Simulation outputs are depicted in Table 21 The best outer iteration value for 

both accuracy and the total cost is 50. 

                                                   Table  21.Case 16 data 

Total cost 

(𝟏𝟎𝟒) 

accuracy Generated 

power 

Power loss outer 

iteration 

N 

6.3770 99.8460 766.3133 65.2353 1 1. 

6.1830 99.9959 764.1997 64.2282 10 2. 

6.1118 99.9928 764.6505 64.7008 30 3. 

6.0456 99.9999 752.6553 52.6545 50 4. 

6.1267 99.9994 751.0858 51.0898 70 5. 

6.1102 99.9991 745.9354 45.9419 90 6. 

6.1080 99.9983 763.6352 63.6472 100 7. 

6.1032 99.9997 765.0743 65.0721 200 8. 

- - - - 500 9. 

 

the accuracy presented through figures 34 and 35 as for power demand 700 MW 

it is noticed that in PVNS method and outer Iteration Of 100, width 30 give a low 

accuracy in lower iterations and gives better results as much as inner iteration increases 

  

                             (a)                                                              (b) 
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Figure 34.Accuracy in multiple width of Gaussian GMF iter. 10 PVNS method 

 

 

 

 

 

 

 

 

 

Figure 35.Accuracy in multiple width of Gaussian GMF iter. 100 PVNS method 

 They provide both figures 36 and 37 for the total cost in power demand 700 MW, 

width of 20 gives better values in low and high inner iteration values and could be 

considered as with 20 is the optimum value for finding better results. 
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Figure 36.Total cost in multiple width of Gaussian GMF iter. 10 PVNS method 

 

 

 

 

 

 

 

 

 

 

 

Figure 37.Total cost in multiple width of Gaussian GMF iter. 100 PVNS method 

4.4.11. Case 17:  

This case results are presented in Table 22 for power demand equal to 900 MW. 

It contains an outer iteration of different values, calculated power loss, sum of 

generated power, accuracy and total cost. 

  

Iter
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                                                     Table  22.Case 17 data 

Total cost 

(𝟏𝟎𝟒) 

accuracy Generated 

power 

Power loss outer 

iteration 

N 

9.9039 95.0810 1.0585 114.2229 1 1. 

8.1283 98.8341 993.4783 103.9711 10 2. 

7.9161 99.8655 1.0102 108.9484 30 3. 

7.8872 99.8923 1.0098 108.8568 50 4. 

8.2005 99.9506 1.0078 108.2652 70 5. 

8.0054 99.9587 1.0079 108.2340 90 6. 

7.7788 99.9748 1.0023 102.4978 100 7. 

7.5894 99.9523 1.0080 108.4756 200 8. 

- - - - 500 9. 

From figure 38 it is noticed that in PVNS method and outer Iteration Of 100, 

width 20 give a low accuracy in lower iterations and gives better results as much as 

inner iteration increases. 

 

 

 

 

 

 

 

 

 

   

Figure 38.Accuracy with Iteration 100 power demand 900 MW PVNS method 

 

as shown figure 39 it is noticed that in PVNS method in 900 MW demand, width 

of 20 gives better values in low and high inner iteration values and could be considered 

as width 20 is the optimum value for finding better results. 
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Figure 39.Total cost with Iteration 100 power demand 900 MW PVNS method 

4.5. Algorithm comparison  

Results of this study which are based on the procedure of analyzing economic 

emission dispatch using FL are introduced. To explain the strength of the proposed 

methods, results are compared with different methods as shown in tables 23, 24, and 

25 (Wilbert Ruta 2018). 

Table  23.Pure economic EMD at a load of (500MW) 

Economic dispatch 

Generating unit 

(MW) 

MFO BAT MFO_BAT PVNS 

P1 10.00 10.00 10.00010 31.66990 

P2 10.00 10.00 10.19670 31.73770 

P3 40.00 118.75350 75.69580 63.42800 

P4 35.00 35.45520 80.14960 70.38330 

P5 281.36160 204.14810 179.54890 163.5663

0 

P6 125.00 125.00350 148.66360 167.1038

0 

Total generation  501.36160 503.36030 504.25460 527.8889

0 

Losses  1.36160 3.36030 4.25460 27.84960 

Fuel cost  27390.79360 27344.96130 27204.73870 2.71560e

+04 

Emission 409.07950 318.13220 282.24350 276.3174

0 

Pure EMD 

Iter. 
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Generating unit 

(MW) 

MFO BAT MFO_BAT PVNS 

P1 10.00 34.55080 19.32430 33.84020 

P2 31.33140 12.56440 28.59470 31.06060 

P3 92.93260 94.51000 93.44650 62.13250 

P4 97.50050 92.14740 95.37280 66.94700 

P5 141.23070 131.91950 139.48830 167.9451

0 

P6 137.51820 150.48770 136.23470 164.4293

0 

Total generation 510.51340 516.17980 512.46130 526.3547

0 

Losses  10.51340 16.17980 12.46130 26.44680 

Fuel cost  27690 27852 27745 2.7326e+

04 

Emission 268.79810 272.59460 267.8190 278.6662

0 

Economic dispatch considering emissions 

Generating unit 

(MW) 

MFO BAT MFO_BAT PVNS 

P1 10.00 10.77450 13.83520 33.47090 

P2 10.00 10.00 10.00 30.87960 

P3 102.85990 120.70700 95.87990 66.26290 

P4 104.22750 85.56810 96.62160 66.15870 

P5 130.00 151.94780 152.26720 167.3158

0 

P6 149.26260 126.31820 137.26850 163.2184

0 

Total generation 506.35000 505.31560 505.87260 527.3062

0 

Losses  6.350 5.31560 5.87260 27.28030 

Fuel cost  27411 27371 27327 2.7103e+

04 

Emission 272.79480 276.51020 270.36380 275.5083

0 

Total cost  40456.26630 40594.81130 40256 3.89920e

+04 

 

Table  24.Pure economic EMD at a load of 700MW 

Economic emissions dispatch  

Generating unit 

(MW) 

MFO BAT MFO_BAT PVNS 

P1 90.78870 72.12890 94.05340 44.75210 

P2 63.80340 76.37610 65.69110 56.63380 

P3 83.68570 87.53120 82.27470 84.78970 
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P4 108.28280 87.62650 109.44330 141.2297

0 

P5 207.09460 206.34050 203.00480 188.8615

0 

P6 181.34050 211.58950 179.80690 246.8815

0 

Total generation 734.99560 741.59270 734.27420 763.1483

0 

Losses  34.99560 41.59270 34.27420 63.13460 

Fuel cost  38748 38909 38816 3.8246 

Emission 470.24570 487.20560 468.33890 516.4458

0 

Total cost  59808.94410 60729.34340 59791.60830 6.06970 

 

Table  25.Pure economic EMD at a load of 900MW 

Economic emissions dispatch  

Generating unit 

(MW) 

MFO BAT MFO_BAT PVNS 

P1 109.06610 101.20870 121.60720 77.98680 

P2 118.96090 131.09990 124.02190 78.40910 

P3 115.90070 116.68360 122.07510 157.1992

0 

P4 210.00 161.30760 177.48860 155.7958

0 

P5 211.69640 221.97540 214.27920 260.5154

0 

P6 194.55660 240.57760 205.13790 277.9279

0 

Total generation  960.18080 972.85290 964.60980 1.00780 

Losses  60.18080 72.85290 54.62410 108.2262

0 

Fuel cost  50952 51398 5.1437 4.5608 

Emission 766.50410 761.68480 745.74550 695.5594

0 

Total cost  87607.8942 87823.8286 87099.9792 7.8872 

 

4.6. Discussion 

In this work, two algorithms named PVFT and PVNS were tested and both of 

them are based on FL to reduce search domain to find the optimum values for 

generated power. 

 PVNS is proved to be better in all simulation results and values although PVFT 

is faster and reliable for online applications. Furthermore, in this research we approved 
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that FL used decision making can considered as a good alternative for other algorithms 

used in CEED problem but more options and more cases for MFs boundaries and 

shapes should be investigated.  

The results show that whenever the search process increases then the probability 

to find best values increases.  

 If results in Table 7, and 8 are compared, it can be concluded that the accuracy 

and total cost is better in case of using GMF with width of 20 than of 30. 

 This is due to the mixed boundaries of width 30 that don’t give the fuzzy system 

the chance to differentiate between two of MFs of the input in a good way in 

comparison with width 20.  Furthermore, FRs could be changed to obtain better results, 

it is very important to say that FRs depend on the fuzzy system designer and his 

experience towards the problem behavior. 

Note that the calculation process in de fuzzification in this research uses center 

of gravity other methods can be tested to find more results for CEED problem  

Also, the method used is Mamdani and it could be changed to Sugeno method to 

adopt better solutions and results. but the ease of calculation of de-fuzzification 

process in mamdani makes it more repairable in real world applications. 

Using fuzzy logic in search process reflects the human knowledge on artificial 

intelligent application in a way that uses the human experience for solving problems 

to solve the single or multi objective problems, fuzzy logic can be summarized as a 

multistep output logic and this makes it overcome the main problem of the crisp logic 

that makes it not applicable in many real life applications and problems. 

The main challenge in applying PVNS is to find the optimum values in short 

period of time to give the system the ability to modify output values according to the 

changing demand, to overcome this problem it is necessary to find the optimum 

iterations needed for locating best power values to apply it on generators in the system. 
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CHAPTER FIVE 

CONCLUTION AND FUTURE WORK 

5.1.  Conclusion 

In the process of finding optimum solution for CEED problem a GMF is used 

for fuzzy interference system, to produce a power generation value needed for 

electrical grid. power values should satisfy the constrains to introduce best economic 

and emission values. 

As noticed from results PVNS method has better results than PVFT method from 

both accuracy and total cost point of view in all values of sigma for Gaussian 

membership functions. 

Using FL to find an optimal solution for CEED problem may be considered as a 

good alternative - based on this research - in comparison to other algorithms but the 

main disadvantage is the time consumed to find this solution but in some cases like 

Gaussian membership function with (2sigma =10) it is noticed that a solution found in 

small iterations and consumed a little period of time. 

Two types of iterations were used in Matlab code (inner) and (outer) iterations, 

inner iteration is responsible of finding the best power values and best accuracy, outer 

iteration is responsible of finding best total cost values. 

5.2. future works 

In order to modify the PVNS algorithm a modification could be made as follows: 

1. FRs may be investigated to find the solution based on human experience and 

knowledge. 

2.  Other types of MFs need to be tested to find the optimum FMF solution like 

impulsive, triangular where a, b > 0, right sided trapezoidal where a > 0, left 

sided trapezoidal where a > 0. 

3. Other de-fuzzification calculation methods may be examined - in Mamdani 

method - like Center of Sums Method (COS), Centroid of Area (COA) Method, 

Center of Area / Bisector of Area Method (BOA), Weighted Average Method, 

Maxima Methods (First of Maxima Method (FOM), Last of Maxima Method 
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(LOM), Mean of Maxima Method (MOM)) in order to decide which method, 

produce best optimum value. 

4. Many variations in inner iteration, outer iteration, sigma values, membership 

functions boundaries and shapes could be investigated. 

5. Comparison with other modified algorithms should be investigated also taking 

all gas types such as NOX, SOX and COX will give a realistic simulation for 

real life cases. 

6. Taking valve point affection into consideration will be better for learning real 

life situation also taking more grids into simulation will prove the capability of 

FL to handle more electrical grids and variations. 
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