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SUMMARY 

The coronavirus (COVID-19) outbreak has presented unprecedented challenges to 

utilities and grid administrators worldwide. One area of particular concern is load 

forecasting, as the pandemic has caused significant changes in the magnitude and daily 

power consumption patterns due to strict social distancing measures. These changes 

have introduced complexities in accurately predicting short-term electricity demand. 

Traditionally, load forecasting algorithms rely on weather conditions, timing 

information, and historical consumption levels to make predictions. However, these 

algorithms struggle to capture the large and abrupt shifts in socioeconomic behavior 

during the pandemic. This limitation is due to the lack of available data on mobility, a 

crucial factor in understanding economic activity during this period. To address this 

challenge, this dissertation proposes introducing a regression model as an additional 

measure of economic activity. By incorporating this model into existing forecasting 

algorithms, we aim to enhance their accuracy and robustness in capturing the effects 

of the pandemic on electricity demand. However, one of the main obstacles in utilizing 

such a dataset is the scarcity of mobility records specifically associated with the recent 

pandemic. By exploring alternative data sources and developing innovative 

approaches, this dissertation seeks to overcome the limitations posed by the lack of 

mobility records. The goal is to improve load management forecasting capabilities 

during significant socioeconomic shifts, such as the ongoing pandemic. This research 

aims to contribute to advancing load forecasting methodologies and provide valuable 

insights for utilities and grid administrators grappling with the challenges posed by the 

COVID-19 pandemic. 

Key Words: Electrical Power System, Power Consumption, Coronavirus (COVID-

19), Electrical Load Forecasting. 
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ÖZET 

Yeni koronavirüs (COVID-19) salgını, dünya çapında kamu hizmetleri ve 

şebeke operatörleri için benzeri görülmemiş zorluklar yarattı. Bu tezde, yük tahmini 

problemine odaklanıyoruz. Katı sosyal mesafe kısıtlamaları nedeniyle, dünya 

çapındaki güç tüketimi profilleri hem büyüklük hem de günlük kalıplar açısından 

değişti. Bu değişiklikler, kısa vadeli yük tahmininde önemli zorluklara neden 

olmuştur. Algoritmalar tipik olarak hava durumunu, zamanlama bilgilerini ve önceki 

tüketim seviyelerini girdi değişkenleri olarak kullanır, ancak pandemi sırasında 

sosyoekonomik davranıştaki büyük ve ani değişiklikleri yakalayamazlar. Bu tezde, 

tahmin algoritmalarının mevcut yapı taşlarını tamamlamak için ekonomik faaliyetlerin 

bir ölçüsü olarak bir regresyon modeli sunuyoruz. Böyle bir veri kümesiyle ilgili en 

büyük zorluk, son pandemi ile yalnızca sınırlı hareketlilik kayıtlarının ilişkili 

olmasıdır. 

 

Anahtar kelimeler: Elektrik Güç Sistemi, Güç Tüketimi, Coronavirüs (COVID-19), 

Elektrik Yükü Tahmini. 
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CHAPTER ONE 

  INTRODUCTION 

 

1.1. Introduction  

Using electricity demand forecasts for cities can assist in planning power 

generation resources, evaluating energy efficiency programs, monitoring greenhouse 

gas emissions, analyzing grid infrastructure, and conducting reserve analysis. 

Understanding buildings' energy usage on a city-wide scale is crucial for promoting 

global urban sustainability, reducing carbon emissions, and improving energy 

efficiency (Kontokosta & Tull, 2017). The consumption of electricity in metropolitan 

areas is influenced by temperature. In addition to factors like population and income, 

ambient temperature plays a significant role in determining energy consumption on a 

city level (Deschênes & Greenstone, 2011). This is primarily due to the substantial 

energy associated with heating and cooling city buildings (Vázquez-Canteli et al., 

2019), which heavily relies on outdoor temperature conditions. With more frequent, 

severe, and prolonged extreme weather events, such as heat waves, due to climate 

change, analyzing temperature-sensitive electricity consumption at the city scale has 

become crucial. Consequently, researchers, energy administrators, and policymakers 

must prioritize climate change adaptation to develop effective solutions (Davoudi et 

al., 2013). 

Furthermore, stakeholders in the energy sector must also prioritize a comprehensive 

understanding of how electricity generation and transmission infrastructure can be 

effectively equipped to handle high-demand scenarios, thereby improving energy 

security and resilience in the face of climate change. In line with this objective, Z. 

Wang et al. conducted a study examining the effects of rising ambient temperatures on 

electricity consumption in Shanghai (Z. Wang et al., 2021). Yi-Ling et al. stated that 

the projected rise in temperatures would increase summer electricity demand while 
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reducing winter electricity demand, assuming no changes occur in the current energy 

consumption patterns(Yi-Ling et al., 2014). Similarly, Sathaye et al. estimated that by 

2099, California would require an additional peak generation capacity of up to 38% 

and an additional transmission capacity of up to 31% due to atmospheric warming and 

the associated increase in peak demand (Sathaye et al., 2013). In August 2020, a heat 

wave in California caused a shortage in power supply due to the increased usage of air 

conditioning, resulting in intermittent power disruptions for residents. Reflecting on 

this disruptive event, policymakers highlighted the importance of refining electricity 

demand forecasts by considering climate change, extreme weather events, and their 

impact on energy loads as the primary course of action (Lu et al., 2021; Z. Wang et al., 

2021). 

In addition to weather conditions, unforeseen public health events can significantly 

impact citywide electricity consumption. Research conducted in Brazil has shown that 

the COVID-19 pandemic caused a decrease in electricity usage among Brazilians, 

ranging from 7% to 20%, depending on the local economic structure. These changes 

affected areas with a predominant industrial sector (Carvalho et al., 2021). Similarly, a 

European study revealed that the severity and extent of lockdown measures directly 

influenced electricity consumption patterns. Countries with stringent restrictions, such 

as Spain and Italy, exhibited electricity consumption profiles during the pandemic that 

resembled pre-pandemic weekends in 2019. 

Conversely, countries with less strict measures, like Sweden, experienced a 

comparatively smaller decrease in power consumption (Bahmanyar et al., 2020). 

Monitoring electricity consumption can serve as a real-time indicator of the economic 

consequences of lockdown measures. For instance, Switzerland witnessed an overall 

decrease in electricity consumption by 4.6%, while the Canton of Ticino, which 

implemented more stringent reduction measures in addition to federal regulations, 

observed a larger decrease of 14.3% (Janzen & Radulescu, 2020). 
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1.2. Problem Formulation And Definition 

 

(1) The literature review reveals that most researchers exclusively evaluated the 

prediction model's accuracy, ignoring its stability. 

(2)  Previous research on the electricity demand forecasting ignored significant global 

events such as COVID-19, indicating that weather and other factors may not be as 

influential during such times. Consequently, the applicability of these models to 

significant global events may be limited. 

 

1.3. Objectives And Aims 

The following is a summary of the thesis' numerous significant contributions: 

(1) Introduction of a hybrid model for daily electricity demand forecasting during 

the COVID-19 pandemic. 

(2) Comparison of the proposed model to benchmark models in terms of accuracy 

and stability of prediction. 

(3) Examine the effects of denoising techniques and optimizers on prediction results. 

(4) Discuss the viability of incorporating COVID-19-related factors as inputs to the 

prediction model. 

(5) Comparing the prediction outcomes of various forecasting models. 

 

1.4. Thesis Questions 

In conjunction with the previous review of related literature, problem formulation, and 

the study objectives, we can summarize the main questions addressed in this thesis as 

follows: 

 

(1) Which model yields the best performance for Electrical Load Forecasting? 
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(2) What are the optimal hyperparameters for the prediction models? 

(3) What is the correlation among the features utilized in our study? 

1.5. The Proposed Model 

This study utilizes three machine learning models (SVM, KNN, and RF) to forecast 

electricity consumption in 3 United States metropolitan areas (New York, Sacramento, and 

Los Angeles). To increase prediction performance, hyperparameter tuning was performed on 

each machine learning model, resulting in greater accuracy than PSO and GA, two 

metaheuristic optimization techniques. Each Supervised Machine Learning Forecasting 

technique's performance (SVM, RF, and KNN) was evaluated using the default and tuned 

hyperparameters values. In addition, the proposed forecasting model was compared with 

another forecasting technique, namely, Time series forecasting techniques, including (the 

ARIMA model). 

1.6. Thesis Conclusions 

This thesis presents an innovative method for load forecasting that addresses the unique 

challenges posed by the abrupt and global COVID-19 pandemic. The proposed method is 

rigorously evaluated on global load forecasting assignments comprising diverse regions. In 

light of the ongoing impact of the pandemic on power grids, the methodologies devised in 

this study have the potential to provide grid operators with valuable information about future 

load patterns. 

1.7. Thesis Contents & Layouts 

              In the rest of this thesis, Chapter 2 presents the literature review; Chapter 3 discusses 

the theoretical background; chapter 4 provides an in-depth characterization of the machine 

learning algorithms utilized in this study, while Chapter 5 delves into the methods employed 

and presents the corresponding results. Finally, Chapter 6 consolidates the findings and 

outlines potential future directions for research.  
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CHAPTER TWO 

LITERATURE REVIEW 

 

The most pertinent research on our study question is reviewed in this chapter. First, 

consider how electricity use in 2020 might have served as a leading economic indicator. We 

then research studies on how changes in electricity use during the pandemic. 

 

 

2.1. Introduction  

Global energy demand and consumption are rising consistently due to the combined 

effects of economic growth and population expansion. The progression of technology and 

the development of economic conditions contribute to an increase in energy consumption 

(Y. H. Chen et al., 2016). One factor influencing a country's degree of development is 

ensuring that energy supply and demand are balanced. To satisfy demand, it is crucial to use 

energy efficiently (Elattar et al., 2020). For emerging nations to manage their economies 

effectively, accurate energy forecasting is essential (Matijaš et al., 2013). Globally, the 

coronavirus epidemic has produced exceptional circumstances. The coronavirus is a virus 

that causes respiratory illnesses, and it was only recently discovered (Malec et al., 2021). 

Covid-19 has been categorized as a pandemic by the World Health Organization 

(WHO) due to its distinguishing characteristics compared to other coronaviruses. People's 

living situations have quickly changed due to pandemic measures, affecting energy 

production and consumption (Özbay & Dalcali, 2021). In response to the pandemic, measures 

such as curfews and the closure of public spaces were implemented, resulting in increased 

household electricity consumption and decreased usage in commercial and industrial sectors 

(Malec et al., 2021). In all the countries where it is found, the virus has negatively affected 

every aspect of life, including education, health, money, economy, and energy (Elattar et al., 
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2010). The International Energy Agency (IEA) reports that global electricity consumption 

experienced a decline of 2.5% during the initial three months of 2020 ( Scarabaggio et al., 

2020; Said et al., 2021; Alasali et al., 2021;). 

In the beginning, some nations imposed partial quarantine. Under complete 

quarantine, electricity use was cut by at least 20%, and under partial curfew, to a lesser level. 

On March 11, 2020, the first coronavirus case in Turkey was noted (Özbay & Dalcali, 2021). 

As a result, limitations were imposed nationwide. As a result, there have been significant 

changes in energy consumption. In comparison to 2019, subscriber-based electricity billing 

increased by 1.67% in 2020 (Sonmez & Bagriyanik, 2021). Large businesses such as hotels, 

retail centers, and the Istanbul Airport faced reduced operational capacities, resulting in an 

11% decline in commercial electricity consumption. Conversely, residential electricity 

consumption witnessed a 6.6% increase. Industrial consumption initially decreased due to a 

decline in industrial production during the year's second quarter. However, with industrial 

production recovering during the third quarter, industrial consumption saw an overall increase 

of 5.62% throughout the year  (Özbay & Dalcali, 2021; Sonmez & Bagriyanik, 2021). 

2.2. COVID-19 Outbreak  

In late December 2019 and early January 2020, as we contemplated New Year 

resolutions, a highly transmissible virus emerged in a distant part of the world, catching our 

immune system completely off guard (Kucukali & Baris, 2010). At the time, we never would 

have imagined that a faraway virus could have spread and resulted in many issues for people's 

health and economic systems, individually and collectively(Kong et al., 2017). However, the 

world situation has drastically changed in only two months, and we have had to adjust and 

fulfill the new needs. In November 2019, the novel coronavirus Sars-CoV-2 began its 

transmission in China, specifically in Wuhan, a bustling center for trade and commerce. 

Initially, the true nature of the virus remained unknown, as a few cases of unusual pneumonia 

with unidentified causes started to surface. It was not until December 31, when local health 

authorities officially announced these distinct cases, that the narrative of the novel 

coronavirus began to unfold. The city had discovered scores of cases at the start of January 
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2020, and hundreds of people were being watched. During the initial investigations, it was 

revealed that the individuals who had contracted the infection had frequent contact with the 

Huanan Seafood Wholesale Market in Wuhan, which has been closed since January 1, 2020. 

This led to the hypothesis that the infection might have originated from an animal-based 

product sold in the market. The responsible pathogen was identified as a new strain of 

coronavirus, belonging to the same family as the coronaviruses that caused SARS and MERS. 

However, it was noted by Chinese authorities on January 9 that this new strain was distinct 

and more potent than its counterparts. The World Health Organization released this 

information on January 10, providing relevant advice (such as avoiding contact with 

symptomatic individuals) and stating that there were no recommended travel restrictions to 

or from China. At that time, the cases were localized primarily in Wuhan, and it remained 

uncertain whether the virus was highly contagious (unlike MERS and SARS, which were 

more severe but less transmissible) (Deif, Hammam, Ahmed, Mehrdad  Kamarposhti et al., 

2021). 

As a result of Wuhan's isolation, Chinese New Year celebrations were postponed not 

only in Wuhan but also in other cities like Beijing and Macau. In late January, the risk of the 

epidemic spreading transitioned from a low level to a high level, prompting the World Health 

Organization (WHO) to declare on January 27th that the danger was "extremely high for 

China" and elevated on a regional and global scale. Three days later, in response to the 

substantial risk, the WHO declared a "public health emergency of international concern," 

resulting in Italy suspending the only flight that connected Europe and China. However, 

positive developments were already emerging in China. By February 8, the WHO reported 

that infections were stabilizing or experiencing a steady decline in the daily number of new 

cases. While COVID-19 had not yet been classified as a pandemic by the WHO, the number 

of infected individuals outside of China, particularly in Italy, Iran, and South Korea, was 

significantly high in February. 

Nonetheless, as February transitioned into early March 2020, more cases were 

detected in countries across Europe and beyond. Italy emerged as a prominent player in 

combating the virus, with support from the WHO. On March 11, 2020, during a briefing on 
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the coronavirus epidemic, Tedros Adhanom Ghebreyesus, the director-general of the WHO, 

officially declared COVID-19 as a pandemic, urging all governments to take decisive 

measures to contain its spread. 

2.3. Global Lockdowns 

In response to the COVID-19 pandemic, numerous countries and territories have 

introduced curfews, quarantines, and similar measures. Various non-pharmaceutical 

interventions were implemented to curb the spread of SARS-CoV-2, the virus responsible for 

COVID-19. By April 2020, governments across over 90 countries or territories had issued 

advisories or mandated stay-at-home orders, affecting over 3.9 billion people. Approximately 

half of the world's population was placed under lockdown. Lockdowns have been enacted to 

varied degrees by countries around the world. Some have complete mobility control, while 

others have imposed time-based constraints. In most cases, only necessary enterprises were 

allowed to continue operating(Y. H. Chen et al., 2016). 

We all use the phrase "lockdown," but until 2020, it was solely used to describe 

convicts and their cells. Due to the circumstances, its meaning has changed and is now 

understood(Ucar & Korkmaz, 2020): 

 Directives to stay at home and enforce movement restrictions 

 Closure of kindergartens and schools 

 The shutdown of non-essential businesses and  Non-essential production are shut off 

 leisure centers are closed, and public spaces are closed 

 Social movement limits and social separation measures 

 Limits on travel. 

 Additional non-pharmaceutical anti-pandemic strategies include obligatory post-

travel quarantines, self-quarantines, and social seclusion. 

 

 At the end of January, China became the first nation to impose a quarantine and place 

cities under lockdown, followed by entire provinces. On January 23, 2020, China issued a 

mandate to impose strict isolation measures on Wuhan and other cities within the Hubei 
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province to stop the sickness from spreading. This marked the first instance in modern history 

where a densely populated metropolis of 11 million inhabitants was completely cut off. 

Following Wuhan's example, several other cities swiftly implemented similar policies. Within 

hours, quarantine measures and movement restrictions were enforced in nearby cities such as 

Huanggang and Ezhou, extending to 15 additional cities. As a result, approximately 57 million 

people were affected by these measures. Italy was the first nation in Europe to enter a state of 

general lockdown in the interim: "There will not be a red zone, a zone one, or a zone two; 

instead, there will be an Italy-protected region. Except in three circumstances, proven work-

related concerns, cases of necessity, and health-related issues movements will be avoided. 

Giuseppe Conte, the prime minister, used this phrase to herald the signing of a historic decree 

on March 9, 2020. The COVID-19 epidemic would have put the entire country of Italy into 

lockdown starting the next morning. Following the Second World War, curfews were initially 

implemented, prohibiting marriage and funeral celebrations. Theatrical, film, and swimming 

facilities were shuttered. 

All sporting activities, such as licensure tests, museums, cultural centers, wellness 

centers, discos, and ski resorts, are postponed. Straightforwardly, Conte's declaration on 

March 9 served as the initial introduction of the Coronavirus pandemic to the consciousness 

of Italians, initiating a "new reality" that we still encounter in our daily lives today. These two 

months were exceptionally peculiar. Starting from March 10 until the first glimmer of 

normalcy emerged two months later on May 18, when businesses resumed operations, we 

endured two challenging months that left a lasting impact on every aspect of life. 

By the end of March, almost all European Union member states, starting with Spain 

and France and spreading northwards, had implemented quarantine measures, following the 

example set by Italy (except for Sweden, which maintained a more open approach during the 

pandemic). As of March 26, 2020, around 1.7 billion individuals were under some form of 

confinement. By the first week of April, over half of the global population, approximately 3.9 

billion people, were also adhering to the directives issued by the Indian government. 
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In the United States, a unique situation arose when President Trump delegated the 

authority to implement curfews to individual states. Due to the wide-ranging powers granted 

to states, restrictions were not uniformly enforced nationwide. As of April 6, five states (North 

and South Dakota, Iowa, Nebraska, and Arkansas) had not implemented significant measures 

to combat the pandemic. Approximately nine out of ten Americans were subject to varying 

degrees of restrictions in four states (Oklahoma, Wyoming, Utah, and South Carolina). The 

remaining 41 states encouraged everyone to stay indoors. 

The United States quickly surpassed other nations regarding COVID-19 cases and 

fatalities, with over 30 million confirmed cases and 550,500 reported deaths. (Özbay & 

Dalcali, 2021). 

2.4. Literature Review 

(Ferguson et al., 2000) This study raises doubts about the relationship between total 

energy consumption and economic activity. The researchers analyzed correlations between 

GDP and electricity consumption in over 100 countries and between total primary energy 

supply and GDP. The data used in this analysis were adjusted for purchasing power parity 

and presented on a per-person basis. The study focuses on time series data from 1960 (or 

1971 in certain cases) to 1995. According to the research findings, most developed nations 

exhibit correlation coefficients of at least 0.9 between GDP and electricity consumption, 

except major oil producers or refiners. 

Furthermore, the study reveals that this association becomes stronger as a nation's 

wealth increases, indicating that as the economy expands, people tend to utilize more 

electricity. As this report was published in 2000 and the analysis ended in 1995, the 

empirical findings may be now dated. However, the dynamics of the differences in 

correlation across the nations are important to note. It is also clear that the countries we 

focus on in our thesis have had divergent development since 1995. Moreover, it makes no 

mention of the long-/short-run dynamics. 
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S.-T. Chen et al. (2007) conducted an extensive analysis of the connection between 

GDP and energy consumption in ten Asian nations, building upon the earlier research by 

Ferguson et al. (2000). This study goes beyond the previous work by exploring the long- 

and short-term dynamics of the relationship between electricity consumption and GDP 

growth in greater depth. By examining ten Asian countries, namely China, Hong Kong, 

India, Indonesia, Korea, Malaysia, the Philippines, Singapore, Taiwan, and Thailand, the 

authors provide additional evidence that supports the findings of Ferguson et al. (2000) 

regarding the existence of a long-term association between electricity consumption and 

GDP. To investigate this association, the researchers conduct cointegration tests. 

Additionally, they employ Granger causality analysis to determine whether there is a 

statistical indication of one variable causing the other or vice versa. The panel tests reveal 

a long-term bi-directional Granger causality and a short-term unidirectional Granger 

causality from economic growth to energy consumption, although the specific results vary 

across different countries in the study. 

The correlation over the long term for the USA is examined in (Hirsh & Koomey, 

2015)2015 published research. They found that the relationship between GDP and 

electricity has steadily deteriorated since the middle of the 1990s. In their conclusion, the 

researchers acknowledge that they did not consider yearly fixed effects, such as 

technological advancements leading to a decrease in energy intensity. Their analysis did 

not consider this factor, which may be the main driver behind their observed results. The 

fact that there is still a correlation, albeit declining, supports the idea that electricity was 

still an economic indicator in 2015. So it might be important to consider power usage's 

long-term, far-off importance as an economic indicator. 

The study (Hirsh & Koomey, 2015)examined the relationship between electricity and 

GDP growth rates in the United States. However, they did not explore potential adjustments 

that could be made to control for certain factors. Building upon this research, (Arora & 

Lieskovsky, 2016) carried out a subsequent study that picked up where (Hirsh & Koomey, 

2015) left off. 
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The findings of Arora & Lieskovsky (2016) reveal a baseline correlation of 76 

percent between electricity and GDP growth rates from the mid-1970s until 2013. 

However, after controlling for seasonality and reducing energy intensity, the correlation 

increases to 86 percent for the entire period. Therefore, it is reasonable to infer that the 

long-term connection between electricity and economic activity still holds, even with these 

adjustments. 

Furthermore, the data series analyzed by Arora & Lieskovsky (2016) demonstrates 

that electricity consumption and GDP growth rates move in tandem during recessions. 

Additionally, the growth rates in power consumption tend to increase before the end of 

economic downturns. 

While previous studies have consistently identified a strong long-term association 

between electricity consumption and economic activity, (S.-T. Chen et al., 2007) deviate 

from this trend by suggesting a short-run relationship between economic growth to 

electricity consumption. It is worth considering that previous research may have 

overlooked the potential significance of electricity as a short-term indicator in capturing 

fluctuations in economic activity. 

In 2020, (Cicala, 2020a) estimated the sole impact of Covid-19 on electricity 

usage. To accomplish this, he utilized a regression analysis approach, correlating power 

consumption with several established measures of electricity usage. By employing 

consumption data from most of the European Union (EU), he demonstrates a notable 

decrease in energy consumption across all countries during the early stages of the 

pandemic (up until April 6/2020, the last data point considered). 

Cicala's projections align closely with the timelines of lockdown 

implementations, providing evidence of consumption declines that precisely correspond 

to these measures. Additionally, his analysis suggests that the European economy 

experienced a historic low during this period. The overall decline in energy consumption 

across the EU was estimated at 10%. Furthermore, Cicala raises a pertinent question 
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regarding the alignment between consumption data and economic statistics, 

highlighting the need to examine how closely these two metrics correspond. 

(Leach et al., 2020) contribute to the existing knowledge by examining the 

changes in electrical markets during the Covid-19 crisis. Their study focuses 

specifically on the events related to the pandemic within Canada, analyzing the data at 

a regional level. While they also explore supply-side adjustments, we will only provide 

further details on this aspect if it is relevant to the topic of this essay. When examining 

four distinct regions, they can see changes in the pandemic's severity, the timing of 

declines relative to the events, and the number of shocks due to the regions' mixed 

economies. The report asks whether electricity is a good real-time measure of economic 

activity, but it stops there in terms of research for the time being. They also draw 

attention to the amount of information that may be gathered from electrical data, which 

is one of the potential advantages beyond the temporal one. This data analysis 

showcases the potential for increased data utilization as it enables the differentiation of 

various consumer classes, including commercial, industrial, residential, and distinct 

industrial sectors, based on their consumption patterns. It will provide decision-makers 

with a more thorough picture of a comparable circumstance than other comparable 

proxies can. 

The publications mentioned above serve as a clear and illustrative example of 

how changes in the power market can be effectively utilized to monitor shifts in demand 

during the 2020 pandemic. The data can be used to estimate when the slump began and 

how well the recovery may progress. Still, they do not provide additional information 

about how this might monitor economic activity. 

In contrast to the majority of existing literature that focuses on a single country's 

analysis of electricity as an economic indicator during the Covid-19 pandemic, (Fezzi 

& Fanghella, 2021) aims to present a general technique applicable to multiple countries. 

They draw inspiration from studies by (Beyer et al., 2021; Janzen & Radulescu, 2020; 

Menezes et al., 2021) propose a simplified approach with significant findings.  
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Their study examines twelve nations: Belgium, Switzerland, Austria, France, 

Germany, Italy, Norway, The Netherlands, Sweden, Spain, Denmark, and The United 

Kingdom. Utilizing comparable "prefiltering" techniques, similar to those presented in 

(Cicala, 2020b)and (Leach et al., 2020), with minor modifications, they estimate the 

counterfactual "normal" power consumption values for 2020. Assuming that all demand 

outside the residential sector fell, they analyze the recession's impact on the economy 

while considering the proportion of residential load in each country's total load. This 

approach allows them to estimate real-time changes in GDP, exhibiting a correlation 

coefficient of 0.98 with actual data for the first and second quarters of 2020.  

Due to data availability until the end of August 2020, the study focuses solely on 

the first two quarters, referred to as "the first wave of the pandemic." (Fezzi & Bunn, 

2010), evaluate the selected nations based on their Non-Pharmaceutical Interventions 

(NPIs) and their impact on GDP and power consumption to determine the most effective 

and least effective "measure strategies." 

(Beyer et al., 2021)add to the collection of studies looking at the effects of Covid-19 

using electricity data and data on the intensity of evening light. However, since they are 

implementing it in India, it provides information about the technique's applicability in a less 

developed nation than the USA and Europe. In contrast to previous approaches that primarily 

utilize GDP as an economic indicator, their method distinguishes itself by employing gross 

value-added (GVA) statistics. When analyzing a sample of 123 countries, they observe a 

consistent long-term correlation of 0.95 between these two variables, aligning with previous 

research findings (Ferguson et al., 2000). 

Furthermore, the coefficient obtained from their regression analysis of GVA on 

energy consumption is similar to the findings of other European studies. The previous 

examples are followed for modeling power consumption, with a few small variations to 

account for the geography of their subject, India. They also look at regional variations and 

national data to show the variety within India's economy. 
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The study conducted by (Menezes et al., 2021) offers valuable insights into the 

utilization of power data as an economic indicator in Brazil. Similar to previous articles in 

this field, they employ a similar methodology to determine the baseline or "normal" 

electricity consumption. In addition to conventional quarterly GDP statistics, they consider 

a monthly indicator called IBC-Br, provided by the Brazilian Central Bank. This expanded 

approach allows for a comprehensive analysis of the relationship between Brazil's power 

consumption and economic activity. Their study affirms the use of power data for 

developing nations like Brazil and developed nations in the EU. Their findings are pretty 

solid, given that the correlation between the movement of the real GDP and their indicator 

is roughly 0.98 between February 2020 and May 2020. Including the IBC-Br proxy is 

particularly significant because it encompasses all forms of consumption, including formal 

and informal activities. This aspect is crucial for a country like Brazil, where the informal 

sector contributes to nearly 40% of the total economic activity. By considering the 

comprehensive nature of the indicator, the study recognizes the importance of capturing 

the entire economic landscape and providing a more accurate representation of the 

relationship between power consumption and economic activity in Brazil. The study also 

discusses the distinctions between the residential, industrial, and commercial customer 

segments. 

The study (Janzen & Radulescu, 2020) focuses on documenting the electricity 

consumption patterns during the designated lockdown period in Switzerland. Unlike 

previous studies, they adopt a unique approach by analyzing the hourly load data, 

specifically during the seven weeks leading up to the lockdown and the five weeks 

following its initiation. The authors introduce dummy variables to capture the changes in 

electricity consumption attributed to the Covid-19 situation. These dummy variables are 

incorporated for each week, seven weeks prior and five weeks after the commencement of 

the lockdown. The regression analysis, which includes the logarithm of load and factors 

such as temperature and temporal dummies, helps estimate the coefficients associated with 

these dummies. 
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Furthermore, the study examines the relationship between these coefficient values 

and markers indicating the severity of the pandemic, such as the number of cases per capita 

and movement data. Additionally, (Janzen & Radulescu, 2020) delve into regional 

variations within Switzerland by considering different cantons as distinct political regions. 

It is important to note that the study assumes that economic output accounts for 67 percent 

of total electricity consumption, but no direct comparison is made with actual economic 

data. 

The four publications mentioned above share a common approach of using power 

data as an economic indicator to assess the impact of the pandemic on consumption. 

However, there is a distinction in the methodology employed by (Janzen & Radulescu, 

2020), as they specifically isolate the time-fixed impacts during the lockdown weeks. 

Nevertheless, these studies highlight the significance of electricity usage data in capturing 

the market shock caused by Covid-19 and its clear implications as a tool for identifying 

impacts during economic crises. The evidence presented in these studies consistently 

supports the reliability of using empirical data to gauge the effects, regardless of the 

specific economic conditions, particularly in the near term. 

(Kaynar et al., 2017)  Utilized a hybrid algorithm that combined the Support Vector 

Regression (SVR) algorithm with chaotic approaches to conducting a forecasting 

investigation. Their study aimed to predict future load data based on historical data from 

2006 to 2009, as analyzed by (Baghel et al., 2016). Similarly, (Türkay & Demren, 2011) 

conducted a demand forecasting study using the Library for Support Vector Machines 

(LibSVM) algorithm. They utilized load data to develop a predictive model. In a different 

approach, (Elattar et al., 2010) conducted a forecasting investigation using a hybrid model 

that combined the Least Square Support Vector Regression (LWSVR) algorithm. Their 

study aimed to forecast future outcomes based on historical data. Furthermore, (Al Mamun 

& Kermanshahi, 2006) conducted a prediction study comparing the outcomes of using 

Support Vector Machines (SVM) and Artificial Neural Network (ANN) approaches. Their 

study focused on analyzing the predictive capabilities of these two algorithms. 
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In their study, (S. Zheng et al., 2017) employed data from smart meters connected to 

a smart grid to assess the effectiveness and accuracy of three forecasting methods: Seasonal 

Autoregressive Integrated Moving Average (SARIMA), Nonlinear Autoregressive Neural 

Network (NARX), and Support Vector Regression (SVR). The objective was to evaluate 

these methods' performance in predicting electricity consumption using the data obtained 

from the smart meters. 

The performance of the CNN model was compared to other models, including 

decision tree, Random Forest (RF), Support Vector Machine (SVM), Short-Term Long 

Memory (LSTM), and multiple linear regression. The results demonstrated that the CNN 

model outperformed the other models regarding predictive accuracy. The CNN model 

exhibited high prediction rates and required less training memory, making it a preferred 

choice in Short-Term Load Forecasting (STLF) investigations. 

Wang et al. developed three models: Long Short-Term Memory-CNN (LSTM-

CNN), CNN, and hybrid CNN-LSTM. Among these models, the hybrid CNN-LSTM 

model demonstrated superior performance and yielded the best results  (J. Wang et al., 

2010). Models based on residual and dense networks were employed by  (H. Zheng et al., 

2017). In addition to the models mentioned, the input data underwent preprocessing using 

empirical wavelet transform (EWT) and variational mode decomposition (VMD) 

techniques (ALTAN & KARASU, 2020). It was found to produce superior outcomes 

compared to other conventional techniques. The study demonstrated the superiority of a 

hybrid forecasting model that combined a deep neural network with empirical mode 

decomposition (EMD) over more traditional approaches. 

Empirical Mode Decomposition (EMD) helps mitigate issues related to slow 

convergence and local minimum problems in artificial neural networks by decomposing 

the data into intrinsic mode functions (Bessec & Fouquau, 2008; Huang & Kunoth, 2013; 

H. Zheng et al., 2017) EMD, unlike wavelet decomposition, do not rely on pre-defined 

basis functions but rather adapts to the local characteristics of a signal sequence. This 

makes the EMD method more flexible and easily adaptable (Bessec & Fouquau, 2008). 
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EMD operates at multiple resolutions, allowing for the decomposition of a signal into 

different components at different scales. In contrast, selecting a wavelet-based function for 

wavelet transform involves choosing an appropriate wavelet-basis function that suits the 

specific characteristics of the signal (Acikgoz, 2022; Acikgoz et al., 2021). 
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CHAPTER THREE 

THEORETICAL BACKGROUND 

 

The theoretical underpinnings of forecasting are presented in this chapter in several 

areas. There is a discussion on time series analysis's fundamental definitions. Based on a 

literature review, this chapter also gives the history of various mathematical formulations 

of the chosen methodologies. A comparative analysis of these statistical, traditional, and 

deep learning approaches is briefly offered. 

 

3.1. Forecasting Energy Load  

Foreseeing the short-, medium-, and long-term demand for energy is known as 

energy data forecasting. It entails developing informed predictions about how much energy 

will be needed by residences, companies, and other entities. The large quantities of data 

about energy use, including specific measurements of energy use like electricity demand, 

PV generation, wind, gas, steam, and heating load, are referred to as energy data. Energy 

is generated from various sources and is measured using different time scales and units of 

measurement. Historical energy data is used to train forecasting algorithms and establish 

time series for future periods. Accurate energy data forecasting relies on the availability of 

relevant information. To evaluate the efficacy of forecasting across various energy data 

applications, this study focuses on using datasets linked to PV generation and electrical 

demand in residential usage. Based on the duration of the forecasting interval, the 

forecasting horizons in the energy sector can be broadly divided into four groups: very 

short-term forecasting (VSTF), short-term forecasting (STF), medium-term forecasting 

(MTF), and long-term forecasting (LTF). The forecasting of energy data for both business 

and residential use has been studied using a variety of methodologies and models in the 

literature (Kuo & Huang, 2018). VSTF, which stands for Very Short-Term Forecasting, 

specifically focuses on predicting energy data within a period of up to an hour in advance. 
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It aims to provide accurate and timely forecasts for immediate or near-future energy 

demands. VSTF techniques and models are designed to handle short-term energy 

consumption and generation variations, enabling better planning and decision-making in 

real-time energy management. This type of forecasting is particularly valuable for 

optimizing energy distribution, load balancing, and ensuring grid stability (Taylor, 2008). 

Demand sight's management system frequently uses STF, which takes a range of 

time into account up to a day in advance(Kaytez et al., 2015). VSTF and STF are primarily 

utilized for the daily operation and scheduling of electricity and spot price calculation. 

These applications require a significantly higher accuracy level than long-term forecasts 

(Kuo & Huang, 2018). This type of forecasting is essential to ensure that the scarce 

electricity in developing nations is used more effectively (Hong et al., 2010). The term 

MTF, referring to "month ahead," has long been employed (Ghiassi et al., 2006)for 

scheduling maintenance and grid system development. 

In contrast, LTF encompasses a timeframe ranging from months to years ahead, 

focusing on power supply arrangement and resource planning. When it is important to 

predict power demand over a longer time, this form of forecasting is used to establish 

system design (Kuo & Huang, 2018). MTF and LTF are often only used to estimate peak 

loads since they frequently experience forecast mistakes over time (B.-J. Chen et al., 2004). 

Table 1: Forecasting horizons 

The duration of 

forecasting intervals 
Time scale 

Long-term months-year 

Medium-term 24h- weeks 

Short-term One h- 24h 

Very short-term 5min-1h 

 



 

 21 

Xia and Wang's study revealed that factors such as temperature, humidity, and wind 

speed significantly influenced the accuracy of short-term forecasting (Xia et al., 2010). As 

a result, various variables, including historical load data, meteorological conditions 

(humidity, temperature), seasonality, day of the week, time of day, and even specific 

holidays or festivals, can impact the forecasting process. 

3.2. Time Series Analysis  

A time series refers to a collection of observations recorded over a specific duration, 

whether a short or long period. This dataset typically comprises numerical values and 

corresponding time stamps, which are recorded at regular intervals (Hyndman & 

Athanasopoulos, 2018). Time series analyses examine and glean information from a dataset 

gathered through time. The time interval between each observation in a time series is 

determined based on a predetermined frequency, which can be set at various intervals such 

as hourly, daily, or weekly. This frequency dictates the regularity at which data points are 

recorded and allows for consistent measurement and analysis of the time series. The 

decomposition of the time series is one method for analyzing these structures. Four parts 

can be separated from the time series. The terms "trend," "cyclical," "seasonal," and 

"irregular" are used to describe these elements. 

 

 Trend: A long-term change in the variability of a time series, characterized 

by either an increase or decrease. "changing direction" can describe a trend 

that transitions upward to downward.  

  Seasonal: Seasonal elements, which are variations in pattern over the year's 

seasons, can impact time series data. The impact of these seasonal elements 

causes periodic fluctuations or seasonal patterns in the time series (Deif, 

Solyman, & Hammam, 2021). Examples of important factors producing this 

seasonal fluctuation include weather and customs.   

 Cyclical: This term describes how variations or patterns might recur 

throughout a time series. It denotes the existence of cyclically repeated, non-
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periodic fluctuations. These cycles typically last over two years (Lee & Ko, 

2011). The cyclic and trend components are combined and called the overall 

trend. 

 

The random component within the time series is called the irregular component or 

residual. The element that depicts the random variations at each instant is also known as 

the noise component. A flawless forecast is not feasible since time series contain these 

erratic components. There are two models for time series decomposition: additive 

decomposition and multiplicative decomposition. The existence or absence of a trend in 

the dataset determines whether a time series is stationary or non-stationary. The mean and 

covariance of the observations are constant across time in a stationary time series. 

On the other hand, the dataset is regarded as non-stationary if it exhibits an upward 

or downward trend. The time series is regarded as stagnant when the dataset shows no 

trends. Non-stationary time series must have the proper treatment before modeling. 

Cleaning the raw data to remove anomalies and translating it to a new scale are the 

first steps in processing time series data. Differentiating, which calculates the differences 

between successive observations to create a new time series, is one method for processing 

time series data. The autocorrelation function (ACF) can detect non-stationarity in time 

series. To put it simply, correlation looks at the linear relationship between two variables. 

Statistical methods for finding patterns in time series include the partial autocorrelation 

function (PACF) and the autocorrelation function (ACF). Various statistical software 

programs enable the visual representation of ACF and PACF through correlograms. These 

correlograms can also assist in determining the parameter range for autoregressive (AR) 

models using the PACF plot and moving average (MA) models using the ACF plot.   
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3.3. Statistical Approaches  

Linear statistical techniques, including the autoregressive (AR) model, moving 

average (MA) model, and their derived models, such as ARMA (autoregressive moving 

average) and ARIMA (autoregressive integrated moving average), have long been 

influential in the field of forecasting. These models have gained significant popularity 

among forecasting academics over the years. These models are referred to as Box-Jenkins 

models at times. Exponential smoothing techniques, such as the Holt-Winters method and 

simple exponential smoothing, are another statistical category. The explicit modeling of 

error, trend, and seasonality is often called the ETS model. This part will discuss these 

forecasting techniques from Hyndman and Athanasopoulos's book Forecasting: Principle 

and Practice(Brockwell & Davis, 2002). 

 

3.3.1. Autoregression (AR) model  

By regressing a value against earlier values from the same series, an autoregression 

model forecasts a value in a time series. When a single measurement is taken at regular 

intervals, univariate time series without a trend or seasonality is especially well suited for 

this modeling technique. The autoregression model uses a linear combination of the current 

observations and the anticipated variable based on the past p observations of that variable 

and takes uncertainty into account (Hamilton, 2020). The anticipated output variable yt in 

the autoregressive process depends linearly on its initial values, such as (yt1, yt2,... ytp), 

and the white noise t. The white noise comprises a set of uniformly distributed, uncorrelated 

random variables with a limited variance of 2. It is represented as WN(0, 2).  (Brockwell 

& Davis, 2002). 

 

The following equation describes how the 𝐴𝑅(𝑝)  model can be expressed: 

𝑦𝑡 = 𝑐 + 𝜙1𝑦𝑡−1 +𝜙2𝑦𝑡−2 +⋯+ 𝜙𝑝𝑦𝑡−𝑝 + 𝜀𝑡 (3.1) 
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In the given equation, 𝜀𝑡 represents white noise with a distribution of 𝑊𝑁(0, 𝜎2), C 

and φ are constant parameters of the model, and φ takes values from 1 to p. The model uses 

the order p to determine the number of previous observations needed to forecast the present 

value. The AR(1) model, which is a first-order autoregression model, serves as a basic 

example and can be expressed as follows: 

𝑦𝑡 = 𝜙1𝑦𝑡−1 + 𝜀𝑡 (3.2) 

The autocorrelation coefficients gradually decrease when dealing with an 

autoregressive (AR) process. This makes it difficult to determine the order of the model using 

the autocorrelation function (ACF). However, the partial autocorrelation function (PACF) 

plot offers a potential solution, displaying a sharp cut-off after the lag p (Shumway et al., 

2000). Since static data is the norm for autoregressive models, some parameter value 

limitations are necessary (Shumway et al., 2000). 

 

3.3.1 Moving average (MA) model 

Single-variable time series are typically expressed using moving average models. A 

stationary time series can be described as a process that incorporates prior prediction errors 

in a regression-like model rather than relying solely on historical values of the forecast 

variable. This approach, known as a moving average process, helps maintain the stationarity 

of the time series. To put it another way, the component in the 𝑀𝐴(𝑞)  process depicts a 

model's error series as a linear mix of the current observation and earlier  𝑞 innovations 

(Hamilton, 2020). A moving average model of order 𝑞, known as the 𝑀𝐴(𝑞), can be 

represented in the following manner (Li et al., 2020): 

𝑦𝑡 = 𝑐 + 𝜀𝑡 + 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2 +⋯+ 𝜃𝑞𝜀𝑡−𝑞 
(3.3) 

where 𝑐, and {𝜃 = 1,⋯ , 𝑞}  are the model's constant parameters, and 𝜀𝑡 is a white noise 

error term. In this context, each 𝑦𝑡 value represents a weighted moving average of the recent 

forecast errors, according to (Yao et al., 2013). An example of a first-order moving average 

𝑀𝐴(1)  is: 
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𝑦𝑡 = 𝜀𝑡 + 𝜃1𝜀𝑡−1. (3.4) 

The ACF plot is typically used to identify the MA model's order. The ACF plot 

typically exhibits a severe cut-off at lag q, indicating that the autocorrelation coefficients are 

nearly zero for lags beyond q. On the contrary, the PACF figure for the moving average 

process exhibits a slow decay to zero (Zhang et al., 2013). 

3.3.2. Autoregressive moving average (ARMA) model 

One of the most popular models, the ARMA, combines the benefits of moving average 

MA(𝑞)  and autoregressive AR⁡(𝑝)  models. As a result, the stationary time series 𝐴𝑅(𝑝)and 

𝑀𝐴(𝑞)  models are combined to create the autoregressive moving average model, abbreviated 

as ARMA (𝑝, 𝑞). The initial model was introduced by Peter Whittle in 1951 in his paper on 

"Hypothesis testing in time series analysis," later refined by (Box et al., 2015). An ARMA 

(𝑝, 𝑞)  model of order (p,q) can be expressed as: 

𝑦𝑡 = 𝑐 + 𝜙1𝑦𝑡−1 +⋯+ 𝜙𝑝𝑦𝑡−𝑝 + 𝜀𝑡 + 𝜃1𝜀𝑡−1 +⋯+ 𝜃𝑞𝜀𝑡−𝑞 (3.5) 

In the equation, 𝑦𝑡 represents the original series, and 𝜀𝑡 represents a series of random 

errors that adhere to a normal probability distribution. The coefficients {𝜙 = 1,⋯ , 𝑝}  and 

{𝜃 = 1,⋯ , 𝑞}  correspond to the AR and MA terms, respectively. 

Determining the model's order (p,q) can be done by analyzing the graphical 

representations of the ACF and PACF. However, estimating the appropriate values for the 

ARMA model's parameters p and q based solely on the ACF and PACF plots can be 

challenging. An alternative approach is to utilize the Akaike information criterion (AIC) to 

select a model that better fits the input time series. The AIC measures the model's fit quality 

and penalizes adding more parameters to models. Consequently, this penalty deters overfitting 

the model. Therefore, the optimum ARMA model is obtained by minimizing the AIC 

(Bisgaard & Kulahci, 2011). 

𝐴𝐼𝐶 = −2log⁡(𝐿) + 2(𝑝 + 𝑞 + 𝑘 + 1) (3.6) 
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Where the value of  𝑘 = 0 if 𝑐 = 0⁡and⁡𝑘 = 1 if 𝑐 ≠ 0. The last phrase in this 

parenthesis indicates the model's parameter number. ℒ indicate the likelihood of the data, 

ARIMA model 

The Autoregressive Integrated Moving Average (ARIMA) model predicts a variable 

based on a linear relationship with its previous values. For stationary time series analysis, the 

AR, MA, and ARMA models that we covered in earlier sections are preferable (Zhang et al., 

2013). Time series, however, are typically non-stationary in the real world. To fit stationary 

models, removing the variance originating from non-stationary sources in time series is 

essential. (Chatfield & Xing, 2019). The ARIMA model, introduced by (Box et al., 2015), 

effectively addresses the issue of non-stationary data by incorporating a differencing 

mechanism. This approach overcomes the limitation associated with non-stationarity. (Box 

George et al., 1976; Moghram & Rahman, 1989), offered one remedy for this. 

The first step in ARIMA models is to use differencing to eliminate this non-

stationarity. To achieve this, the current observation is subtracted from the observation from 

the previous time step. One method to perform first-order differencing is by substituting 𝑦𝑡 =

𝑦𝑡 − 𝑦𝑡−1. The stationary model fitted to the differenced data needs to be summed or 

integrated to obtain a model for the original non-stationary data. The ARIMA model is 

therefore referred to as "Integrated" ARMA. The ARIMA (𝑝, 𝑑, 𝑞) process is described in its 

generic form (Hyndman & Athanasopoulos, 2018). 

𝑦𝑡
′ = 𝑐 + 𝜙1𝑦𝑡−1

′ +⋯+ 𝜙𝑝𝑦𝑡−𝑝
′ + 𝜃1𝜀𝑡−1 +⋯+ 𝜃𝑞𝜀𝑡−𝑞 (3.7) 

In the differenced new series, denoted as 𝑦𝑡
′, the right-hand side "predictors" consist 

of lagged errors and lagged values of 𝑦𝑡. The term 𝜀𝑡 represents white noise with a distribution 

of 𝑊𝑁(0, 𝜎2). The coefficients φ and θ represent the values of the AR and MA terms, 

respectively, where φ ranges from 1 to p and θ ranges from 1 to q. 
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Utilizing the backshift notation simplifies working with numerous complex models 

that combine these elements. For instance, the following is how Equation (3.8) can be written 

in backshift notation: 

(1 − 𝜙1𝐵 −⋯− 𝜙𝑝𝐵
𝑝)(1 − 𝐵)𝑑𝑦𝑡 = 𝑐 + (1 + 𝜃1𝐵 +⋯+ 𝜃𝑞𝐵

𝑞)𝜀𝑡 (3.8) 

The approach to estimating the model parameters (p, q) in the ARIMA model follows 

a similar method to Akaike's Information Criterion (AIC) approach defined in the ARMA 

model. Once the number of differences is determined, the ARIMA(p, d, q) model can be 

defined as follows: 

 AR: The autoregression model captures the dependent relationship between 

the observation and lag observations. 

 p: The number of lagged observations included in the model. 

 I: Integration is performed to differentiate the raw observations and make the 

time series stationary. 

 d: The number of differences applied to achieve stationarity. 

 MA: The model incorporates the relationship between an observation and a 

residual error derived from a moving average applied to lagged observations. 

 𝑞: Whether the moving average window or order is large or small. 

3.4. Linear Models Approaches  

Two linear models are discussed to forecast temperature-sensitive electricity use. 

ASHRAE's change-point model (Sanz-Bobi et al., 2012), which ASHRAE first put forth in 

the 1990s, is the first linear model. The change point model utilizes five parameters (𝛽𝑏𝑎𝑠𝑒, 

𝑇ℎ, 𝑇𝑐 , 𝛽ℎ, 𝛽𝑐) to describe the relationship between energy consumption and ambient 

temperature, as depicted in Figure 3.1 and Equation 3.9. The base represents the initial load, 

which is the level of energy consumption observed when the ambient temperature falls within 

the range [𝑇ℎ, 𝑇𝑐]. As the outside temperature drops below the heating change point 𝑇ℎ, the 

city-level energy usage increases in response to the rising heating demand. 
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Fig.3.1. ASHRAE’s change point model. 

 

Similarly, when the outdoor temperature surpasses the cooling transition point 𝑇𝑐, the 

city-level energy consumption experiences a rise alongside the increasing cooling demand. 

The slope of the cooling side (𝛽𝑐) and the heating side (𝛽ℎ) reflects the sensitivity of the city-

level load to temperature variations. In cases where electricity consumption is the primary 

focus, 𝛽ℎ would typically be smaller than 𝛽𝑐 since most air-conditioned buildings rely on 

electricity for cooling, while natural gas is often used for heating. The widely-used five-

parameter change point model developed by ASHRAE is a valuable tool for predicting and 

benchmarking building-level energy performance (Mantel et al., 2019). In this study, we 

employed the five-parameter change point (5-p) model to forecast energy consumption at the 

city level. 

load⁡(𝑇) = {

𝛽base + 𝛽ℎ × (𝑇ℎ − 𝑇), if 𝑇 < 𝑇ℎ
𝛽base , if 𝑇ℎ < 𝑇 < 𝑇𝐶
𝛽base + 𝛽𝑐 × (𝑇 − 𝑇𝑐), if 𝑇𝐶 < 𝑇

 

 

 

(3.9) 

The second linear model employed in this study is the Heating/Cooling Degree Hour 

(HCDH) model. The heating/cooling degree hour method is widely recognized in the heating, 

ventilation, and air conditioning (HVAC) sector for estimating heating and cooling energy 

requirements (Runge et al., 2020). Heating and cooling degree days have also been 

extensively used as proxy variables to assess the impact of climate change on power demand 

and determine climate zones in the United States (Bahmanyar et al., 2020). 
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Following Equation 3.10, the difference between the ambient temperature and the 

heating base temperature (𝑇𝑏ℎ) and cooling base temperature (𝑇𝑏𝑐)  is summed to calculate 

the heating degree hours (HDH) and cooling degree hours (CDH). Heating typically begins 

when the outdoor temperature falls below 𝑇𝑏ℎ, and the amount of heating required can be 

determined by accumulating the differences between the base temperature and the outdoor 

temperature (𝑇𝑏ℎ − 𝑇𝑖). Cooling and Heating degree hours are frequently employed in 

various applications such as evaluating building thermal insulation (Natarajan et al., 2020), 

estimating energy demand for buildings (Bünning et al., 2020), and more. This study used a 

linear regression approach to analyze the daily energy consumption at the municipal level, 

incorporating the HCDH model as one of the variables. 

𝐻𝐷𝐻 = ∑  

24

𝑖=1

𝑚𝑎𝑥(0, (𝑇𝑏ℎ − 𝑇𝑖))

𝐶𝐷𝐻 = ∑  

24

𝑖=1

𝑚𝑎𝑥(0, (𝑇𝑖 − 𝑇𝑏𝑐))

load⁡(𝑇) = 𝛽0 + 𝛽1 × 𝐻𝐷𝐻 + 𝛽2 × 𝐶𝐷𝐻

 

 

 

 

(3.10) 

When constructing any model, it is crucial to make appropriate selections for the base 

temperature (𝑇𝑏ℎ, 𝑇𝑏𝑐 in the HCDH model) and the transition temperature (𝑇ℎ, 𝑇𝐶  in the 

five-parameter model). This decision-making process regarding temperature thresholds is 

a common challenge in model development (Kontokosta & Tull, 2017). 

3.5. Machine Learning Approaches 

When exploring machine learning methodologies, we have considered Random 

Forest (RF), K-nearest neighbor (KNN), and Support Vector Machine (SVM) as part of 

our analysis.  
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3.5.1. Random forest model  

Unlike ensemble methods that combine the outputs of multiple weak models to create 

a stronger model, Random Forest is an ensemble learning technique that constructs 

multiple decision trees and aggregates their predictions (Dudek, 2011). The classification 

and regression tree (CART) model, introduced by Breiman (Zhao et al., 2012)) is a 

collection of binary decision trees that are combined in this approach. In the random forest 

model, an individual tree is formed using a bootstrap sample randomly selected at each 

node, along with a subset of learning points and features (predictors or input variables) at 

each node (Dudek, 2011). The bootstrap technique is a sampling method that involves 

random sampling with replacement. It is used to obtain data from a large dataset by 

resampling. By creating each tree using a randomly selected dataset through bootstrapping, 

this approach helps mitigate bias and enables the evaluation of solution stability (Dudek, 

2011). A binary decision tree is structured so that each internal node has two outgoing 

edges corresponding to a left child and a right child. These split nodes contain test functions 

that are applied to incoming input. The final nodes of the tree, referred to as leaves, store 

the test results. 

The Random Forest (RF) technique utilizes decision trees of this form, specifically 

using the CART (Classification and Regression Tree) algorithm, to tackle classification 

and regression problems (Di Leo et al., 2020). The subset of data sets and the decision tree 

for each dataset are created from random bootstrapped data. The final decision is made by 

combining the ensemble, which is achieved in the regression case by averaging the output 

or by voting in classification. In his research, Breiman observed that increasing the number 

of trees in a Random Forest (RF) model prevents overfitting and limits generalization 

errors, which can be evaluated using an out-of-bag (OOB) error. The OOB score, or out-

of-bag prediction, is a proprietary validation method used in Random Forest. 

Since only a portion of the training points is included in each bootstrap training set, 

this group is known as out-of-bag (OOB) samples. For testing reasons, these unused 

training data might be used. As a result, the proportion of correctly classified out-of-bag 

samples serves as a proxy for evaluating the Random Forest model's correctness. On the 
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other hand, the percentage of out-of-bag samples that the model incorrectly categorizes is 

known as the OOB error. Similar to N-fold cross-validation, this error is estimated (Deif, 

Solyman, Alsharif, et al., 2021). Once the OOB error has been resolved, the training can 

be finished. The out-of-bag error and the variable importance measure are two significant 

characteristics that set the Random Forest (RF) model apart. The example below can be 

used to demonstrate the RF algorithm for regression (Kosek & Gehrke, 2016): 

 

1 For 𝑘 = 𝐼 to K : 

Step (1): From the training set, create a bootstrap 𝐿 of size 𝑁. 

Step (2): To construct the random-forest tree Tk using the bootstrapped data, the 

following procedures are recursively repeated for each node in the tree until the 

minimum node size m is reached: 

Step (2.1): From the 𝑛 variables, choose 𝐹 variables at random. 

Step (2.2): Select the F most optimal variable or split-point. 

Step (2.3) Splitting the node results in creating two daughter nodes. 

2 Generate the output by aggregating the ensemble of trees {𝑇𝑘}𝑘=1,2,…,𝐾. To forecast at 

a new point 𝑥: 

𝑓(𝑥) =
1

𝐾
∑  

𝐾

𝑘=1

𝑇𝑘(𝑥) 
 

(3.10) 

To perform a random forest model, two crucial parameters need to be specified: the 

number of trees (ntree) in the forest and the number of randomly selected input variables 

(mtry) at each node (Kosek & Gehrke, 2016). Additional trees are incorporated during 

training until the out-of-bag (OOB) error reaches a stable state (Chetty et al., 2020). Several 

researchers say the default parameter value can produce satisfactory results (Zhou et al., 

2022). The primary advantages of the model include its robustness to parameter values, ability 
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to generalize well, and built-in cross-validation (Dudek, 2011). Outliers for the decision tree 

and bootstrapping building do not impact this strategy. 

 

3.5.2. The K-nearest neighbor model 

Fix and Hodges Jr. created the k-nearest neighbor (KNN), which Cover and Hart later 

formalized for classification applications (Al-Qahtani & Crone, 2013). K-nearest neighbors 

(KNN) is an instance-based learning algorithm that relies on the differences between features 

in the labeled dataset. 

Based on distance functions, it looks for a set of k samples close to unknown ones. 

Here, the k examples most similar to and closest to the new data point are found using a 

labeled dataset bunch. Because of this, the algorithm relies its prediction on how similar the 

newly entered data are to the training observations. This algorithm keeps the entire training 

set in memory during learning. Predicting unknown samples in both regression and 

classification tasks involves comparing the labels or classes of the new input data to instances 

in the training set. In the regression case, the average of the response variables is used as the 

predicted value for the unknown samples. The predicted class is determined by selecting the 

most prevalent class value among the k-nearest samples in classification. 

 

The prediction is the average of the associated targets, and the KNN model employs 

the k closest cases in the training set for a particular instance X to compute 𝑌̂,. The model can 

be expressed in the most basic manner. 

𝑌̂(𝑥) =
1

𝑘
∑  

𝑥𝑖∈𝑁𝑘(𝑥)

𝑦𝑖 
 

(3.11) 

 

Where 𝑁𝑘(𝑥) is the collection of the training sample's nearest points, 𝑥𝑖, as the 

parameter k increases to 1, Determining the optimal value for k becomes challenging as the 

error decreases to 0 on the training set but increases on the test set. This is because the KNN 

model has a high variance and low bias. Similarity metric (certain distance functions) is used 
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to determine how close together two data points are and to calculate their distance, 𝑑. The 

most prevalent function in this area is the Euclidean distance, which calculates the separation 

between the points x and y as follows: 

d(𝑥, 𝑦) = √∑  

𝑛

𝑖=1

  (𝑥𝑖 − 𝑦𝑖)2 

 

 

(3.12) 

According to the research paper's benefits and drawbacks list (Deif et al., 2015), KNN 

is effective for a day or longer when forecasting load profiles. Because it takes advantage of 

local knowledge, it exhibits highly adaptable behavior. K-nearest neighbor search encounters 

significant limitations due to the extensive storage requirements for maintaining a database 

of historical data. 

 

3.5.3. Support Vector Machine 

Support Vector Machines (SVM) were developed and introduced by Boser, Guyon, 

and Vapnik in 1992, building upon the principles of statistical learning theory. Originally 

designed for classification tasks, SVM was later adapted for regression (Hyndman & 

Athanasopoulos, 2018). In the case of Support Vector Regression (SVR), it is recommended 

to utilize this approach to establish the mapping relationship between the input and output 

vectors. 

Given training data (𝑥1, 𝑦1), (𝑥
2, 𝑦2), … , (𝑥𝑙 , 𝑦𝑙)⁡𝑥

𝑖 ∈ ℝn, 𝑦𝑖 ∈ R where 𝑙 is the 

number of samples. We are looking for a vector 𝜔 ∈ ℝn and a scalar b such that the quantities 

𝑓(𝑥𝑖) = 𝑤𝑇𝑥𝑖 + 𝑏 for each 𝑖 = 1,… , 𝑙 are as close as possible to the target 𝑦𝑖. After defining 

a map 𝜙(𝑥): 𝑥 ∈ ℝn ↦ 𝜙(𝑥) ∈ F  

In the new feature space, denoted by F, which can be a finite or infinite-dimensional 

Hilbert space with a scalar product <. . . >, the training data is represented as (𝜙(𝑥𝑖), 𝑦𝑖), 
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where i take values from 1 to l. The Support Vector Machine (SVM) with a nonlinear 

regression function can mathematically describe by Equation 3.13. 

𝑓(𝑥) = 𝑓(𝑥, 𝜔) = 𝜔𝜙(𝑥) + 𝑏 = ⟨𝜔, 𝜙(𝑥)⟩ + 𝑏 (3.13) 

The samples in the low-dimension space exhibit nonlinear properties in real-world 

situations. Adding a non-linear function can transfer each sample to a high-dimension space. 

Hence, employing linear regression in a high-dimensional feature space makes it feasible to 

achieve non-linear regression in a low-dimensional space. By using the insensitive loss 

function 𝜀, which is defined as follows, support vector regression can be utilized to resolve 

the regression estimation problem. 

𝐿(𝑦 − 𝑓(𝑥), 𝑥) = |𝑦 − 𝑓(𝑥)|𝜀 = {
0,  if |𝑦 − 𝑓(𝑥, 𝜔)| ⩽ 𝜀
|𝑦 − 𝑓(𝑥, 𝜔)| − 𝜀,  otherwise 

 
(3.14) 

Minimizing Equation 3.14 makes it possible to determine the unknown values of 𝜔 

and 𝑏 in Equation 3.15. 

𝑅(𝐶, 𝜀) =
1

𝑚
𝐶∑  

𝑚

𝑖=1

𝐿𝑖(𝑦𝑖 − 𝑓(𝑥𝑖), 𝑥𝑖) +
1

2
𝜔 ⋅ 𝜔 

 

(3.15) 

where: 

1

2
𝜔 ⋅ 𝜔 = regularization term 

𝐶 = regulation parameter 

The regression issue can be transformed into computing the least value of Equation 

3.15 by including the slack variables 𝜉 and 𝜉∗  in Equation 2.16. 

𝑅(𝜔, 𝑏, 𝜉, 𝜉∗) =
1

2
𝜔 ⋅ 𝜔 + 𝐶∑  

𝑚

𝑖=1

  (𝜉 + 𝜉∗)

 s.t. = {

𝑦𝑖 − 𝑓(𝑥𝑖) ≤ 𝜉 + 𝜀

𝑓(𝑥𝑖) − 𝑦𝑖 ≤ 𝜉∗ + 𝜀
𝜉, 𝜉∗ ≥ 0

⁡ (
𝑖 = 1,2,⋯ ,𝑚

𝑥𝑖 ∈ 𝑅𝑛 )

 

 

(3.16) 
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Equation 3.17 dual problem can be created by adding the Lagrange multipliers 𝛼𝑖 

and 𝛼𝑖
∗: 

m ⁡
1

2
∑  

𝑚

𝑖=1

  (𝛼𝑖 − 𝛼𝑖
∗)(𝛼𝑗 − 𝛼𝑗

∗)(𝑥𝑖 , 𝑥𝑗) + 𝜀∑  

𝑚

𝑖=1

  (𝛼𝑖 + 𝛼𝑖
∗) −∑  

𝑚

𝑖=1

 𝑦𝑖(𝛼𝑖 − 𝛼𝑖
∗)

 s.t. = {
∑  

𝑚

𝑖=1

  (𝛼𝑖 − 𝛼𝑖
∗) = 0

𝛼𝑖, 𝛼𝑖
∗ ∈ [0, 𝐶]

⁡𝑖 = 1,2,⋯ ,𝑚

 

 

(3.17) 

A vector comprising several Lagrange multipliers serves as the solution. Some of the 

values in these Lagrange multipliers are zero, whereas others are not zero. The support 

vectors, which can be used to calculate regression, are input vectors with non-zero Lagrange 

multipliers. Therefore, Equation 3.18 can be used to represent the nonlinear regression 

function. 

𝑓(𝑥) = ∑  

𝑚

𝑖=1

(𝛼‾𝑖 − 𝛼‾𝑖
∗)⟨𝜙(𝑥𝑖) ⋅ 𝜙(𝑥)⟩ + 𝑏 

 

(3.18) 

Because the non-linear function is challenging to solve. By choosing the Kernel 

function 𝐾(𝑥𝑖, 𝑥), which converts the initial data space into a new space with a higher 

dimension and is the inner product of 𝜙(𝑥𝑖) and 𝜙(𝑥):𝐾(𝑥𝑖, 𝑥) = 𝜙(𝑥𝑖)𝜙(𝑥), the regression 

function expression of SVM can be solved quickly. The regression function can then be 

written as Equation 3.19. 

𝑓(𝑥) = ∑  

𝑚

𝑖=1

(𝛼‾𝑖 − 𝛼‾𝑖
∗)𝐾(𝑥𝑖, 𝑥) + 𝑏 (3.19) 

 

Where 𝛼𝑖  is the Lagrange multiplier, and 𝑥 is support vector data. 
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CHAPTER FOUR 

OPTIMIZATION METHODS OVERVIEW 

 

This chapter provides a conceptual introduction to the Particle Swarm Optimization 

(PSO) algorithm and Genetic Algorithm (GA). We also discuss their parameter selection 

methods and representations of neighborhood topology and provide mathematical 

justifications for these algorithms. 

 

4.1 The Basic Model of the PSO algorithm 

The pioneering work of Kennedy and Eberhart involved tackling the complex problem 

of non-linear optimization by simulating the behavior of bird flocks. They introduced the 

concept of function optimization using a particle swarm (Gad, 2022). Think about an n-

dimensional function's global optimal, which is defined by 

𝑓(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛) = 𝑓(𝑋) (4.1) 

 

Let 𝑥𝑖 represent the set of independent variables in the given function, which serves 

as the search space variable. The objective is to find the value 𝑥∗ that maximizes or minimizes 

the function 𝑓(𝑥∗)  within the search space. Consider the functions presented by 

𝑓1 = 𝑥1
2 + 𝑥2

2 

and 𝑓2 = 𝑥1sin⁡(4𝜋𝑥2) − 𝑥2sin⁡(4𝜋𝑥1 + 𝜋) + 1 

 

(4.2) 
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Figure 4.1: Plot of the functions   𝑓1 and 𝑓2. 

 

The minimum value of the function 𝑓1 is globally located at (𝑥1, 𝑥2) = (0,0), or at 

function 𝑓1 origin in the search space, as shown in figure 4.1(a). This indicates that the 

function is unimodal, with a single minimum. With several local minima, multi-model 

functions make it more challenging to determine the global optimum. Given the rugged search 

space and multiple peaks in the function 𝑓2, as illustrated in Figure 4.1 (b), it is necessary for 

numerous agents to explore the space from different initial positions until at least one agent 

discovers the optimal global position. Throughout this process, all agents are free to 

communicate and exchange information (Deif, Attar, Amer, Elhaty, et al., 2022).  

The Particle Swarm Optimization (PSO) algorithm is an approach for multi-agent 

parallel search. It involves a particle swarm, each representing a potential solution. In a 

multidimensional search space, these particles move and update their positions based on their 

own experiences and neighbors' experiences.  

The vector can represent the update of each particle's location in the search space 𝑥𝑖
𝑡, 

where i denotes the particle index and t represents the time step: 
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𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑣𝑖
𝑡+1 with 𝑥𝑖

0 ∼ 𝑈(𝑥min, 𝑥max) (4.3) 

The velocity vector of particle i, denoted as 𝑣𝑖
𝑡, plays a crucial role in the optimization 

process by incorporating information from both the particle's own experience and the 

collective experience of all particles. It is influenced by the uniform distribution 

𝑈(𝑥min, 𝑥max), where 𝑥min and 𝑥max represent the minimum and maximum values, 

respectively. 

In the PSO procedure, the fitness of each particle is computed, and both the personal 

best (best value for each particle) and the global best (best value among all particles in the 

swarm) are determined. The algorithm enters a loop from random positions to search for the 

optimal solution. The velocities of the particles are updated using information from the 

personal and global bests, and these updated velocities are then used to update the positions 

of each particle. The loop continues until a predefined stopping condition is met (Deif, 

Hammam., Hammam, & Solyman, 2021). Essentially, two variations of the PSO algorithm 

have been developed: the Global Best (gbest) PSO and the Local Best (lbest) PSO. These 

variations differ in the size of their communities or neighborhoods. 

4.1.1 Global Best PSO ( gbest PSO) 

In the PSO approach, each particle (denoted by i) in the swarm, where i ranges from 

1 to n (where n > 1), is influenced by the global best-fitting particle. Each particle has its 

current position in the search space, 𝑥𝑖, current velocity, 𝑣𝑖, and a personal best position in 

the search space, 𝑃𝑏𝑒𝑠𝑡, i. The personal best position, 𝑃𝑏𝑒𝑠𝑡,𝑖, represents the location in the 

search space where particle i achieves the lowest value according to the objective function f 

in the case of a minimization problem. The global best position, denoted by 𝐺best , is the 

position with the lowest value among all the personal best positions 𝑃best,⁡i  within the swarm. 

The personal and global best values are updated using the formulas (4.4) accordingly. For a 

minimization problem, the best personal position, 𝑃𝑏𝑒𝑠𝑡,𝑖, at time step t+1 (where t ranges 

from 0 to N), can be determined as 
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𝑃best, 𝑖
𝑡+1 = {

𝑃best,⁡i 
𝑡  if 𝑓(𝑥𝑖

𝑡+1) > 𝑃best,𝑖
𝑡

𝑥𝑖
𝑡+1  if 𝑓(𝑥𝑖

𝑡+1) ≤ 𝑃best, 𝑖
𝑡  

(4.4) 

Where the fitness function is 𝑓:ℝ𝑛 → ℝ.The calculation for the global best position 

𝐺best  at time step 𝑡 is 

𝐺best = min{𝑃best,𝑖
𝑡 }, where 𝑖 ∈ [1, … , 𝑛] and 𝑛 > 1 (4.5) 

 

The personal best position (𝑃𝑏𝑒𝑠𝑡,𝑖) represents the best position a specific particle i has 

achieved since the initial time step, an important individual distinction. On the other hand, the 

global best position (𝐺best ) represents the best position any particle in the swarm finds. In the 

gbest PSO method, the velocity of particle i is determined by considering the difference 

between its current position and the 𝐺best position: 

𝑣𝑖𝑗
𝑡+1 = 𝑣𝑖𝑗

𝑡 + 𝑐1𝑟1𝑗
𝑡 [𝑃𝑏𝑒𝑠𝑡,𝑖

𝑡 − 𝑥𝑖𝑗
𝑡 ] + 𝑐2𝑟2𝑗

𝑡 [𝐺𝑏𝑒𝑠𝑡 − 𝑥𝑖𝑗
𝑡 ] (4.6) 

 

In the gbest PSO algorithm, the velocity vector (𝑣𝑖𝑗
𝑡 ) of particle i in dimension j at time t is 

determined based on various factors. These include the personal best position (𝑃𝑏𝑒𝑠𝑡,𝑖
𝑡 ) of the 

particle found from initialization through time t, the global best position (𝐺best ) of particle i 

in dimension j found from initialization through time t, and positive acceleration constants (𝑐1 

and 𝑐2  ). These constants help balance the contributions of the particle's best position and the 

global best position in the equation. Figure 4.2 illustrates the gbest PSO algorithm. 
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Figure 4.2: gbest PSO 

 

4.1.2 Local Best PSO (lbest PSO) 

In the local best PSO approach, the best-fitting particle selected from its neighborhood 

influences each particle's behavior. The velocity of particle i is determined by considering the 

personal best position (𝑃𝑏𝑒𝑠𝑡,𝑖
𝑡 ) of the particle and the best position (𝑃𝑏𝑒𝑠𝑡,𝑛

𝑡 ) of the neighboring 

particles within its defined neighborhood. This neighborhood-based interaction helps guide 

the optimization process and update the particle's velocity for improved convergence. 
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𝑣𝑖𝑗
𝑡+1 = 𝑣𝑖𝑗

𝑡 + 𝑐1𝑟1𝑗
𝑡 [𝑃𝑏𝑒𝑠𝑡,𝑖

𝑡 − 𝑥𝑖𝑗
𝑡 ] + 𝑐2𝑟2𝑗

𝑡 [𝐿𝑏𝑒𝑠𝑡,𝑖 − 𝑥𝑖𝑗
𝑡 ] (4.7) 

Where 𝐿𝑏𝑒𝑠𝑡,𝑖  denotes the best position each particle has been in since initiation 

through time 𝑡 in the vicinity of particle 𝑖. The optimal PSO method is summarized in the 

following Figure 4.3: 

 
 

Figure 4.3: lbest PSO 

 

Finally, it is clear from Sections 4.1.1 and 4.1.2, respectively, that each particle in the 

gbest PSO algorithm receives information from the best particle in the entire swarm. In 

contrast, each particle in the lbest PSO algorithm only receives information from its 

immediate swarm neighbors. 
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4.2 Genetic Algorithms 

There are numerous various ways that genetic algorithms have been implemented. 

Researchers typically prefer to apply a reliable traditional method rather than construct their 

solution to each new problem due to the difficulty in generating acceptable parameters. 

According to Davis, for a Genetic Algorithm to function successfully, it must be the simplest 

possible for a given situation (Davis, 1991). Figure 4.5 presents a fundamental flowchart 

outlining the steps involved in a genetic algorithm. 

 

Figure 4.5: A basic flowchart of a genetic algorithm. 

 

4.2.1 The genetic information 

A DNA chain in an individual correlates to the genetic data in a genetic algorithm. 

The solution, or more precisely, its properties, are described by the DNA chain. Chromosomes 

construct the genetic material, which is typically encoded in binary form. (but it can also be 
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in another form of data). A solution is commonly referred to as an individual, and the 

population of a genetic algorithm is the collection of individuals that make up a generation. 

4.2.2 Fitness Function Selection 

The genetic algorithm's fitness or evaluation function ranks alternative solutions by 

determining their effectiveness concerning the present issue domain. 

The evolutionary algorithm can advance toward promising areas of the search space 

through selection. Selecting high-fitness individuals is crucial as they are more likely to 

survive and propagate to the next generation. It is important to balance the selection pressure 

to ensure optimal genetic exploration. Too much selection pressure can prematurely halt 

genetic exploration, while insufficient pressure can result in slower evolution. It is generally 

recommended to apply greater selection pressure towards the end of the genetic search to 

narrow the search space (1995 Spears). The roulette wheel selection algorithm is frequently 

utilized. The following steps are included in the roulette wheel selection: (See equations 4.8) 

 

(1) Compute the entire fitness of the population 

(2) Compute the likelihood of selection 𝑝1 for each individual 𝑣1 

(3) Compute the accumulative likelihood 𝑞1 for each individual   𝑣𝑡 

(4) Develop a random  number  from the range [0.1]  

𝐹 = ∑  

PopulationSize 

𝑖=1

  evaluate (𝑣𝑖) (4.8) 

 

𝑝1 =
evaluate⁡(𝑣𝑖)

𝐹
 (4.8) 

 

𝑞𝑖 = ∑  

𝑖

𝑗=1

 𝑝𝑗 (4.10) 
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4.2.3.1 Stochastic Sampling 

During the selection phase, the number of copies of each chromosome is determined 

based on its probability of survival. The selection phase consists of two steps: figuring out the 

predicted values for the chromosomes and converting those values to the number of offspring. 

A chromosome's anticipated value is a precise figure representing the specific number of 

offspring. The actual predicted value is converted to the number of offspring using the 

sampling technique. The roulette wheel selection is a widely adopted stochastic selection 

method. We picture a roulette wheel with slots that vary in size depending on the players' 

fitness level. A new member of the population is chosen for every turn of the roulette wheel. 

According to the Schema Theorem, it is acceptable if one person is chosen more than once 

because the most incredible people tend to multiply, the ordinary people stay the same, and 

the worst people have the highest mortality rates. (Michalewicz, 1994). For the mathematical 

application, see equations 4.8. 

 

4.2.3.2 Deterministic Sampling 

Deterministic sampling involves selecting the best chromosomes from both parents 

and offspring using a deterministic approach. Elitism is one deterministic selection method 

frequently used with a stochastic selection method. In general selection, the population's best 

individual will not reach the following generation. Including elitism in genetic algorithms can 

accelerate the dominance of a superior individual within the population, leading to potential 

performance improvements in specific areas. Elitism involves selecting and preserving the 

fittest members of the population, allowing them to directly pass on to the next generation 

without undergoing any genetic modifications. This approach ensures that the maximum 

fitness of the population does not decrease from one generation to the next. Typically, elitism 

promotes faster convergence of the population. However, the impact of elitism on the 

likelihood of finding the optimal candidate can vary depending on the specific application 

(Goldberg, 1989). 
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4.2.3.3 Mixed Sampling 

Mixed sampling combines deterministic and random characteristics. 

4.2.4 Reproduction 

        A shared characteristic among all evolutionary algorithms is the requirement for 

populations to evolve and improve over time. Genetic algorithms often achieve this by using 

the two techniques of mutation and crossover. 

4.2.5 Crossover 

        Crossover, derived from the biological concept, presents a complex process of 

exchanging chromosomal segments to produce diverse genetic combinations. In genetic 

algorithms, a crossover operator is commonly employed to facilitate recombination by 

manipulating pairs of chromosomes. This operation involves exchanging genetic material 

between parents, resulting in the creation of new offspring. Essentially, crossover combines 

the genetic material of the two fittest individuals within a population, giving rise to novel 

genetic strings. 

4.2.5.1 1-point crossover 

Genetic algorithms have traditionally used a one-point crossover, the most basic type 

of crossover. The way a one-point crossover operates is as follows. Figure 4.6 illustrates how 

the offspring's DNA is formed when a random DNA point is selected. The resulting offspring 

inherits DNA from the first parent up to that point and DNA from the second parent after that 

point. It is simple to extrapolate the one-point crossover to any number of crossover points. 

A 2-point crossover is the least disruptive crossover approach, according to studies. (Spears, 

1995). 

DNA for Parent 1: 01100101 

DNA for Parent 2: 00011110 

                                                    Crossover point: 3 

                                                    DNA for Child 1: 00010100 

                                                    DNA for Child 2: 01101111 

 

Figure 4.6: Single-point crossover example  
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4.2.5.2 Uniform crossover 

Several empirical studies have provided evidence for the benefits of increasing the 

number of crossover points (Spears, 1995). Instead of selecting random locations, a 

predetermined template is utilized for the crossover operation. The template consists of 

randomly chosen bit values, which are then adjusted to match the positions in the string. 

Figure 4.7 provides a visual representation of this process. Uniform crossover, which involves 

an average of L/2 crossover points for a string of length L, has also been explored in the 

literature. 

Additionally, studies have shown that this instance is specific to the problem at hand 

and could be better in general. The most disruptive crossover approach is uniform crossover. 

(Spears, 1995) 

 

DNA for Parent 1: 01100101 

DNA for Parent 2: 00011110 

Template: ⁡01010111 

DNA for Child 1: 0111111 

DNA for Child 2: 00010100 

 

Figure 4.7: Uniform crossover example  

 

4.2.5.3 Adaptive crossover 

A genetic algorithm called adaptive crossover chooses the best type of crossover as it 

runs. There are two methods to accomplish this: locally and globally. This is accomplished 

locally by extending the DNA strand by one extra chromosome. The 2-point crossover is 

utilized if both parents have zero chromosomes (0), while the uniform crossover is used if 

both parents have one (1) chromosome. Additionally, the crossover form employed if the 

parents have differing chromosomal numbers is chosen randomly. This is done globally by 

taking into account the entire population. If the chromosome within the population consists 

mostly of zeros (0), a 2-point crossover technique will be used for the entire population. On 
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the other hand, if the chromosome contains more ones (1), the uniform crossover will be 

applied to the entire population. This additional chromosome is subject to genetic 

manipulation by all genetic operators, including mutation and crossover, at both the global 

and local levels. 

4.2.5.4 Guided Crossover 

          The guided crossover is a commonly used crossover technique that offers several 

advantages. This operator is specifically designed to enhance the quality of the solutions 

generated by the genetic algorithm, increasing the likelihood of approaching the global 

optima. The guided crossover process involves selecting two individuals from the 

population. The offspring resulting from the crossover operation is randomly determined 

along the line connecting the two parents closest to the individual with the best fitness. This 

approach was introduced by (Rasheed in 1999). 

 

4.2.6 Mutation 

A genetic operation called mutation modifies one or more gene values on a 

chromosome. The genetic search includes mutation as a crucial component since it keeps the 

population from plateauing at any local optimum. The mutation is the mechanism by which 

random changes are introduced to one or more chromosomes within the DNA string. This 

process involves altering specific elements, such as flipping the value of a 0 to 1 or vice versa, 

in a stochastic manner. 
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CHAPTER FIVE  

        METHODS AND RESULTS 

This chapter provides a detailed description and rationale for the dataset and 

methods employed in predicting daily electricity consumption at the city level. 

Furthermore, we present and analyze the outcomes obtained by applying these 

methods to our specific country case datasets. 

5.1. Materials:  

This study used the dataset published in a research paper (Z. Wang et al., 

2021).  The dataset comprises ambient temperature data and city-level electricity 

usage data for three major metropolitan areas in the United States: New York 

(NY), Sacramento (Sac),  and Los Angeles (LA). The data spans from July 2015 

to September 2020. The ambient temperature data was obtained from the National 

Oceanic and Atmospheric Administration (NOAA), while the city-level 

electricity usage data was collected from the Energy Information Administration 

(EIA). The raw electricity consumption in three cities is plotted in Fig. 5.1. 

 

Fig. 5.1. The average hourly electricity consumption in three metropolitan areas. 
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5.2. Methods  :   

Figure 1 presents an overview of the methodology used to forecast daily 

electricity consumption at the city level, which includes the following Five 

phases: (1) Data preparation, (2) Prediction phase, (3) Hyper-parameter 

optimization, (4) performance evaluation and (5) Predict energy consumption 

during the pandemic. Each phase is explained in the next subsections. 

 

Ambient temperature 

data 

NOAA EIA

City-level electricity 

usage data 

linear model   

Time Series 

Forecasting 

techniques

Supervised Machine 

Learning Forecasting 

techniques

Choose the best hyper parameters

Evaluate models performance 

Select the best performing model 

Analyze the daily electricity use 

during the COVID-19 pandemic

Electricity demand load forecasting  

Data exploration and split dataset into Train and Test Sets

Data 

Preparation

phase 

Prediction 

phase

Performance 

evaluation 

phase

Predict energy 

consumption 

during the  

pandemic

phase

Hhyper-parameter 

optimization

phase

 

Fig. 5.2. Overall prediction methodology 

  



 

 50 

Phase (1): Data preparation 

The primary dataset was divided into power data, including (Date, time, 

electricity load, and Day Type (Working Day / non-Working Day)) and weather 

data, including (Date, time, Ambient temperature, and humidity). Therefore, the 

power and weather data were merged to be appropriate for the study phases.  

The dataset underwent several data preprocessing steps. The daily power load, 

demand peaks, and average ambient temperature were calculated each day and 

included as new features in the combined dataset. Any measures with missing 

values were carefully examined and removed from the dataset. Furthermore, the 

variables' scale was verified to ensure consistency. Following these data 

preparation steps, the dataset was randomly split, with 80% allocated for training 

prediction models and the remaining 20% used for model validation testing. 

Phase (2): Prediction phase 

Four forecasting models were developed to predict daily electricity usage in 

Sacramento, Los Angeles, and New York. These forecasting models belong to 

two different modeling techniques: Time series forecasting techniques (ARIMA 

model) and Supervised Machine Learning Forecasting techniques (SVM, RF, and 

KNN). The details of six forecasting models are illustrated in the following  

I. Time Series Forecasting techniques 

The ARIMA model, widely used for forecasting univariate time series, was introduced by 

(Deif, Solyman, & Hammam, 2021). This linear statistical model decomposes time series into 

current and past values and random errors. ARIMA combines autoregression (AR) with p past 

observations, moving average (MA) with q random errors, and differencing (d) to achieve 

stationarity. The representation of ARIMA⁡(𝑝, 𝑞, 𝑑)  is as follows: 

Δ𝑑𝑦(𝑡) = 𝑐 +∑  

𝑝

𝑗=1

𝛼𝑗 × 𝑦(𝑡 − 𝑗) + 𝜖(𝑡) +∑  

𝑞‾

𝑗=1

𝛽𝑗 × 𝜖(𝑡 − 𝑗) 

 

(4.1) 
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Let Δ = (1 − 𝐵), where B is the backward operator, and 𝐵𝑦(𝑡) = 𝑦(𝑡 − 1), 𝑦(𝑡)  

represents the observation data at time t. The ARIMA model is defined by a constant c, auto-

regressive parameters𝛼1, … , 𝛼𝑝, white noise 𝜖(𝑡), and moving average coefficients 𝛽1, … , 𝛽𝑞. 

The fitting process of an ARIMA model involves four steps: 

Step (1): The ARIMA⁡(𝑝, 𝑑, 𝑞)  structure Identification. 

Step (2): Parameters Estimation. 

Step (3): Examine the estimated residuals through diagnostic checking. 

Step (4): Predicting future values using the existing data. 

The order q and p of the ARIMA model are determined by analyzing the autocorrelation 

function (ACF) and the partial autocorrelation function (PACF) of the data, as proposed by 

Box and Jenkins (1976). 

II. Supervised Machine Learning Forecasting techniques  

Support Vector Machine (SVM)  

The SVM algorithms aim to map data points from a low-dimensional space to a higher-

dimensional space to achieve linear separability. Given n data points, the objective function 

of SVM is formulated as follows (Deif, Solyman, Alsharif, et al., 2021; Hammam, Attar, et 

al., 2022a):  

arg⁡min
𝐰

  {
1

𝑛
∑  

𝑛

𝑖=1

 m ⁡ {0,1 − 𝑦𝑖𝑓(𝑥𝑖)} + 𝐶𝐰𝑇𝐰} (4.2) 

In the equation, 𝐰 represents a normalization vector, and C is the penalty parameter for 

the error term. It is an essential hyperparameter in all SVM models. 

The kernel function f(x) is used to assess the similarity between two data points𝑥𝑖 and 𝑥𝑗. 

There are various kernel functions available in SVM models, and the choice of kernel type 

becomes a crucial hyperparameter that needs to be adjusted. Some common kernel types in 
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SVM include linear kernels, radial basis function (RBF), polynomial kernels, and sigmoid 

kernels(Hammam, Solyman, et al., 2022)(Ayyarao et al., 2022): 

These different kernel functions can be represented as follows: 

1 Linear kernel: 

𝑓(𝑥) = 𝑥𝑖
𝑇𝑥𝑗 (4.3) 

2 Polynomial kernel: 

𝑓(𝑥) = (𝛾𝑥𝑖
𝑇𝑥𝑗 + 𝑟)

𝑑
 (4.4) 

3 RBF kernel: 

𝑓(𝑥) = exp⁡(−𝛾∥𝑥 − 𝑥′∥2) (4.5) 

4 Sigmoid kernel: 

𝑓(𝑥) = (tanh⁡(𝛾𝑥𝑖
𝑇𝑥𝑗 + 𝑟)) (4.6) 

After selecting a kernel type, several other hyperparameters need to be tuned, as 

evident in the kernel function equations. One such hyperparameter is the coefficient 𝛾 , 

denoted as 'gamma' in sklearn. It is a conditional hyperparameter associated with kernel types 

such as polynomial, RBF, or sigmoid. Additionally, the hyperparameter r is represented by 

'coef0' in Sklearn, which is specific to polynomial and sigmoid kernels. Furthermore, the 

polynomial kernel introduces an additional conditional hyperparameter, d, representing the 

kernel function's' degree'. In the case of support vector regression (SVR) models, there is an 

additional hyperparameter called 'ε,' which denotes the tolerance or allowable distance error 

in its loss function(Deif, Hammam., Hammam, & Solyman, 2021). 
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5.3. Random Forest (RF) 

The Random Forest algorithm can be summarized as follows: 

1. From a training dataset containing m samples and n variables 

(features), independently construct T decision trees. 

2. Each decision tree model uses a bootstrap sample set from the training 

dataset. 

3. At each internal node of the decision tree, a random subset of n' 

variables (where n' << n) is considered, and the best split is determined based 

on these selected variables. 

4. The decision trees are built without pruning, allowing them to grow 

to their maximum depth. 

The prediction value y for each tree is obtained, and the final prediction 

value is obtained by aggregating the results from all T trees in the forest. The 

Random Forest prediction is determined by combining the predictions of each 

tree. 

𝑦̂ =
1

𝑇
∑  

𝑇

𝑖=1

𝑓𝑖(𝑥) (4.7) 

Let 𝑥 ∈ 𝑅𝑛 represent a new input, where n is the number of variables. T 

denotes the total number of trees in the random forest. The prediction 𝑓𝑖(𝑥)  The 

ith tree generates the unknown value y for the input x (where i ranges from 1 to 

T). 

During the construction of each tree, there is an important tuning parameter 

known as mtry. This parameter determines the number of candidate variables 

selected for node splitting at each iteration. It is crucial to note that mtry must 

satisfy condition 1 < mtry < n. By selecting mtry to be less than the total number 
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of variables (n), the objective is to improve computational efficiency and reduce 

the processing time. 

K-Nearest Neighbors (KNN) 

According to a similarity metric known as a distance function, the K-nearest 

neighbors (KNN) method predicts new data points based on them (Deif, Hammam, 

Solyman, Alsharif, et al., 2021). This method uses a new data sample's proximity to 

points in the training set to determine its value. In more detail, we determine the 

distance (such as the Euclidean, Manhattan, or Minkowski distance) between each 

sample in the test set and every sample in the training set. The K nearest training data 

samples are then chosen. 

In the case of regression, the KNN prediction is obtained by averaging the 

outcomes of the K nearest neighbors: 

𝑦 =
1

𝐾
∑  

𝑘

𝑖=1

𝑦𝑖 (4.8) 

In the equation, 𝑦𝑖 represents the outcome or value of the ith example sample, 

while y represents the prediction or outcome of the query point. 

Phase (3) Hyper-parameter optimization 

In order to find the best hyperparameters for regression models, it is essential to 

explore the hyperparameter space while creating machine learning models efficiently. 

A search space, also referred to as the configuration space, a search or optimization 

method used to find hyperparameter combinations, and an evaluation function used to 

compare the performance of various hyperparameter configurations are the four main 

components of the hyperparameter optimization process. Obtaining the following is 

often the main objective of a hyperparameter optimization problem (Deif, Attar, Amer, 

Elhaty, et al., 2022; Deif, Attar, Amer, Issa, et al., 2022): 

𝑥∗ = arg⁡min
𝑥∈𝑋

 𝑓(𝑥) (4.9) 
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where 𝑓(𝑥) represents the objective function that needs to be minimized, such as the 

error rate or the root mean squared error (RMSE). The hyperparameter configuration 𝑥∗ 

Corresponds to the optimal value of 𝑓(𝑥). Each hyperparameter x can assume any value 

within the search space X. The primary steps of the hyperparameter optimization process 

are illustrated in Figure 5.3. 

Select the objective functio

Select the hyper-parameters that 

require tuning

Determine the appropriate 

optimization technique

Train the ML model using the 

default hyper-parameter

Start the optimization process with 

a large search space 

Narrow the search space based on 

the regions of currently

Test 

the hyperparameter

 values performing 

Explore search spaces 

Select the best-performing hyper-

parameter configuration as the 

final solution

OK

No

 

Fig. 5.3. The flow chart for the main process of Hyper-parameter optimization. 
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Table 2 shows the search space for the hyper-parameters of Machine Learning 

Forecasting models 

Table 2: Search space for the hyper-parameters of  regressor models 

MACHINE LEARNING  

Model 

Hyper-

parameter 
Search Space 

 

 

RF Regressor 

n estimators [10,100] 

max depth [5,50] 

Min samples split [2,11] 

min samples leaf [1,11] 

criterion [’mse’, ’mae’] 

max features [1,13] 

 

SVM Regressor 

C [0.1,50] 

kernel 
[’ linear’, ’poly’, ’rbf’, 

’sigmoid’] 

epsilon [0.001,1] 

KNN Regressor n neighbors [1,20] 

 

Phase (4) performance evaluation  

The Root Mean Square Error (RMSE) indicators are used to verify the 

effectiveness of the forecasting model established in this paper. 

RMSE ⁡= √
1

𝑛
∑  

𝑛

𝑖=1

  (𝑦𝑖 − 𝑥𝑖)2 (4.10) 

In the equation, 𝑦𝑖 represents the actual observed value, 𝑥𝑖 represents the 

corresponding forecasted value, and n represents the number of predicted samples. 
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Phase (4) Predict energy consumption during the pandemic. 

To address these two pertinent concerns, we selected the best-performing 

models to investigate: 1) The impact of ambient air temperature, especially 

during heatwaves, on the daily electricity consumption in the city, and 2) The 

influence of unexpected public health crises, such as the COVID-19 pandemic, 

on the daily electricity usage in the city. In this study, our goal is to forecast the 

daily electricity consumption at a city-wide scale, encompassing various sectors 

such as buildings, transportation (including electric vehicles and public electric 

transportation systems), industries, and other public services within the city and 

its surrounding rural areas. 

5.4. Implementation  

The experiments were performed on an HP machine with an Intel (R) Core 

(TM) i5-8250U CPU running at 1.60 GHz and Windows 10 operating system, 

utilizing Python 3.8. Various machine learning models and optimization 

algorithms were assessed using several open-source Python libraries (Sklearn, 

Optunity, Hyperband, DEAP ) (Deif, Hammam, Ahmed, Mehrdad 

Kamarposhti, et al., 2021; Deif & Hammam, 2020; Hammam, Attar, et al., 

2022b) 

5.5. Results  

Four experiments were conducted to predict the daily electricity usage in 

Sacramento, Los Angeles, and New York. In the first experiment, the 

performance of each Supervised Machine Learning Forecasting technique 

(SVM, RF, and KNN) was evaluated in predicting daily electricity usage using 

their default hyperparameter values. The second experiment involved 

optimizing the hyperparameters of each machine learning model using the PSO 

and GA algorithms, and their performance was assessed accordingly. Based on 

the results from experiments 1 and 2, the best-performing forecasting model 
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was selected and compared with another forecasting technique, specifically, 

Time series forecasting techniques such as the ARIMA model. Lastly, the 

impact of the COVID-19 pandemic on city-scale daily electricity usage was 

analyzed. 

The initial hyperparameter values for the PSO and GA algorithms used in 

the experiments can be found in Tables 3 and 4. These values were set to their 

default values as specified by the Python sci-kit-learn library package 

(Baghdadi et al., 2022). 

Table 3: The initial hyperparameters values for PSO 

PSO  Parameter Parameter 

values 

Number of particles 10 

Number of generations 5 

Maximum velocity of each particle None 

Local acceleration coefficient (c1) 1.5 

global acceleration coefficient (c2) 1.5 

 

Table 4: The initial hyperparameters values for GA 

GA Parameter Parameter values 

population_size 10 

gene_mutation 0.10 

gene_crossover 0.5 

generations_number 1.5 
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Tables 5 and 6 show the best hyperparameters obtained with different 

optimization techniques (GA and PSO) for machine learning models. In our 

experiment, we employed 5-fold cross-validation to determine the optimal 

parameters of each model in Sacramento, Los Angeles, and New York City. We 

observed that the convergence was achieved well before reaching 100 iterations, 

and we decided to stop the process when the variation between iterations 

dropped below 0.5%. 

Table 5: Hyperparameter values after GA tuning 

Machine 

learning  model 
Hyper-parameter 

Los 

Angeles 
Sacramento New York 

 

 

RF Regressor 

n estimators 24 32 80 

max depth 50 

min samples split 2 

min samples leaf 5 2 1 

criterion ’mse’ ’mae’ ’mse’ 

max features 10 

 

SVM Regressor 

C 30 

kernel ’poly’ 

epsilon 0.001 0.01 

KNN Regressor n neighbors 6 15 10 

 

Table 6: Hyperparameter values after PSO tuning 

Machine 

learning  model 
Hyper-parameter Los Angeles Sacramento New York 

 

 

RF Regressor 

n estimators 22 36 82 

max depth 40 

min samples split 6 

min samples leaf 1 2 1 
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criterion ’mse’ 

max features 8 

 

SVM Regressor 

C 50 

kernel rbf 

epsilon 0.001 0.01 

KNN Regressor n neighbors 6 5 7 

 

Table 7 presents a tabular format displaying the performance of each 

regressor using the default hyperparameters. On the other hand, Tables 8 and 9 

showcase the performance of each optimization algorithm applied to RF, SVM, 

and KNN regressors evaluated on the MNIST dataset after a comprehensive 

optimization process. The dataset used in our study spanned from July 2015 to 

June 2019, covering four years. The first three years were utilized for training 

the model, while the final year was reserved for validation. We excluded the 

2020 data due to the distortion in electricity consumption behavior caused by 

the COVID-19 curtailment measures.  

 

Table7: Performance results of applying regression models  

with default Hyperparameter values 

 RMSE (GWh) 

 RF SVM KNN 

Los Angeles 8.383 8.850 7.4786 

Sacramento 5.343 6.4569 4.9525 

New York 25.221 31.476 24.565 
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Table 8: Performance results of applying GA optimization  

algorithm  to the regression models 

 RMSE (GWh) 

 RF-GA SVM-GA KNN-GA 

Los Angeles 7.7128 8.1427 6.8804 

Sacramento 4.9158 5.940 4.5563 

New York 23.204 28.958 22.600 

 

Table 9: Performance evaluation of applying the PSO algorithm  

to the regressor models 

 RMSE (GWh) 

 RF-PSO SVM-PSO KNN-PSO 

Los Angeles 6.7067 7.0806 5.9829 

Sacramento 4.2746 5.1655 3.9620 

New York 20.17 25.181 19.652 

 

Tables 7, 8, and 9 demonstrate the overall impact of hyperparameter 

tuning using optimization algorithms (PSO and GA) on enhancing the 

regression performance of machine learning models. The results generally 

indicate a notable improvement achieved through the optimization process. 

When comparing the performance of PSO and GA in tuning the 

hyperparameters of machine learning models, PSO showed superior 

performance, with an almost 20% reduction in the RMSE value for all 

regression machine learning models. While it’s reduced by almost 8% when 

using GA. 

Among the three regression models tuned using PSO, the KNN model 

outperformed the RF and SVM model in all three metropolitan areas. KNN 
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performs the best in Sacramento (RMSE=3.96). But performs the worst in New 

York (RMSE=19.65). 

 

Additionally, the KNN regressor is easier to implement because it has the 

lowest number of Hyper-parameter (one Hyper-parameter) compared with three 

Hyper-parameters for the SVM regressor and six Hyper-parameters for RF 

regressor. Consequently, the KNN regression model's optimization step 

typically takes substantially less time to compute than other models. 

As the number of hyperparameters increases, the search space's 

dimensionality and the problems' complexity grow exponentially. 

Consequently, the total time required to evaluate the objective function also 

increases exponentially (Alshehri et al., 2021; Mahajan et al., 2022). Hence, it 

becomes crucial to mitigate the impact of large search spaces on execution time 

by enhancing current hyperparameter optimization methods. 

Based on the previous experiment, the best-performing forecasting model 

achieved by using KNN with the PSO method will Compare with the ARIMA 

model that belongs to Time series forecasting techniques. The comparison 

results have recorded in Table 1. 

We used the auto.arima() function (Natarajan et al., 2020; Oyelade et al., 

2022) to determine the best hyper-parameters values    ⁡ARIMA(𝑝, 𝑞, 𝑑)  for the 

ARIMA model. The optimal parameters results and RMSE value for all the 

three areas are shown in table .10 

Table 10: Optimal Hyperparameter values  

for the ARIMA model after the optimization process 

City 𝐀𝐑𝐈𝐌𝐀(𝒑, 𝒒, 𝒅)  

Los Angeles (1,1,5) 
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Sacramento (5,3,5) 

New York (1,3,5) 

 

Similar to the previous experiment, the two models have trained for the first 

three years (from July 2015 to June 2018) and kept the last year (2019) for 

forecasting. The results for the daily electricity consumption forecast in 2019 

are shown in Fig. 5.4.  
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(b)  

 

(c) 

Fig.5.4. Predictions results for the KNN-PSO and ARIMA models 

on the test dataset (Jan.2019–June 2019). (a) Los Angeles, (b)New York, and (c) 

Sacramento city. 
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Figure 5.4 illustrates that the KNN-PSO model's forecasting curve aligns 

more closely with the actual daily electricity consumption curve than the 

ARIMA model. This suggests that the KNN-PSO model exhibits greater 

robustness in handling missing data. Additionally, time-series modeling relies 

on the sequential order of input data to capture temporal information. Therefore, 

when data is missing, imputation becomes necessary, introducing further 

complexity in data preprocessing. In contrast, tabular data models utilize 

additional features (such as Holiday Day and Day type) to encode temporal 

information, mitigating the impact of missing data. Table 11 presents the RMSE 

values for the KNN-PSO and ARIMA models, allowing for a comparison of 

their performances. The results indicate that the KNN-PSO model outperforms 

the ARIMA model, exhibiting the lowest RMSE across all metropolitan areas. 

Consequently, it can be inferred that the proposed KNN-PSO model offers the 

highest prediction accuracy among the evaluated models. 

Table 11: Performance evaluation of KNN-PSO and ARIMA models 

City ARIMA KNN-PSO 

Los Angeles 25.142 5.982958 

Sacramento 16.472 3.962065 

New York 40.232 19.65249 

 

Our final inquiry sought how governmental and individual actions, such 

as stay-at-home directives, business closures, reduced activity, and shelter-in-

place requirements, affected city-level electricity usage in American cities 

during the COVID-19 epidemic. Electricity consumption on a city-wide scale 

can act as a real-time gauge of how severe shutdown measures are. 

We used the KNN-PSO model due to its higher accuracy compared to 

other examined models to analyze the impact of COVID-19 on city-scale 

electricity usage. Data from the pre-pandemic era, from July 2015 to March 
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2020, was used to train the model. We then used the trained model to predict 

how much electricity would be used following the outbreak. According to our 

theory, the model developed using pre-pandemic data might not be able to 

effectively forecast power consumption in the post-pandemic period if COVID-

19 caused changes in consumption patterns. Figure 5.5 shows the predicted 

outcomes. 
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(b) 

 

(c) 

Fig.5.5. KNN-PSO model predictions results 

before and after the COVID-19 lockdown. (a) Los Angeles, (b)New York, and (c) 

Sacramento city. 
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Figure 5 illustrates that the forecasted electricity consumption following the end of the 

lockdown period exceeded the actual electricity usage. In contrast, the electricity 

demand forecasting before the lockdown period aligned with the demand (indicated 

by the dotted orange line). It is possible that the COVID-19 epidemic had an effect on 

electricity demand behavior, given the discrepancy between anticipated and actual 

electricity usage after mid-March 2020. Particularly, the demand for electricity at the 

city level was significantly lower than it had been for the same month in 2019. The 

Sacramento, Los Angeles, and New York urban areas saw a 10% to 20% decrease in 

daily electricity usage during the COVID-19 epidemic. 
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CHAPTER SIX 

CONCLUSIONS AND FUTURE WORK  

6.1 Conclusion:  

This long study examined electricity usage in three significant American 

metropolises: New York, Sacramento, and Los Angeles. We aimed to analyze 

the COVID-19 pandemic's effects on electricity consumption and create precise 

prediction models using machine learning techniques. 

We used three well-known machine learning models: Random Forest 

(RF), Support Vector Machine (SVM), and k-Nearest Neighbors (KNN) to get 

reliable predictions. However, these models' default hyperparameter settings 

might not produce the best results. So, to fine-tune the hyperparameters of each 

model, we used two powerful metaheuristic optimization algorithms: Particle 

Swarm Optimization (PSO) and Genetic Algorithm (GA). 

We evaluated the performance of each machine learning model using 

both the default hyperparameter values and the optimized values obtained 

through PSO and GA. By comparing the results, we identified the KNN 

regressor model as the most accurate and reliable for predicting electricity 

consumption. The KNN model, particularly when combined with PSO 

Optimization, demonstrated the lowest Root Mean Squared Error (RMSE) 

score, indicating superior predictive capabilities. 

Additionally, we compared our proposed machine learning-based 

forecasting model with a traditional time series forecasting technique, namely 

the Autoregressive Integrated Moving Average (ARIMA) model. Through this 

comparison, we aimed to highlight the advantages of our approach in capturing 

complex patterns and dynamics in electricity consumption data. 
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Furthermore, we examined the impact of the COVID-19 pandemic on 

electricity usage. Our analysis revealed a significant reduction in electricity 

consumption during the pandemic lockdown period in 2020. The Sacramento, 

Los Angeles, and New York metropolitan areas experienced a 2% to 12% 

decrease in electricity consumption compared to the corresponding months in 

2019. This reduction can be attributed to stay-at-home orders, company 

shutdowns, and decreased operations due to the pandemic. 

Our study provides valuable insights into accurately predicting 

electricity consumption using advanced machine learning models and 

optimizing their hyperparameters. We also shed light on the influence of 

unprecedented events like the COVID-19 pandemic on energy usage patterns, 

enabling a better understanding of the dynamics and potential opportunities for 

efficient energy management in urban areas. 

6.2 Future work :   

In the healthcare sector, machine learning has become a powerful 

technology with the potential to change many facets of healthcare delivery 

drastically. Future research should concentrate on developing and improving 

machine learning techniques to handle the unique requirements and difficulties 

in the healthcare domain. 

Creating ensemble and calibrated machine learning methods is one topic 

of study. These approaches can overcome current algorithms' restrictions and 

offer quicker and more precise answers to challenging healthcare issues. We 

can increase performance and reliability in healthcare applications by tweaking 

models and combining the predictions of various algorithms. This could 

improve patient outcomes, more precise illness diagnoses, and better treatment 

planning. 
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Incorporating AI-based solutions in healthcare offers considerable 

promise in addition to algorithmic improvements. These applications can aid in 

identifying and detecting diseases by utilizing several sensors and features. AI 

systems can find patterns and signs by analyzing enormous volumes of patient 

data that may not be obvious to human healthcare experts. This may result in 

early disease detection, individualized treatment programs, and better patient 

care. 

The creation of prediction systems that consider socioeconomic and 

cultural issues in healthcare is another crucial subject that has to be explored in 

the future. We can learn important lessons about the emergence and spread of 

illnesses by including these variables in predictive models. This can help with 

preemptive planning, resource allocation, and identifying populations that may 

be more susceptible or in danger. We can better prepare for and lessen the 

effects of emerging diseases, so protecting public health, by understanding the 

intricate interplay between social and health aspects. 

In conclusion, using machine learning in the healthcare industry has 

enormous prospects for improving illness detection, prognosis, and general 

healthcare delivery. We can realize the full potential of machine learning in the 

healthcare sector by concentrating on calibrated and ensemble techniques, AI-

based applications, and predictive models that consider socioeconomic and 

cultural elements. This may result in better patient outcomes, better decision-

making, and a future healthcare system that is more proactive and efficient. 
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APPENDIXES 

Python code 

######### utlis.py  

import os 

import ALL 

 

def median_filter(df, varname = None, window=24, std=3): 

    """ 

    A simple median filter, removes (i.e. replace by 

np.nan) observations that exceed N (default = 3) 

    tandard deviation from the median over window of 

length P (default = 24) centered around 

    each observation. 

    Parameters 

 

def fiveP_analysis(data, plot_var): 

    data = data[['Temperature, daily mean (degC)', 

plot_var, 'Day Type']] 

    data.rename(columns={'Temperature, daily mean 

(degC)':'temp', plot_var:'value'}, inplace=True) 

     

    data_wd = data[data['Day Type']=='Working Day'] 

    data_nwd = data[data['Day Type']=='Non-Working Day'] 

     

    model_wd = InverseModel(data_wd['temp'].values, 

data_wd['value'].values, plot_var) 

    model_wd.fit_model() 

     

    model_nwd = InverseModel(data_nwd['temp'].values, 

data_nwd['value'].values, plot_var) 

    model_nwd.fit_model() 

     

     

     

    

data.to_csv(f'C:/Users/Compu50store/Desktop/X/{city_short

Name}_prophet.csv') 
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ax.set_zlabel('Daily Electricity Use [GWh]') 

plt.gcf().subplots_adjust(bottom=-0.55) 

#plt.savefig(generate_fig_path('Figure 11')) 

In [ ]: 

data_all = [la, sac, ny] 

cities_shortName = ['la', 'sac', 'ny'] 

heatBaseTemps = 

hcdh_result.loc[hcdh_result.index.get_level_values('Day 

Type')=='WD']['Heating Base Temp'].values 

coolBaseTemps = 

hcdh_result.loc[hcdh_result.index.get_level_values('Day 

Type')=='WD']['Cooling Base Temp'].values 

In [ ]: 

for index in range(3): 

    data = data_all[index].copy() 

    data = data[['Electricity demand, daily sum, 

(GWh)','Temperature, daily mean (degC)', 

                 

f'HDH_{heatBaseTemps[index]}',f'CDH_{coolBaseTemps[index]

}','Day Type']] 

    data.rename(columns={'Electricity demand, daily sum, 

(GWh)': 'y', 

                         'Temperature, daily mean 

(degC)':'temp', 

                         

f'HDH_{heatBaseTemps[index]}':'HDH', 

                         

f'CDH_{coolBaseTemps[index]}':'CDH'}, inplace=True) 

    data_train, data_test = prepare_data(data, 

train_ratio=0.75) 

    data['train'] = False 

    data.loc[data_train.index,'train'] = True 

 

        ## HCDH model 

    model_wd = LinearRegression() 

    X_wd = data_train_wd[['HDH','CDH']].values 
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    y_wd = data_train_wd['y'].values 

    model_wd.fit(X_wd,y_wd) 

    data_wd['yhat_hcdh'] = 

model_wd.predict(data_wd[['HDH','CDH']].values) 

 

    model_nwd = LinearRegression() 

    X_nwd = data_train_nwd[['HDH','CDH']].values 

    y_nwd = data_train_nwd['y'].values 

    model_nwd.fit(X_nwd,y_nwd) 

    data_nwd['yhat_hcdh'] = 

model_nwd.predict(data_nwd[['HDH','CDH']].values) 

 

    ## 5p model 

    model_wd = InverseModel(data_train_wd['temp'].values, 

data_train_wd['y'].values, 'y') 

    model_wd.fit_model() 

    data_wd['yhat_5p'] = 

model_wd.piecewise_linear(data_wd['temp'].values, 

*model_wd.p) 

 

    model_nwd = 

InverseModel(data_train_nwd['temp'].values, 

data_train_nwd['y'].values, 'y') 

    model_nwd.fit_model() 

    data_nwd['yhat_5p'] = 

model_nwd.piecewise_linear(data_nwd['temp'].values, 

*model_nwd.p) 

 

    linear_predict = 

pd.concat([data_wd,data_nwd]).sort_index() 

    linear_predict.index = 

pd.to_datetime(linear_predict['ds']) 

 

    

linear_predict.to_csv(f'C:/Users/Compu50store/Desktop/X/l

inear_{cities_shortName[index]}', index=False) 

In [ ]: 

plt.rc('figure', titlesize=12) 
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plt.rc('savefig', dpi=330, bbox='tight') 

%matplotlib inline 

 

 

 

In [ ]: 

logging.getLogger('Prophet').setLevel(logging.ERROR) 

In [ ]: 

### section3.3 time-series model.ipynb 

 

def prophet_analysis(region): 

    # read and clean the data 

    data =  

    data.rename(columns={'Electricity demand, daily sum, 

(GWh)': 'y'}, inplace=True) 

    ## make sure data has not non: 

    for field in data.columns: 

        if data[field].isna().sum()>0: 

            print(f'Missing entry for {field}: 

{data[data[field].isna()].index}') 

            data[field] = data[field].interpolate() 

        else: 

            print(f'No missing values in the column 

{field}') 

    data_train, data_test = prepare_data(data, 

train_ratio=0.75) 

 

    m_noHoliday.fit(data_train) 

 

    future = 

m_noHoliday.make_future_dataframe(periods=len(data_test), 

freq='1D') 

    futures = pd.concat([future, data[['HCDH']]], axis=1) 

    futures.index = pd.to_datetime(futures.ds) 

 

    forecast = m_noHoliday.predict(futures) 

 

    f = m_noHoliday.plot_components(forecast) 
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    #f.savefig(generate_fig_path(f'Figure 13_{region}')) 

 

    data_plot = make_verif(forecast, data_train, 

data_test)[['y','yhat', 'train']] 

     

    return data_plot 

In [ ]: 

data_train 

In [ ]: 

import logging  

logging.getLogger('Prophet').setLevel(logging.ERROR) 

In [ ]: 

la_prophet = prophet_analysis('la') 

sac_prophet = prophet_analysis('sac') 

ny_prophet = prophet_analysis('ny') 

In [ ]: 

data_all = [la_prophet, sac_prophet, ny_prophet] 

cities = ['Los Angeles', 'Sacramento', 'New York'] 

cities_shortName = ['la', 'sac', 'ny'] 

 

 

for index in range(3): 

    data = data_all[index] 

    city = cities[index] 

    city_shortName = cities_shortName[index] 

    # save result for model comparison 

    data.rename(columns={'yhat':'yhat_prophet'}, 

inplace=True) 

    

data.to_csv(f'C:/Users/Compu50store/Desktop/X/prophet_{ci

ty_shortName}.csv') 

     

    train = data[data['train']] 

    axes[index].plot(train.index, train.y, 'ko', 

markersize=1.5, label='Train ground truth') 
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    axes[index].plot(train.index, train.yhat_prophet, 

color='steelblue', lw=0.5, label='Train prediction') 

    test = data[data['train'] == False] 

    axes[index].plot(test.index, test.y, 'ro', 

markersize=1.5, label='Test ground truth') 

    axes[index].plot(test.index, test.yhat_prophet, 

color='coral', lw=0.5, label='Test prediction') 

 

    axes[index].axvline(data[data['train']].index[-1], 

color='0.8', alpha=0.7) 

    axes[index].set_ylabel(f'{city}\nDaily Electricity 

Use [GWh]') 

    axes[index].grid(ls=':', lw=0.5) 

 

    # save result for model comparison 

    data.rename(columns={'yhat':'yhat_prophet'}, 

inplace=True) 

    

data.to_csv(f'C:/Users/Compu50store/Desktop/X/prophet_{ci

ty_shortName}.csv') 

     

 

#plt.savefig(generate_fig_path('Figure 12')) 

In [ ]: 

#section3.4 tabular data model.ipynb 

 

In [ ]: 

def lightGBM_train(region, params): 

     

    # read the data 

    data = 

pd.read_csv(f'C:/Users/Compu50store/Desktop/X/{region}_ 

    data_lgmb['Month'] = data_lgmb.index.month 

    data_lgmb['dayOfWeek'] = data_lgmb.index.weekday 

    data_lgmb = data_lgmb.dropna() 

'Month']].values 

    X_test = data_test[['Temperature, daily mean (degC)', 

'Temperature, daily peak (degC)',  
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                        'Holiday', 'dayOfWeek', 

'Month']].values 

    y_train = data_train['Electricity demand, daily sum, 

(GWh)'].values 

    y_test = data_test['Electricity demand, daily sum, 

(GWh)'].values 

    X_all = data_lgmb[['Temperature, daily mean (degC)', 

'Temperature, daily peak (degC)',  

                       'Holiday', 'dayOfWeek', 

'Month']].values 

     

    d_train = lgb.Dataset(X_train, 

categorical_feature=[2,3,4], label=y_train) 

 

    # train and print the errors 

    regr = lgb.train(params, d_train, 5000) 

     

    rmse_train = 

mean_squared_error(regr.predict(X_train), y_train)**0.5 

    rmse_test = mean_squared_error(regr.predict(X_test), 

y_test)**0.5 

    print(f'-------City: {region}--------------') 

    print(f'RMSE for Train: {rmse_train}') 

    print(f'RMSE for Test: {rmse_test}') 

     

    # make prediction on the whole data set and save the 

results for model comparison 

    data_lgmb['yhat_lgbm'] = regr.predict(X_all) 

    data_lgmb.index = data_lgmb['ds'] 

    

data_lgmb.to_csv(f'C:/Users/Compu50store/Desktop/X/lgbm_{

region}.csv', index=False) 

     

    # prepare the data for plotting 

    verif_plot = data_lgmb[['Electricity demand, daily 

sum, (GWh)','yhat_lgbm']] 

    verif_plot.rename(columns={'Electricity demand, daily 

sum, (GWh)':'y', 
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                               'yhat_lgbm':'yhat'}, 

inplace=True) 

    verif_plot['train'] = False 

    verif_plot.loc[data_train.ds, 'train'] = True 

     

    return verif_plot 

In [ ]: 

print(X_all) 

In [ ]: 

# set up the hyper-parameter 

In [ ]: 

la_lgbm = lightGBM_train('la', params) 

sac_lgbm = lightGBM_train('sac', params) 

ny_lgbm = lightGBM_train('ny', params) 

In [ ]: 

data_all = [la_lgbm, sac_lgbm, ny_lgbm] 

cities = ['Los Angeles', 'Sacramento', 'New York'] 

 

 

 

 

for index in range(3): 

    data = data_all[index] 

    city = cities[index] 

     

    train = data[data['train']] 

    axes[index].plot(train.index, train.y, 'ko', 

markersize=1.5, label='Train ground truth') 

    axes[index].plot(train.index, train.yhat, 

color='steelblue', lw=0.5, label='Train prediction') 

    test = data[data['train'] == False] 

    axes[index].plot(test.index, test.y, 'ro', 

markersize=1.5, label='Test ground truth') 

    axes[index].plot(test.index, test.yhat, 

color='coral', lw=0.5, label='Test prediction') 
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    axes[index].axvline(data[data['train']].index[-1], 

color='0.8', alpha=0.7) 

    axes[index].set_ylabel(f'{city}\nDaily Electricity 

Use [GWh]') 

    axes[index].grid(ls=':', lw=0.5) 

 

 

#plt.savefig(generate_fig_path('Figure 14')) 

In [ ]: 

#section3.5 other ML models.ipynb 

 

In [ ]: 

def train_test_split(data_array, train_ratio=0.75): 

    n_train = int(len(data_array)*train_ratio) 

    data_train = data_array[:n_train,:] 

    data_test = data_array[n_train:,:] 

    return data_train, data_test 

In [ ]: 

def otherML_train(region): 

 

    # read the data 

    data = 

pd.read_csv(f'C:/Users/Compu50store/Desktop/X/{region}_ 

    data_ml = np.concatenate((data[['Electricity demand, 

daily sum, (GWh)', 

                                    'Temperature, daily 

mean (degC)', 

                                    'Temperature, daily 

peak (degC)']].values, 

                              

data[['Holiday']].astype('int').values, 

                              

pd.get_dummies(data.index.weekday).values,  

                              

pd.get_dummies(data.index.month).values), axis=1) 

 

    # train the RF model 
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    regr_rf = RandomForestRegressor(max_depth=8,  

 

 

 

    rmse_train_rf = 

mean_squared_error(regr_rf.predict(X_train), 

y_train)**0.5 

    rmse_test_rf = 

mean_squared_error(regr_rf.predict(X_test), y_test)**0.5 

    print(f'-------Random Forest: {region}--------------

') 

    print(f'RMSE for Train: {rmse_train_rf}') 

    print(f'RMSE for Test: {rmse_test_rf}') 

 

    # train the SVM model  

     

mean_squared_error(regr_svr.predict(X_train), 

y_train)**0.5 

    rmse_test_svr = 

mean_squared_error(regr_svr.predict(X_test), y_test)**0.5 

    print(f'-------SVM: {region}--------------') 

    print(f'RMSE for Train: {rmse_train_svr}') 

    print(f'RMSE for Test: {rmse_test_svr}') 

 

     

    regr_nn.fit(X_train, y_train) 

    rmse_train_nn = 

mean_squared_error(regr_nn.predict(X_train), 

y_train)**0.5 

    rmse_test_nn = 

mean_squared_error(regr_nn.predict(X_test), y_test)**0.5 

    print(f'-------Neural Network: {region}--------------

') 

    print(f'RMSE for Train: {rmse_train_nn}') 

    print(f'RMSE for Test: {rmse_test_nn}')     

 

    # make prediction on the whole data set and save the 

results for model comparison 
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    data['yhat_rf'] = regr_rf.predict(X_all) 

    data['yhat_svm'] = regr_svr.predict(X_all) 

    data['yhat_nn'] = regr_nn.predict(X_all) 

    

data.to_csv(f'C:/Users/Compu50store/Desktop/X/otherML_{re

gion}.csv') 

 

    # prepare the data for plotting 

    verif_plot = data[['Electricity demand, daily sum, 

(GWh)','yhat_rf','yhat_svm','yhat_nn']] 

    verif_plot.rename(columns={'Electricity demand, daily 

sum, (GWh)':'y'}, inplace=True) 

    verif_plot['train'] = False 

    verif_plot.iloc[:len(data_train),:]['train'] = True 

 

    return verif_plot 

In [ ]: 

X_train 

In [ ]: 

X_train 

In [ ]: 

la_otherML = otherML_train('la') 

sac_otherML = otherML_train('sac') 

ny_otherML = otherML_train('ny') 

In [ ]: 

data_all = [la_otherML, sac_otherML, ny_otherML] 

cities = ['Los Angeles', 'Sacramento', 'New York'] 

 

 

 

 

for index in range(3): 

    data = data_all[index] 

    city = cities[index] 

     

    train = data[data['train']] 
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    axes[index].plot(train.index, train.y, 'ko', 

markersize=1.5, label='Train ground truth') 

    axes[index].plot(train.index, train.yhat_rf, 

color='steelblue', lw=0.5, label='Train prediction') 

    test = data[data['train'] == False] 

    axes[index].plot(test.index, test.y, 'ro', 

markersize=1.5, label='Test ground truth') 

    axes[index].plot(test.index, test.yhat_rf, 

color='coral', lw=0.5, label='Test prediction') 

 

    axes[index].axvline(data[data['train']].index[-1], 

color='0.8', alpha=0.7) 

    axes[index].set_ylabel(f'{city}\nDaily Electricity 

Use [GWh]') 

    axes[index].grid(ls=':', lw=0.5) 

 

 

#plt.savefig(generate_fig_path('Figure A1_rf')) 

In [ ]: 

data_all = [la_otherML, sac_otherML, ny_otherML] 

cities = ['Los Angeles', 'Sacramento', 'New York'] 

 

 

 

 

for index in range(3): 

    data = data_all[index] 

    city = cities[index] 

     

    train = data[data['train']] 

    axes[index].plot(train.index, train.y, 'ko', 

markersize=1.5, label='Train ground truth') 

    axes[index].plot(train.index, train.yhat_svm, 

color='steelblue', lw=0.5, label='Train prediction') 

    test = data[data['train'] == False] 

    axes[index].plot(test.index, test.y, 'ro', 

markersize=1.5, label='Test ground truth') 
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    axes[index].plot(test.index, test.yhat_svm, 

color='coral', lw=0.5, label='Test prediction') 

 

    axes[index].axvline(data[data['train']].index[-1], 

color='0.8', alpha=0.7) 

    axes[index].set_ylabel(f'{city}\nDaily Electricity 

Use [GWh]') 

    axes[index].grid(ls=':', lw=0.5) 

 

#plt.savefig(generate_fig_path('Figure A2_svm')) 

In [ ]: 

data_all = [la_otherML, sac_otherML, ny_otherML] 

cities = ['Los Angeles', 'Sacramento', 'New York'] 

 

 

 

 

for index in range(3): 

    data = data_all[index] 

    city = cities[index] 

     

    train = data[data['train']] 

    axes[index].plot(train.index, train.y, 'ko', 

markersize=1.5, label='Train ground truth') 

    axes[index].plot(train.index, train.yhat_nn, 

color='steelblue', lw=0.5, label='Train prediction') 

    test = data[data['train'] == False] 

    axes[index].plot(test.index, test.y, 'ro', 

markersize=1.5, label='Test ground truth') 

    axes[index].plot(test.index, test.yhat_nn, 

color='coral', lw=0.5, label='Test prediction') 

 

    axes[index].axvline(data[data['train']].index[-1], 

color='0.8', alpha=0.7) 

    axes[index].set_ylabel(f'{city}\nDaily Electricity 

Use [GWh]') 

    axes[index].grid(ls=':', lw=0.5) 
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#plt.savefig(generate_fig_path('Figure A3_nn')) 

In [ ]: 

#section4.1 model comparison.ipynb 

# some matrics and stats 

 

 

 

 

 

 

In [ ]: 

def combine_predict(region): 

    lgbm_predict = 

pd.read_csv(f'C:/Users/Compu50store/Desktop/X/lgbm_{regio

n}.csv',index_col=0)[['yhat_lgbm']] 

    otherML_predict = 

pd.read_csv(f'C:/Users/Compu50store/Desktop/X/otherML_{re

gion}.csv',index_col=0)[['yhat_rf','yhat_svm','yhat_nn']] 

    linear_predict = 

pd.read_csv(f'C:/Users/Compu50store/Desktop/X/linear_{reg

ion}.csv',index_col=0)[['y','yhat_hcdh','yhat_5p']] 

    prophet_predict = 

pd.read_csv(f'C:/Users/Compu50store/Desktop/X/prophet_{re

gion}.csv',index_col=0)[['yhat_prophet','train']] 

 

    predict = pd.concat([lgbm_predict, otherML_predict, 

linear_predict, prophet_predict], axis=1) 

    predict.index = pd.to_datetime(predict.index) 

 

    predict.rename(columns={'y':'Ground Truth', 

                            'yhat_5p':'5-Parameter', 

                            'yhat_hcdh':'Degree Hour', 

                            'yhat_prophet':'Decomposed', 

                            'yhat_lgbm':'lightGBM', 

                            'yhat_rf':'Random Forest', 

                            'yhat_svm':'Support Vector 

Machine', 
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                            'yhat_nn':'Neural Network'}, 

inplace=True) 

    return predict 

In [ ]: 

la_predict = combine_predict('la') 

sac_predict = combine_predict('sac') 

ny_predict = combine_predict('ny') 

In [ ]: 

def calculate_error(predict): 

    accCom = 

pd.DataFrame(columns=['R2_train','R2_test','MAE_train', 

 

 

    accCom['R2_train'] = 

predict[predict['train']].loc[:,['Ground Truth','5-

Parameter','Degree Hour','Decomposed', 

                        'lightGBM','Random 

Forest','Support Vector Machine','Neural 

Network']].corr().iloc[0,1:] 

    accCom['R2_test'] = 

predict[~predict['train']].loc[:,['Ground Truth','5-

Parameter','Degree Hour','Decomposed', 

                        'lightGBM','Random  

 

 

    train_real = predict[predict['train']]['Ground 

Truth'].values 

    test_real = predict[~predict['train']]['Ground 

Truth'].values 

    for predict_field in accCom.index: 

        train_predict = 

predict[predict['train']][predict_field].values 

        test_predict = 

predict[~predict['train']][predict_field].values 

        accCom.loc[predict_field,'MAE_train'] = 

mean_absolute_error(train_real, train_predict) 
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        accCom.loc[predict_field,'MAE_test'] = 

mean_absolute_error(test_real, test_predict) 

        accCom.loc[predict_field,'RMSE_train'] = 

mean_squared_error(train_real, train_predict)**0.5 

        accCom.loc[predict_field,'CVRMSE_train'] = 

accCom.loc[predict_field,'RMSE_train']/predict['Ground 

Truth'].mean() 

        accCom.loc[predict_field,'RMSE_test'] = 

mean_squared_error(test_real, test_predict)**0.5 

        accCom.loc[predict_field,'CVRMSE_test'] = 

accCom.loc[predict_field,'RMSE_test']/predict['Ground 

Truth'].mean() 

     

    accCom.drop(['R2_train','R2_test'], axis=1, 

inplace=True) 

     

    return accCom 

In [ ]: 

la_error = calculate_error(la_predict) 

sac_error = calculate_error(sac_predict) 

ny_error = calculate_error(ny_predict) 

In [ ]: 

error_result = pd.concat([la_error, sac_error, ny_error], 

keys=cities) 

error_result.to_csv('C:/Users/Compu50store/Desktop/X/Tabl

e 3.csv') 

In [ ]: 

error_result 

In [ ]: 

 

figsize=(9,5)) 

 

 

 

'Sacramento', 'New York']): 
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    labels = error_result.loc[region,:].index 

    CVRMSE_train = 

error_result.loc[region,'CVRMSE_train'] 

     

 

 

 

 

 

 

 

 

#plt.savefig(generate_fig_path('Figure 16')) 

In [ ]: 

plot_time = {'summer':['2018-07-01','2018-10-01'], 

'winter':['2018-12-31','2019-04-01']} 

 

la_predict_plot = la_predict.drop(['train'], axis=1) 

sac_predict_plot = sac_predict.drop(['train'], axis=1) 

ny_predict_plot = ny_predict.drop(['train'], axis=1) 

 

data_all = 

[la_predict_plot,sac_predict_plot,ny_predict_plot] 

cities = ['Los Angeles', 'Sacramento', 'New York'] 

In [ ]: 

import matplotlib.dates as mdates 

In [ ]: 

 

 

 

 

myFmt = mdates.DateFormatter('%m-%d') 

 

for index in range(3): 

    data = data_all[index] 

    city = cities[index] 
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    data_summer = 

data.truncate(before=plot_time['summer'][0], 

after=plot_time['summer'][1]) 

    data_winter = 

data.truncate(before=plot_time['winter'][0], 

after=plot_time['winter'][1]) 

     

    axes[index, 0].plot(data_summer.index, 

data_summer['Ground Truth'].values, label='Ground Truth', 

linewidth=2) 

    axes[index, 0].plot(data_summer.index, 

data_summer['5-Parameter'].values, '--', label='5-

Parameter') 

    axes[index, 0].plot(data_summer.index, 

data_summer['Degree Hour'].values, '--', label='HCDH') 

    axes[index, 0].plot(data_summer.index, 

data_summer['Decomposed'].values, ':', 

label='Decomposed') 

    axes[index, 0].plot(data_summer.index, 

data_summer['lightGBM'].values, ':', label='GBM') 

    axes[index, 0].xaxis.set_major_formatter(myFmt) 

 

    axes[index, 1].plot(data_winter.index, 

data_winter['Ground Truth'].values, label='Ground Truth', 

linewidth=2) 

    axes[index, 1].plot(data_winter.index, 

data_winter['5-Parameter'].values, '--', label='5-

Parameter') 

    axes[index, 1].plot(data_winter.index, 

data_winter['Degree Hour'].values, '--', label='HCDH') 

    axes[index, 1].plot(data_winter.index, 

data_winter['Decomposed'].values, ':', 

label='Decomposed') 

    axes[index, 1].plot(data_winter.index, 

data_winter['lightGBM'].values, ':', label='GBM') 

    axes[index, 1].xaxis.set_major_formatter(myFmt) 

     

    axes[index, 

0].set_ylabel(f'C:/Users/Compu50store/Desktop/X/{city}\nD

aily Electricity Use\n[GWh]') 

 

In [ ]: 
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title = {'la': 'Los Angeles', 'sac':'Sacramento', 

'ny':'New York'} 

regions = ['la','sac','ny'] 

 

temp_plot = np.arange(20, 45, 0.5) 

 

data_all = {} 

predict_sum_all = {} 

predict_peak_all = {} 

 

for index in range(3): 

 

    region = regions[index] 

    data = 

pd.read_csv(f'C:/Users/Compu50store/Desktop/X/{region}_da

ily.csv', index_col=0) 

 

    # train 5p model 

    data_wd = data[data['Day Type']=='Working Day'] 

    model_sum = InverseModel(data_wd['Temperature, daily 

mean (degC)'].values,  

                             data_wd['Electricity demand, 

daily sum, (GWh)'].values, 'Electricity demand, daily 

sum, (GWh)') 

    model_sum.fit_model() 

    predict_sum_5p = piecewise_linear(temp_plot, 

*model_sum.model_p) 

 

    model_peak = InverseModel(data_wd['Temperature, daily 

mean (degC)'].values,  

                              data_wd['Electricity power, 

daily peak, (GW)'].values, 'Electricity power, daily 

peak, (GW)') 

    model_peak.fit_model() 

    predict_peak_5p = piecewise_linear(temp_plot, 

*model_peak.model_p) 

    # train lightGBM model 

     

 

    data['dayOfWeek'] = data.index.weekday 

    data = data.dropna() 



 

 

 

 

 

102 

    X_train = data[['Temperature, daily mean (degC)', 

'Non-workDay', 'Month']].values 

    y_sum_train = data['Electricity demand, daily sum, 

(GWh)'].values 

    y_peak_train = data['Electricity power, daily peak, 

(GW)'].values 

    d_sum_train = lgb.Dataset(X_train, 

categorical_feature=[1,2], label=y_sum_train) 

    d_peak_train = lgb.Dataset(X_train, 

categorical_feature=[1,2], label=y_peak_train) 

    clf_sum = lgb.train(params, d_sum_train, 5000) 

    clf_peak = lgb.train(params, d_peak_train, 5000) 

    X_test_temp = pd.DataFrame({'Temperature, daily mean 

(degC)':temp_plot}) 

    X_test_temp['Non-workDay'] = False 

    X_test_temp['Month'] = 8 

    predict_sum_lgmb = 

clf_sum.predict(X_test_temp.values) 

    predict_peak_lgmb = 

clf_peak.predict(X_test_temp.values) 

 

    predict_sum = pd.DataFrame({'5-parameter': 

predict_sum_5p, 'lightGBM': predict_sum_lgmb}, 

index=temp_plot) 

    predict_peak = pd.DataFrame({'5-parameter': 

predict_peak_5p, 'lightGBM': predict_peak_lgmb}, 

index=temp_plot) 

     

    data_all[region] = data_wd 

    predict_sum_all[region] = predict_sum 

    predict_peak_all[region] = predict_peak 

In [ ]: 
 

 

 

 

    region = regions[index] 

    data = data_all[region] 

    predict_sum = predict_sum_all[region]  

    predict_peak = predict_peak_all[region] 
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parameter'].values, label='5-parameter', 

color=default_colors[0]) 

    axes[0, index].plot(temp_plot, 

predict_sum['lightGBM'].values, label='GBM', 

color=default_colors[1])  

    axes[0, index].scatter(data['Temperature, daily mean 

(degC)'].values, 

                           data['Electricity demand, 

daily sum, (GWh)'].values, label='Measured Data', 

                           s=1, color=default_colors[2]) 

     

    axes[0, index].set_xlim(temp_plot[0], temp_plot[-1]) 

     

    axes[1, index].plot(temp_plot, predict_peak['5-

parameter'].values, label='5-parameter', 

color=default_colors[0]) 

    axes[1, index].plot(temp_plot, 

predict_peak['lightGBM'].values, label='GBM', 

color=default_colors[1])  

    axes[1, index].scatter(data['Temperature, daily mean 

(degC)'].values, 

                           data['Electricity power, daily 

peak, (GW)'].values, label='Measured Data', 

                           s=1, color=default_colors[2]) 

    axes[1, index].set_xlabel('Daily Mean Temperature 

[$^oC$]')  

    axes[1, index].set_xlim(temp_plot[0], temp_plot[-1]) 

axes[0, 0].set_ylabel('Daily Electricity Use [GWh]') 

axes[1, 0].set_ylabel('Daily Peak Demand [GW]') 

 

 

 

#plt.savefig(generate_fig_path('Figure 17')) 

In [ ]: 
# COVID 

 

# set up the hyper-parameter 

 

title = {'la': 'Los Angeles', 'sac':'Sacramento', 

'ny':'New York'} 

regions = ['la','sac','ny'] 

 

result_all = {} 
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In [ ]: 
for index in range(3): 

    region = regions[index] 

 

    data = 

pd.read_csv(f'C:/Users/Compu50store/Desktop/X/{region}_ 

 

 

 

 

 

'Temperature, daily peak (degC)', 'Holiday', 'Weekend', 

                      'Electricity demand, daily sum, 

(GWh)']].copy() 

    data_lgmb['Month'] = data_lgmb.index.month 

    data_lgmb['dayOfWeek'] = data_lgmb.index.weekday 

    data_lgmb = data_lgmb.dropna() 

 

    # train the model 

    data_train, data_test = prepare_data(data_lgmb, 

train_ratio=0.9) 

    X_train = data_train[['Temperature, daily mean 

(degC)', 'Temperature, daily peak (degC)', 'Holiday', 

'dayOfWeek', 'Month']].values 

    X_test = data_test[['Temperature, daily mean (degC)', 

'Temperature, daily peak (degC)', 'Holiday', 'dayOfWeek', 

'Month']].values 

    y_train = data_train['Electricity demand, daily sum, 

(GWh)'].values 

    y_test = data_test['Electricity demand, daily sum, 

(GWh)'].values 

 

 

 

 

    # make prediction 

    X_all = data_lgmb[['Temperature, daily mean (degC)', 

'Temperature, daily peak (degC)', 'Holiday', 'dayOfWeek', 

'Month']].values 

    data_lgmb['yhat_lgbm'] = clf.predict(X_all) 

    data_lgmb.index = data_lgmb['ds'] 

 

    result = data_lgmb[['Electricity demand, daily sum, 

(GWh)','yhat_lgbm']].copy() 
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    result.rename(columns={'Electricity demand, daily 

sum, (GWh)':'y', 

                               'yhat_lgbm':'yhat'}, 

inplace=True) 

    result['train'] = False 

    result.loc[data_train.ds, 'train'] = True 

     

    result_all[region] = result 

In [ ]: 
cities = ['Los Angeles', 'Sacramento', 'New York'] 

In [ ]: 
 

 

 

monthly_all = {} 

 

for index in range(3): 

    region = regions[index] 

    data = result_all[region] 

    city = cities[index] 

     

    verif = data.truncate(before='2020-01-01') 

 

    axes[index].plot(verif.index, verif.y, 

color=default_colors[1], linestyle='--', lw=2, 

label='Ground truth') 

    train = verif[verif['train']] 

    axes[index].plot(train.index, train.yhat, 

color=default_colors[0], lw=2, label='Prediction before 

Lockdown') 

    test = verif[verif['train'] == False] 

    axes[index].plot(test.index, test.yhat, 

color=default_colors[2], lw=2, label='Prediction after 

Lockdown') 

    axes[index].axvline(verif[verif['train']].index[-1], 

color='black', alpha=0.5, label = 'Lockdown') 

   

    axes[index].set_ylabel(f'{city}\nDaily Electricity 

Use [GWh]') 

    axes[index].grid(ls=':', lw=0.5) 

    

train.to_csv(f'C:/Users/Compu50store/Desktop/{city}_train

.csv') 
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test.to_csv(f'C:/Users/Compu50store/Desktop/{city}_test.c

sv') 

    # summary of monthly reduction 

    verif['month'] = verif.index.month 

    monthly = verif.groupby('month').sum() 

    monthly['percent'] = monthly['y']/monthly['yhat'] 

    monthly_all[region] = monthly.percent.values 

 

 

 

axes[2].set_xlabel('Time') 

 

#plt.savefig(generate_fig_path('Figure 18')) 

In [ ]: 
test.to_csv(f'C:/Users/Compu50store/Desktop/F1.csv') 

In [ ]: 
import matplotlib.ticker as mtick 

In [ ]: 
monthly_all_df = pd.DataFrame(monthly_all)-1 

monthly_all_df.columns = cities 

monthly_covid = monthly_all_df.iloc[2:,:] 

 

 

 

 

 

ax.set_ylabel('Electricity Use Change \nSince COVID-19 

Lockdown') 

#plt.savefig(generate_fig_path('Figure 19')) 

In [ ]: 
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