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 ABSTRACT 

The bending behaviour of two-directional functionally graded beams (FGBs) subjected to various sets of boundary conditions is 

investigated by using a shear and normal deformation theory and the Symmetric Smoothed Particle Hydrodynamics (SSPH) 

method. A simply supported conventional FGB problem is studied to validate the developed code. The comparison studies are 

performed along with the analytical solutions and the results from previous studies. The numerical calculations in terms of 

maximum dimensionless transverse deflections, dimensionless axial and transverse shear stresses are performed for various 

gradation exponents, aspect ratios (L/h) and sets of boundary conditions. The effects of the gradation exponents on the accuracy 

and the robustness of the SSPH method are also investigated for the two directional functionally graded beams which are having 

clamped-free boundary condition..  

Keywords: Meshless method, Functionally graded beam, SSPH method, Shear and normal deformation theory. 

Dört Bilinmeyenli Kayma ve Normal Deformasyon 

Teorisi Kullanılarak İki Yönlü Fonksiyonel 

Derecelendirilmiş Kirişlerin Eğilme Analizleri  

ÖZ 

Kesme ve normal deformasyon teorisi ve Simetik Düzgünleştirilmiş Parçacık Hidrodinamiği (SSPH) kullanılarak, çeşitli sınır 

koşullarına tabi tutulmuş iki yönlü fonksiyonel derecelendirilmiş kirişlerin (FGBs) eğilme davranışı araştırıldı. Geliştirilen kodun 

doğrulanması için basit mesnetlenmiş bir fonksiynel derecelendirilmiş kiriş problem üzerinde çalışıldı. Karşılaştırma çalışmaları, 

analitik çözümler ve daha önceki çalışmaların sonuçları vasıtasıyla gerçekleştirildi. Çeşitli üst dereceleri, en-boy oranları (L/h), ve 

sınır koşulları için maksimum boyutsuz çökme değerleri, boyutsuz eksenel ve kayma gerilmeleri şeklinde numerik hesaplamalar 

yapıldı. Ankastre-serbest uç şeklinde sınır koşullarına sahip iki yönlü fonksiyonel derecelendirilmiş kirişler için, üst derecelerinin, 

SSPH yönteminin doğruluğu ve gücü üzerindeki etkileri de araştırıldı.  

Anahtar Kelimeler: Ağsız yöntem, Fonksiyonel derecelendirilmiş kiriş, SSPH yöntemi, Kayma ve normal deformasyon 

teorisi. 
1. INTRODUCTION 

In recent years, the use of the structures which are made 

of composite materials have been increasing in many 

modern engineering applications such as aerospace, 

marine, automotive, and civil engineering due to 

attractive properties in strength, stiffness and lightness.  

Researchers have been developed various beam theories 

for analysis of the structural behaviour of the composite 

beams during the last decade, the review of these theories 

is given in [1]. The Euler-Bernoulli beam theory (EBT) 

is widely used to solve the bending behaviour of the thin 

beams. When the beam is thick or short, the effect of the 

transverse shear deformation cannot be neglected and 

refined shear deformation theories are needed. One of the 

theories which have been developed to eleminate the 

assumption which is Functionally Graded Materials 

(FGMs) are composite materials which can be classified 

as advanced materials. The FGMs are inhomogeneous 

and made up of two (or more) different materials 

combined in solid states with varying properties as the 

dimension changes. There is a rapid increase in the use 

of these materials especially in the following areas; the 

aerospace, biomedical, defense, energy, optoelectronics, 

automotive, turbine blade, reactor components and etc. 

Since the FGMs have lower transverse shear stresses, 

high resistance to temperature shocks and no interface 

problems through the layer interfaces, they have 

advantages over the conventional and classical composite 

materials. 

Due to the significant shear deformation effects 

especially for the thick FGBs, three main theories that are 

first-order shear deformation theory, higher-order shear 

deformation theory and shear and normal deformation 
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theory have been employed by the researchers to predict 

and to understand the static, vibration and buckling 

responses of these structures during the last decade [1-

24]. On the other hand, the conventional FGMs (or 1D-

FGM) with material properties which vary in one 

direction used in practical engineering applications are 

not efficient to fulfill the technical requirements such as 

the temperature and stress distributions in two or three 

direction for aerospace craft and shuttles [25]. 

A new type FGM with material properties varying in two 

or three directions is needed to overcome this deficiency 

of the conventional FGM. To eliminate the drawback of 

the conventional FGM, the mechanical and thermal 

behaviours of two-directional FG structures have been 

investigated so far. 2D steady-state free and forced 

vibrations of two-directional FGBs by using the Element 

Free Galerkin Method are analyzed in [26]. The state-

space based differential quadrature method is employed 

to obtain the semi-analytical elasticity solutions for 

bending and thermal deformations of FGBs with various 

end conditions [27]. A symplectic elasticity solution for 

static and free vibration analyses of two-directional 

FGBs with the material properties varying exponentially 

in both axial and thickness direction is presented in [28]. 

The buckling of Timoshenko beams composed of two 

directional FGM is studied in [29]. The static behavior of 

the two directional FGBs by using various beam theories 

is presented in [30]. The flexure of the two directional FG 

sandwich beams is analyzed in [31].  

As it is seen from above discussions, the studies 

employing a shear and normal deformation theory which 

includes both shear deformation and thickness stretching 

effects related to static and dynamic analysis of the two-

directional FGBs are very limited according to the author 

knowledge. Since, thickness-stretching effect becomes 

very important especially for the thick two directional 

FGBs, a shear and normal deformation theory should be 

considered for this complicated problem with various end 

conditions, aspect ratios and gradation exponents. One 

may easily show that the numerical methods such as 

finite element methods (FEM), meshless methods, 

GDQM, etc. can be used to overcome this problem which 

have complex governing equations.  

Meshless methods are the most promising and have 

attracted considerable attention for the analysis of 

engineering problems with intrinsic complexity. 

Meshless methods are widely used in static and dynamic 

analyses of the isotropic, laminated composite and FGM 

beam problems [32-38].  However, the studies are very 

limited regarding to the analysis of two directional FG 

structures by employing a meshless method [26, 30, 39-

41]. 

The main novelty of this paper is that the flexure behavior 

of the two directional FGBs is analyzed based on a quasi-

3D theory by using the SSPH method with four different 

end conditions. Moreover, the weight (kernel) functions 

used for the numerical computations by employing the 

SSPH method given in [30, 42-45] cannot provide 

satisfactory results for the solution of these complex 

engineering problems. To overcome this deficiency, a 

weight function [46] which is used for the interpolation 

by employing the compactly supported radial basis 

function is introduced. And finally, the thickness 

stretching effect is important and should be considered 

especially for the thick beams. 

In section 2, the formulation of the basis function of the 

SSPH method is given. In section 3, the homogenization 

of material properties of the two directional FGB is 

presented. The formulation of the shear and normal 

deformation theory is given in Section 4. In Section 5, 

numerical results are given for the problems with four 

different boundary conditions which are simply 

supported (SS), clamped- simply supported (CS), 

clamped-clamped (CC) and clamped-free (CF). 

 

2. FORMULATION OF SYMMETRIC 

SMOOTHED PARTICLE HYDRODYNAMICS 

METHOD 

Taylor Series Expansion (TSE) of a scalar function for 

1D case can be given by 

𝑓(𝜉) = 𝑓(𝑥) + (𝜉 − 𝑥)𝑓′(𝑥) +
1

2!
(𝜉 − 𝑥)2𝑓′′(𝑥) + 

+
1

3!
(𝜉 − 𝑥)3𝑓′′′(𝑥) +

1

4!
(𝜉 − 𝑥)4𝑓(𝐼𝑉)(𝑥) + 

1

5!
(𝜉 − 𝑥)5𝑓(𝑉)(𝑥) +

1

6!
(𝜉 − 𝑥)6𝑓(𝑉𝐼)(𝑥)+. ..               (1) 

where 𝑓(𝜉) is the value of the function at ξ located in near 

of x. If the seventh and higher order terms are neglected, 

the Eq. (1) can be expressed as  

𝑓(𝜉) = 𝑷(𝜉, 𝑥)𝑸(𝑥)                                           (2) 

where 

 𝑸(𝑥) = [𝑓(𝑥),
𝑑𝑓(𝑥)

𝑑𝑥
,
1

2!

𝑑2𝑓(𝑥)

𝑑𝑥2
 , … ,

1

6!

𝑑6𝑓(𝑥)

𝑑𝑥6
]
𝑇

              (3) 

𝑷(𝜉, 𝑥) = [1, (𝜉 − 𝑥), (𝜉 − 𝑥)2, … , (𝜉 − 𝑥)6]             (4) 

The order of the governing equations play an important 

role to define the number of terms assigned in the Taylor 

series expansion. If the number of terms in the TSE is 

increased, there will be an increment in the CPU time and 

one may expect that the accuracy will increase. However, 

in some cases it may not be true and determination of the 

number of terms depends on the researcher’s experience. 

To determine the unknown variables given in the 𝐐(x), 
both sides of Eq. (2) are multiplied with W(ξ, x)𝐏(ξ, x)T 

and evaluated for every node in the CSD. In the global 

numbering system, let the particle number of the jth 

particle in the compact support of W(ξ, x) be r ( j ). The 

following equation is obtained 

∑ 𝑓(𝜉𝑟(𝑗))

𝑁(𝑥)

𝑗=1

𝑊(𝜉𝑟(𝑗), 𝑥)𝑷(𝜉𝑟(𝑗), 𝑥)
𝑇
 

= ∑ [𝑷(𝜉𝑟(𝑗), 𝑥)
𝑇
𝑊(𝜉𝑟(𝑗), 𝑥)𝑷(𝜉𝑟(𝑗), 𝑥)]

𝑁(𝑥)
𝑗=1 𝑸(𝑥)   (5) 

where N(x) is the number nodes in the compact support 

domain (CSD) of the W(ξ, x) as shown in Figure 1. 
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Then, Eq. (5) can be given by 

𝑪(𝜉, 𝑥)𝑸(𝑥) = 𝑫(𝜉, 𝑥)𝑭(𝑥)(𝜉, 𝑥)                                (6) 

Where 𝐂(ξ, x) = 𝐏(ξ, x)T𝐖(ξ, x)𝐏(ξ, x) and 𝐃(ξ, x) =

𝐏(ξ, x)T 𝐖(ξ, x). 

The solution of Eq. (6) is given by 

𝑸(𝑥) =  𝑲(𝜉, 𝑥)𝑭(𝜉)                                           (7) 

where 𝐊(x)(ξ, x) = 𝐂(ξ, x)−1𝐃(ξ, x). 

 

 

 

 

 

 

 

 

 

Figure 1. Compact support of the weight function W(ξ, x) for 

the node located at x = (xi, yi). 

 

Eq. (7) can be also written as follows 

𝑄𝐼(𝑥) = ∑ 𝐾𝐼𝐽𝐹𝐽  
𝑀
𝐽=1 ,       𝐼 = 1,2, … ,7               (8) 

where M is the number of nodes and FJ = f(ξJ). Seven 

components of Eq. (8) for 1D case are written as 

𝑓(𝑥) = 𝑄1(𝑥) = ∑𝐾1𝐽𝐹𝐽  

𝑀

𝐽=1

 

𝑑𝑓(𝑥)

𝑑𝑥
= 𝑄2(𝑥) = ∑𝐾2𝐽𝐹𝐽  

𝑀

𝐽=1

 

𝑑2𝑓(𝑥)

𝑑𝑥2
= 2! 𝑄3(𝑥) = 2!∑𝐾3𝐽𝐹𝐽  

𝑀

𝐽=1

 

𝑑3𝑓(𝑥)

𝑑𝑥3
= 3! 𝑄4(𝑥) = 3!∑𝐾4𝐽𝐹𝐽  

𝑀

𝐽=1

 

 
𝑑4𝑓(𝑥)

𝑑𝑥4
= 4!𝑄5(𝑥) = 4!∑𝐾5𝐽𝐹𝐽                 

𝑀

𝐽=1

 

 
𝑑5𝑓(𝑥)

𝑑𝑥5
= 5!𝑄6(𝑥) = 5!∑𝐾6𝐽𝐹𝐽  

𝑀

𝐽=1

            

𝑑6𝑓(𝑥)

𝑑𝑥6
= 6! 𝑄7(𝑥) = 6! ∑ 𝐾7𝐽𝐹𝐽  

𝑀
𝐽=1                              (9) 

Details of the SSPH method can be found in [30, 42-45]. 

 

3. HOMOGENIZATION OF MATERIAL 

PROPERTIES 

We assume that the two-directional functionally graded 

beam of length L, width b, thickness h is made of two 

different constituents. Further, the material properties 

vary not only in the z direction (thickness direction) but 

also in the x direction (along the length of the beam) as 

shown in Fig. 2. The rule of mixture is used to find the 

effective material properties at a point. According to the 

rule of mixtures, the effective material properties of the 

beam, Young’s modulus E and shear modulus G can be 

given by In Figure 2. 

Figure 2. Geometry and coordinate of a two-directional FGB. 

 

The stress-strain relationship of a kth orthotropic lamina 

in the material coordinate axes is given by: 

𝐸(𝑥, 𝑧) = 𝐸1𝑉1(𝑥, 𝑧) + 𝐸2𝑉2(𝑥, 𝑧) 

𝐺(𝑥, 𝑧) = 𝐺1𝑉1(𝑥, 𝑧) + 𝐺2𝑉2(𝑥, 𝑧)                           (10) 

where 𝐸1, 𝐸2, 𝐺1 and 𝐺2 are the material properties of two 

constituents, 𝑉1 and 𝑉2are volume fractions of the 

constituents. The relation of the volume fractions can be 

expressed as follows; 

𝑉1(𝑥, 𝑧) + 𝑉2(𝑥, 𝑧) = 1                                         (11) 

According to the power law form, the volume fraction of 

the constitute 1 can be given 

 𝑉1(𝑥, 𝑧) = (1 −
𝑥

2𝐿
)
𝑝𝑥
(
1

2
+

𝑧

ℎ
)
𝑝𝑧

                           (12) 

where 𝑝𝑥 and 𝑝𝑧 are the gradation exponents (power-law 

index) which determine the material properties through 

the thickness (h) and length of the beam (L), respectively. 

When the 𝑝𝑥 and 𝑝𝑧 are set to zero then the beam 

becomes homogeneous. The effective material properties 

can be found by using the Eqs. (10), (11) and (12) as 

follows 

𝐸(𝑥, 𝑧) = (𝐸1 − 𝐸2) (1 −
𝑥

2𝐿
)
𝑝𝑥

(
1

2
+
𝑧

ℎ
)
𝑝𝑧

+ 𝐸2 

𝐺(𝑥, 𝑧) = (𝐺1 − 𝐺2) (1 −
𝑥

2𝐿
)
𝑝𝑥
(
1

2
+

𝑧

ℎ
)
𝑝𝑧
+ 𝐺2       (13) 

Fig.3 illustrates the variation of the dimensionless 

modulus of elasticity through the depth of the beam for 

various values of the gradation exponent (𝑝𝑧) in the z 

direction. The variation of the dimensionless modulus of 

elasticity through the length of the beam for different 

gradation exponent (𝑝𝑥) in the x direction is presented in 

Fig. 4. 

𝒙𝒊 

𝒙𝒈 

Compact 

Support 

Domain 
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Figure 3.  Variation of the dimensionless modulus of 

elasticity through the depth of the beam for various 

values of the gradation exponent (𝑝𝑧) in z direction 

Figure 4.  Variation of the dimensionless modulus of 

elasticity through the length of the beam for 

different gradation exponent (𝑝𝑥) in x direction 

 

4. MATHEMATICAL FORMULATION 

The axial and transverse displacements of a beam by 

using the present shear and normal deformation theory 

[17] including both shear deformation and thickness 

stretching effects are given by  

𝑈(𝑥, 𝑧) = 𝑢(𝑥, 𝑡) − 𝑧
𝑑𝑤𝑏(𝑥)

𝑑𝑥
−
4𝑧3

3ℎ2
𝑑𝑤𝑠(𝑥)

𝑑𝑥
 

= 𝑢(𝑥) − 𝑧𝑤𝑏
′ (𝑥) − 𝑓(𝑧)𝑤𝑠

′(𝑥)                         (14a) 

𝑊(𝑥, 𝑧) = 𝑤𝑏(𝑥) + 𝑤𝑠(𝑥) + (1 −
4𝑧2

ℎ2
)𝑤𝑧(𝑥) 

= 𝑤𝑏(𝑥) + 𝑤𝑠(𝑥) + 𝑔(𝑧)𝑤𝑧(𝑥)                         (14b) 

where 𝑢,𝑤𝑏 , 𝑤𝑠 and 𝑤𝑧 are four variables to be 

determined. 

The only nonzero strains associated with the 

displacement field given in Eq. (14) can be written by: 

𝜀𝑥 =
𝜕𝑈

𝜕𝑥
= 𝑢′ − 𝑧𝑤𝑏

′′ − 𝑓(𝑧)𝑤𝑠
′′                         (15a) 

𝜀𝑧 =
𝜕𝑊

𝜕𝑧
= 𝑔′(𝑧)𝑤𝑧                                                  (15b) 

𝛾𝑥𝑧 =
𝜕𝑊

𝜕𝑥
+

𝜕𝑈

𝜕𝑧
= 𝑔(𝑧)( 𝑤𝑠

′ + 𝑤𝑧
′)                            (15c) 

 

The following linear elastic constitutive equation can be 

written by using the related stresses and strains: 

[

𝜎𝑥
𝜎𝑧
𝜎𝑥𝑧
] =

𝐸(𝑥,𝑧)

1−𝜈2
[

1 𝜈 0
𝜈 1 0

0 0
1−𝜈

2

] [

𝜀𝑥
𝜀𝑧
𝛾𝑥𝑧
]                           (16) 

To obtain the governing equations, the virtual strain 

energy of the beam can be written as: 

𝛿𝑈 = ∫ ∫ (𝜎𝑥𝛿𝜀𝑥 + 𝜎𝑥𝑧𝐴

𝐿

0
𝛿𝛾𝑥𝑧 + 𝜎𝑧𝑔

′𝛿𝜀𝑧)𝑑𝐴𝑑𝑥     (17) 

The stress resultants 𝑁𝑥, 𝑀𝑥
𝑏 , 𝑀𝑥

𝑠, 𝑄𝑥𝑧  and 𝑅𝑧 can be 

written respectively as follows: 

𝑁𝑥 = ∫ 𝑏𝜎𝑥𝑑𝑧
+ℎ/2

−ℎ/2
                                                    (18a) 

𝑀𝑥
𝑏 = ∫ 𝑏𝜎𝑥𝑧𝑑𝑧

+ℎ/2

−ℎ/2
                                                 (18b) 

𝑀𝑥
𝑠 = ∫ 𝑏𝜎𝑥𝑓𝑑𝑧

+ℎ/2

−ℎ/2
                                                 (18c) 

𝑄𝑥𝑧 = ∫ 𝑏𝜎𝑥𝑧𝑔𝑑𝑧
+ℎ/2

−ℎ/2
                                              (18d) 

𝑅𝑧 = ∫ 𝑏𝜎𝑧𝑔
′𝑑𝑧

+ℎ/2

−ℎ/2
                                                 (18e) 

Using the Eq. (18), one can rewrite the Eq. (17) as: 

𝛿𝑈 = ∫ [𝑁𝑥𝛿𝑢
′ −𝑀𝑥

𝑏𝛿𝑤𝑏
′′ −𝑀𝑥

𝑠𝛿𝑤𝑠
′′ + 𝑄𝑥𝑧(𝛿𝑤𝑠

′ +
𝐿

0

𝛿𝑤𝑧
′) + 𝑅𝑧𝛿𝑤𝑧]𝑑𝑥                                        (19a) 

The virtual potential energy of the transverse load 𝑞(𝑥) 
is given by 

𝛿𝑉 = −∫ 𝑞(𝛿𝑤𝑏 + 𝛿𝑤𝑠)𝑑𝑥
𝐿

0
                                     (20) 

Since the total virtual work done equals zero and the 

coefficients of 𝛿𝑢, 𝛿𝑤𝑏 , 𝛿𝑤𝑠 and 𝛿𝑤𝑧 are zero in 0 < 𝑥 <
𝐿, one can obtain the following governing equations, 
𝑑𝑁𝑥

𝑑𝑥
= 0                                                                     (21a) 

𝑑2𝑀𝑥
𝑏

𝑑𝑥2
+ 𝑞(𝑥) = 0                                                      (21b) 

 
𝑑2𝑀𝑥

𝑠

𝑑𝑥2
+

𝑑𝑄𝑥𝑧

𝑑𝑥
+ 𝑞(𝑥) = 0                                        (21c) 

𝑑𝑄𝑥𝑧

𝑑𝑥
− 𝑅𝑧 = 0                                                      (21d) 

Using Eq. (16), the stress resultants given in Eq. (18) can 

be expressed as, 

{
 
 

 
 
𝑁𝑥
𝑀𝑥
𝑏

𝑀𝑥
𝑠

𝑄𝑥𝑧
𝑅𝑧 }
 
 

 
 

=

[
 
 
 
 
𝐴 𝐵 𝐵𝑠 𝑋 0
𝐵 𝐷 𝐷𝑠 𝑌 0
𝐵𝑠 𝐷𝑠 𝐻 𝑌𝑠 0
𝑋 𝑌 𝑌𝑠 𝑍 0
0 0 0 0 𝐴𝑠]

 
 
 
 

{
 
 

 
 

𝑢′

−𝑤𝑏
′′

−𝑤𝑠
′′

𝑤𝑧
𝑤𝑠
′ + 𝑤𝑧

′}
 
 

 
 

         (22) 

where  

(𝐴, 𝐵, 𝐵𝑠, 𝐷, 𝐷𝑠 , 𝐻, 𝑍) =

∫
𝐸(𝑥,𝑧)𝑏

1−𝜈2
(1, 𝑧, 𝑓, 𝑧2, 𝑓𝑧, 𝑓2, 𝑔′2)𝑑𝑧

+ℎ/2

−ℎ/2
           (23a) 

𝐴𝑠 = ∫
𝐸(𝑥,𝑧)𝑏

2(1+𝜈)
𝑔2𝑑𝑧

+ℎ/2

−ℎ/2
                                    (23b) 

(𝑋, 𝑌, 𝑌𝑠) = ∫
𝐸(𝑥,𝑧)𝜈𝑏

1−𝜈2
𝑔′(1, 𝑧, 𝑓)𝑑𝑧

+ℎ/2

−ℎ/2
                   (23c) 

The governing equations of the quasi-3D theory can be 

obtained by substituting Eq. (22) into Eq. (21) as: 

𝐴𝑢′′ + 𝐴′𝑢′ − (𝐵𝑤𝑏
′′′ + 𝐵′𝑤𝑏

′′) − (𝐵𝑠𝑤𝑠
′′′ + 𝐵𝑠

′𝑤𝑠
′′) +

𝑋𝑤𝑧
′ + 𝑋′𝑤𝑧 = 0                                                      (24a) 

𝐵𝑢′′′ + 2𝐵′𝑢′′ + 𝐵′′𝑢′ − (𝐷𝑤𝑏
(𝐼𝑉) + 2𝐷′𝑤𝑏

′′′ +

𝐷′′𝑤𝑏
′′) − (𝐷𝑠𝑤𝑠

(𝐼𝑉) + 2𝐷𝑠
′𝑤𝑠

′′′ + 𝐷𝑠
′′𝑤𝑠

′′) + 𝑌𝑤𝑧
′′ +

2𝑌′𝑤𝑧
′ + 𝑌′′𝑤𝑧 − 𝑞 = 0                              (24b) 
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𝐵𝑠𝑢
′′′ + 2𝐵𝑠

′𝑢′′ + 𝐵𝑠
′′𝑢′ − (𝐷𝑠𝑤𝑏

(𝐼𝑉) + 2𝐷𝑠
′𝑤𝑏

′′′ +

𝐷𝑠
′′𝑤𝑏

′′) − (𝐻𝑤𝑠
(𝐼𝑉) + 2𝐻′𝑤𝑠

′′′ +𝐻′′𝑤𝑠
′′) + 𝑌𝑠𝑤𝑧

′′ +

2𝑌𝑠
′𝑤𝑧

′ + 𝑌𝑠
′′𝑤𝑧 + 𝐴𝑠(𝑤𝑠

′′ + 𝑤𝑧
′′) + 𝐴𝑠

′(𝑤𝑠
′ + 𝑤𝑧

′) −
𝑞 = 0                                      (24c) 

−𝑋𝑢′ + 𝑌𝑤𝑏
′′ + 𝑌𝑠𝑤𝑠

′′ + 𝐴𝑠(𝑤𝑠
′′ +𝑤𝑧

′′) + 𝐴𝑠
′(𝑤𝑠

′ +
𝑤𝑧
′) − 𝑍𝑤𝑧 = 0                                               (24d) 

The natural boundary conditions are given as follows: 

𝛿𝑢: 𝑁𝑥                                                                    (25a) 

𝛿𝑤𝑏: 𝑀𝑥
𝑏′                                                                  (25b) 

𝛿𝑤𝑏
′ ∶ 𝑀𝑥

𝑏                                                      (25c) 

𝛿𝑤𝑠: 𝑀𝑥
𝑠′ + 𝑄𝑥𝑧                                                       (25d) 

𝛿𝑤𝑠
′ ∶ 𝑀𝑥

𝑠                                                      (25e) 

𝛿𝑤𝑧: 𝑄𝑥𝑧                                                       (25f) 

 

5. NUMERICAL RESULTS 

The static behaviour of the two directional FGBs is 

investigated by using a quasi-3D shear deformation 

theory. The numerical results are obtained by using the 

SSPH method for various gradation exponents in both 

direction, x and z respectively, different aspect ratios and 

boundary conditions. Since there is no available previous 

results based on a higher order shear deformation theory 

and a shear and normal deformation theory for the 

bending analysis of two-directional FGBs with power 

law rule, as the first, the developed code is verified by 

solving a simply supported conventional FGB problem 

subjected to uniformly distributed load. The numerical 

solutions are compared with the solutions from previous 

studies [16-17] along with the analytical solutions. The 

dimensionless maximum transverse deflections, axial 

and shear stresses are calculated to make the comparisons 

on a fair ground. For each problem studied here, the 

physical parameters of the beam are L=2m and b=0.1m. 

Two different two aspect ratios (L/h), 5 and 20 are 

considered for the boundary conditions defined as SS, CS 

and CC. The numerical solutions could not be obtained 

for the aspect ratio (L/h) which is greater than 5 for the 

boundary condition defined as CF. The possible reasons 

behind this case are discussed in section 5.2.4. The 

distributed load 𝑞0 is set to 10000 N/m. The material 

properties of the two constitutes are given  

𝐶𝑒𝑟𝑎𝑚𝑖𝑐 (𝐴𝑙2𝑂3)       ∶ 𝐸1 = 380𝐺𝑃𝑎 𝑎𝑛𝑑 𝜈1 = 0.3 

𝑀𝑒𝑡𝑎𝑙 (𝐴𝑙𝑢𝑚𝑖𝑛𝑖𝑢𝑚)  ∶ 𝐸2 = 70𝐺𝑃𝑎 𝑎𝑛𝑑  𝜈2 = 0.3 

The following non-dimensional quantities are used for 

the representation of the results; 

Non-dimensional maximum transverse deflection of the 

beam: 

 𝑤̅ =
100𝐸2𝑏ℎ

3

𝑞0𝐿
4 𝑊(𝑥,0) 𝑓𝑜𝑟 𝑆𝑆,𝐶𝑆 𝑎𝑛𝑑 𝐶𝐶 𝑏𝑒𝑎𝑚𝑠     𝑤̅ =

100𝐸2𝑏ℎ
3

𝑞0𝐿
4 𝑊(𝐿, 0) 𝑓𝑜𝑟 𝐶𝐹 𝑏𝑒𝑎𝑚                                 (26) 

 

 

 

Non-dimensional axial and shear stresses of the beam: 

𝜎𝑥 =
𝑏ℎ

𝑞0𝐿
𝜎𝑥(

𝐿

2
, 𝑧) 

𝜎𝑧 =
𝑏ℎ

𝑞0𝐿
𝜎𝑧(
𝐿

2
, 𝑧) 

𝜎𝑥𝑧 =
𝑏ℎ

𝑞0𝐿
𝜎𝑥𝑧(0, 𝑧)                                                     (27) 

5.1 Verification and Comparison Studies 

To verify the developed code, a simply supported FGB 

under uniformly distributed load is considered. For 

numerical calculations to be performed by the SSPH 

method uniformly distributed 201 nodes for the SS, CS 

and CC beams and 247 nodes for the CF beam are used 

in the problem domain 𝑥 ∈ [0, 2]. As a weight function, 

the following function proposed in [46] is used, 

𝑊(𝑥, 𝜉) = {(1 −
𝑑

𝜌
)
7
35(

𝑑

𝜌
)
6
+ 245(

𝑑

𝜌
)
5
+ 720(

𝑑

𝜌
)
4
+

0
        

1120 (
𝑑

𝜌
)
3

+ 928 (
𝑑

𝜌
)
2

+ 336 (
𝑑

𝜌
) + 48     

0

0 ≤ 𝑑 ≤ 𝜌

𝑑 > 𝜌
}   (28) 

where 𝑑 = |𝑥 − 𝜉|/ℎ, ℎ is the smoothing length and 𝜌 is 

the scaling factor that determines the size of the support 

domain. The numerical calculations are performed 

according to the following meshless parameters; the 

radius of the support domain (𝜌) is chosen as 8 and the 

smoothing length (h) equals to 1.1∆ where ∆ is the 

minimum distance between two adjacent nodes for SS, 

CS and CC beams. For CF beam, the radius of the support 

domain (𝜌) is chosen as 5.302 and the smoothing length 

(h) equals to 1.2∆. All the meshless parameters are found 

by using the trial and error method. The maximum non-

dimensional transverse deflections, axial, normal and 

shear stresses obtained based on the present shear and 

normal deformation theory, various aspect ratios and 

various gradation exponents in the z direction are given 

in Table 1-4 along with the results from previous studies 

and the analytical solution of the problem. It is clear that 

the results obtained by using the SSPH method agree 

completely with those of previous papers [16-17]. Table 

1-4 show that the results obtained by the SSPH method 

are in excellent agreement with the results given in [16-

17]. And finally, because of stretching effect, the 

transverse deflections computed based on the shear and 

normal deformation theory are slightly smaller than those 

obtained from TBT. Due to this agreement, the 

verification of the developed code is established. 
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Table 1. Verification studies of the developed meshless code for SS FGB, dimensionless maximum transverse 

deflections for various gradation exponents. 

Method Theory εz p = 0 p = 1 p = 2 p = 5 p = 10 

L/h=5  

Li et al. [16] TBT = 0 3.1657 6.2599 8.0602 9.7802 10.8979 

Vo et al. [17] Navier 
TBT = 0 3.1654 6.2594 8.0677 9.8281 10.9381 

Present ≠ 0 3.1397 6.1338 7.8606 9.6037 10.7578 

Vo et al. [17] FEM 
TBT = 0 3.1654 6.2590 8.0668 9.8271 10.9375 

Present ≠ 0 3.1397 6.1334 7.8598 9.6030 10.7572 

SSPH Present ≠ 0 3.1402 6.1343 7.8602 9.6041 10.7571 

L/h=20  

Li et al. [16] TBT = 0 2.8962 5.8049 7.4415 8.8151 9.6879 

Vo et al. [17] Navier 
TBT = 0 2.8962 5.8049 7.4421 8.8182 9.6905 

Present ≠ 0 2.8947 5.7201 7.2805 8.6479 9.5749 

Vo et al. [17] FEM 
TBT = 0 2.8963 5.8045 7.4412 8.8173 9.6899 

Present ≠ 0 2.8947 5.7197 7.2797 8.6471 9.5743 

SSPH Present ≠ 0 2.8952 5.7215 7.2826 8.6485 9.5745 

Table 2. Verification studies of the developed meshless code for SS FGB, dimensionless axial stress 𝜎̅𝑥(
𝐿

2
,
ℎ

2
) for various 

gradation exponents. 

Method Theory εz p = 0 p = 1 p = 2 p = 5 p = 10 

L/h=5  

Li et al. [16] TBT = 0 3.8020 5.8837 6.8812 8.1030 9.7063 

Vo et al. [17] Navier 
TBT = 0 3.8020 5.8836 6.8826 8.1106 9.7122 

Present ≠ 0 3.8005 5.8812 6.8818 8.1140 9.7164 

Vo et al. [17] FEM 
TBT = 0 3.8040 5.8870 6.8860 8.1150 9.7170 

Present ≠ 0 3.8020 5.8840 6.8860 8.1190 9.7220 

SSPH Present ≠ 0 3.8005 5.8815 6.8821 8.1145 9.7170 

L/h=20  

Li et al. [16] TBT = 0 15.0130 23.2054 27.0989 31.8112 38.1372 

Vo et al. [17] Navier 
TBT = 0 15.0129 23.2053 27.0991 31.8130 38.1385 

Present ≠ 0 15.0125 23.2046 27.0988 31.8137 38.1395 

Vo et al. [17] FEM 
TBT = 0 15.0200 23.2200 27.1100 31.8300 38.1600 

Present ≠ 0 15.0200 23.2200 27.1100 31.8300 38.1600 

SSPH Present ≠ 0 15.0147 23.2099 27.1122 31.8070 38.1252 

Table 3. Verification studies of the developed meshless code for SS FGB, dimensionless transverse shear stress 

𝜎̅𝑥𝑧(0,0) for various gradation exponents. 

Method Theory εz p = 0 p = 1 p = 2 p = 5 p = 10 

L/h=5  

Li et al. [16] TBT = 0 0.7500 0.7500 0.6787 0.5790 0.6436 

Vo et al. [17] Navier 
TBT = 0 0.7332 0.7332 0.6706 0.5905 0.6467 

Present ≠ 0 0.7233 0.7233 0.6622 0.5840 0.6396 

Vo et al. [17] FEM 
TBT = 0 0.7335 0.7335 0.6700 0.5907 0.6477 

Present ≠ 0 0.7291 0.7291 0.6661 0.5873 0.6439 

SSPH Present ≠ 0 0.7246 0.7234 0.6618 0.5840 0.6396 

L/h=20  

Li et al. [16] TBT = 0 0.7500 0.7500 0.6787 0.5790 0.6436 

Vo et al. [17] Navier 
TBT = 0 0.7451 0.7451 0.6824 0.6023 0.6596 

Present ≠ 0 0.7432 0.7432 0.6809 0.6010 0.6583 

Vo et al. [17] FEM 
TBT = 0 0.7470 0.7470 0.6777 0.6039 0.6682 

Present ≠ 0 0.7466 0.7466 0.6776 0.6036 0.6675 

SSPH Present ≠ 0 0.7425 0.7432 0.6789 0.6037 0.6606 
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Table 4. Verification studies of the developed meshless code for SS FGB, dimensionless normal stress 𝜎̅𝑧 (
𝐿

2
,
ℎ

2
) 

for various gradation exponents. 

Method Theory εz p = 0 p = 1 p = 2 p = 5 p = 10 

L/h=5  

Vo et al. [17] Navier Present ≠ 0 0.1352 0.0670 0.0925 0.0180 -0.0181 

Vo et al. [17] FEM Present ≠ 0 0.1352 0.0672 0.0927 0.0183 -0.0179 

SSPH Present ≠ 0 0.1352 0.0671 0.0925 0.0182 -0.0180 

L/h=20  

Vo et al. [17] Navier Present ≠ 0 0.0337 -0.5880 -0.6269 -1.1698 -1.5572 

Vo et al. [17] FEM Present ≠ 0 0.0338 -0.5874 -0.6261 -1.1690 -1.5560 

SSPH Present ≠ 0 0.0338 -0.5880 -0.6266 -1.1706 -1.5589 

 
Table 5. Boundary conditions used for the numerical computations. 

BC x=0 x=L 

SS 𝑢 = 0,𝑤𝑏 = 0,𝑤𝑠 = 0,𝑤𝑧 = 0,𝑀𝑥
𝑏 = 0,𝑀𝑥

𝑠 = 0 𝑢 = 0 𝑜𝑟 𝑁𝑥 = 0 ,𝑤𝑏 = 0,𝑤𝑠 = 0,𝑤𝑧 = 0,𝑀𝑥
𝑏 = 0,𝑀𝑥

𝑠 = 0 

CS 𝑢 = 0,𝑤𝑏 = 0,𝑤𝑠 = 0,𝑤𝑧 = 0,𝑤𝑏
′ = 0,𝑤𝑠

′ = 0 𝑢 = 0 𝑜𝑟 𝑁𝑥 = 0 ,𝑤𝑏 = 0,𝑤𝑠 = 0,𝑤𝑧 = 0,𝑀𝑥
𝑏 = 0,𝑀𝑥

𝑠 = 0 

CC 𝑢 = 0,𝑤𝑏 = 0,𝑤𝑠 = 0,𝑤𝑧 = 0,𝑤𝑏
′ = 0,𝑤𝑠

′ = 0 𝑢 = 0,𝑤𝑏 = 0,𝑤𝑠 = 0,𝑤𝑧 = 0,𝑤𝑏
′ = 0,𝑤𝑠

′ = 0 

CF 𝑢 = 0,𝑤𝑏 = 0,𝑤𝑠 = 0,𝑤𝑧 = 0,𝑤𝑏
′ = 0,𝑤𝑠

′ = 0  𝑁𝑥 = 0,𝑀𝑥
𝑏 = 0,𝑀𝑥

𝑠 = 0,𝑀𝑥
𝑏′ = 0,𝑀𝑥

𝑠′ +𝑄𝑥𝑧 = 0, 𝑄𝑥𝑧 = 0 

 
Table 6. Dimensionless maximum transverse deflections of the SS two-directional FGB for various gradation 

exponents in both directions and aspect ratios. 

Aspect Ratio 

(L/h) 
pz 

px 

0 1 2 5 10 

5 

0 3.1402 3.9791 4.9566 8.2264 12.2258 

1 6.1343 7.2342 8.3430 11.2590 14.0759 

2 7.8602 8.8636 9.8333 12.3067 14.6466 

5 9.6041 10.4721 11.3126 13.4239 15.3073 

10 10.7571 11.6165 12.4207 14.2924 15.8037 

20 

0 2.8952 3.6662 4.5679 7.6257 11.4111 

1 5.7215 6.7299 7.7469 10.4640 13.1101 

2 7.2826 8.1853 9.0653 11.3622 13.5589 

5 8.6485 9.4397 10.2153 12.2531 14.0626 

10 9.5745 10.3974 11.1716 12.9851 14.4938 

 

Table 7. Dimensionless axial stress 𝜎̅𝑥(
𝐿

2
,
ℎ

2
) of the SS two-directional FGB for various gradation exponents in 

both directions. 

Aspect Ratio 

(L/h) 
pz 

px 

0 1 2 5 10 

5 

0 3.8005 3.7945 3.7703 3.6740 3.6146 

1 5.8815 5.6196 5.3454 4.6207 3.9726 

2 6.8821 6.4155 5.9789 4.9475 4.0813 

5 8.1145 7.4802 6.8933 5.4784 4.2515 

10 9.7170 8.8501 8.0301 6.0444 4.4015 

20 

0 15.0147 14.9895 14.8909 14.5014 14.2517 

1 23.2099 22.1731 21.0861 18.2136 15.6904 

2 27.1122 25.2728 23.5505 19.4770 16.1494 

5 31.8070 29.3394 27.0385 21.5344 16.7800 

10 38.1252 34.7636 31.5736 23.9702 17.3768 
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5.2 Elastostatic Analysis of Two-Directional FGBs 

Four different boundary conditions, SS, CS, CC and CF 

are considered respectively for the bending analysis of 

two directional FGBs subjected to uniformly distributed 

load. The transverse deflections, axial, normal and shear 

stresses are computed based on the present quasi-3D 

theory for different gradation exponents in both 

directions and aspect ratios. The details of the boundary 

conditions (BCs) used for the numerical analysis are 

given in Table 5. 

5.2.1 SS Two-Directional FGB 

A simply supported two directional FGB under 

uniformly distributed load is analyzed. The 

dimensionless transverse deflections and stresses are 

computed for various gradation exponents in both 

directions and different aspect ratios. 

As it is seen from Table 6, the computed transverse 

deflection value decreases as the aspect ratio increases. 

With the increasing of the gradation exponents in both 

directions, the deflection values are increasing. In Table 

7, the dimensionless axial stress values are presented. It 

is clear that the stress decreases as the gradation 

exponents in both directions increases. The maximum 

dimensionless shear stress value is obtained when pz is 

set to zero and px is set to 5 as shown in Table 8. It is 

found in Table 9 that the dimensionless normal stress 

almost vanishes when the aspect ratio is 20 and the 

gradation exponent in the z direction is set to zero. 

Figs. 5 and 6 are plotted for different aspect ratios to 

show the variation of the dimensionless axial and normal 

stresses through the thickness for different values of the 

gradation exponent in the x direction, when the gradation 

exponent in the z direction is determined as 2. The 

maximum axial stress value is observed at the top surface 

of the beam. The axial stress increases as the gradation 

exponent in the x direction decreases. The beam with 

pz=2 and px=0 yields the maximum normal stress as seen 

in Figs. 5 and 6. In Figs. 5 and 6, it is also clear that the 

computed shear stress values are zero on the top and the 

bottom surfaces of the beam, as it is expected. The 

minimum shear stress value is obtained when the pz is set 

to 10. 

5.2.2 CS Two-Directional FGB 

The dimensionless maximum transverse deflections and 

the axial, normal and shear stresses of the clamped-

simply supported FGBs are investigated. The computed 

results are given in Table 10 and Figs. 7-8. It is clear in 

Table 10 that the transverse deflections increase as the 

gradation exponent increases. Lower aspect ratio has the 

larger dimensionless transverse deflections than the 

higher one. 

In Figs. 7-8, the axial, normal and shear stresses are 

presented for various gradation exponents and aspect 

ratios. It is found that the maximum axial stress increases 

as the gradation exponent in the x direction increases. 

The maximum normal stress is obtained at the bottom 

surface of the beam. The normal stress values are 

decreasing as the gradation exponent in the x direction is 

decreasing at the bottom surface of the beam. The 

maximum shear stress is observed for pz=1 when the px 

is set to 2. 

5.2.3 CC Two-Directional FGB 

The dimensionless maximum transverse deflections and 

the axial, normal and shear stresses of the clamped-

clamped FGBs are considered. The results are given in 

Table 11 and Fig. 9 for different gradation exponents and 

aspect ratios. It is clear from Table 11 that, as the 

gradation exponents increase, the transverse deflections 

increase. The computed results are in very well 

agreement along with the previous study. 

The axial and normal stresses are plotted in Fig.9 for 

various gradation exponents in the x direction as the 

aspect ratio is set 5 and pz=0. As the gradation exponent 

set to zero in the z direction, the maximum axial stresses 

obtained for px=0 and px=1 are almost indistinguishable. 

The maximum normal stress values are seen on the top 

surface of the beam and they are also indistinguishable. 

The maximum normal stress is found for px=10. As it is 

expected, the shear stress values are zero at the bottom 

and top surface of the beam. The maximum shear stress 

is observed for pz=1. 

5.2.4 CF Two-Directional FGB 

Finally, the results of elastostatic analysis of the CF 

FGBs under uniformly distributed load are given for 

various gradation exponents and aspect ratios. For this 

example, accurate and agreed results cannot be obtained 

when the aspect ratio is greater than 5 and the gradation 

exponent is x direction greater than 2. However, the 

results found by using the aspect ratio lower than 6 are 

acceptable and agreed along with the analytical solutions. 

This point is important to determine future studies based 

on the present shear and normal shear deformation theory 

and the SSPH method. It is not clear that increasing the 

gradation exponent in the x direction deteriorates the 

accuracy of the present shear and normal deformation 

theory with higher aspect ratios. The robustness and 

accuracy of the SSPH method could be lost by using the 

gradation exponent in the x direction greater than 5 with 

CF boundary conditions as well.  

As it is seen from Table 12, the transverse deflections 

increase as the gradation exponents increase. Three 

different aspect ratios are employed to investigate the 

inefficiency of the theory and the numerical method. It is 

not found a concrete reason that may explain the loss of 

accuracy when the aspect ratio is set to above 5. 

However, the computed results agree very well along 

with the analytical solutions based on the TBT. 
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Table 8. Dimensionless transverse shear stress 𝜎̅𝑥𝑧(0,0) of the SS two-directional FGB for various gradation 

exponents in both directions. 

Aspect Ratio 

(L/h) 
pz 

px 

0 1 2 5 10 

5 

0 0.7246 0.7923 0.8484 0.9278 0.9195 

1 0.7234 0.7780 0.8186 0.8662 0.8560 

2 0.6618 0.7017 0.7290 0.7582 0.7523 

5 0.5840 0.6001 0.6099 0.6203 0.6200 

10 0.6396 0.6457 0.6494 0.6542 0.6557 

20 

0 0.7425 0.8125 0.8718 0.9580 0.9467 

1 0.7432 0.7993 0.8415 0.8901 0.8778 

2 0.6789 0.7199 0.7486 0.7792 0.7740 

5 0.6037 0.6223 0.6364 0.6385 0.6414 

10 0.6606 0.6686 0.6749 0.6738 0.6791 

 
Table 9. Dimensionless normal stress 𝜎̅𝑧 (

𝐿

2
,
ℎ

2
) of the SS two-directional FGB for various gradation exponents in 

both directions. 

Aspect Ratio 

(L/h) 
pz 

px 

0 1 2 5 10 

5 

0 0.1352 0.1350 0.1346 0.1331 0.1328 

1 0.0671 0.0553 0.0498 0.0636 0.1085 

2 0.0925 0.0583 0.0422 0.0577 0.1110 

5 0.0182 0.0108 0.0205 0.0772 0.1253 

10 -0.0180 0.0157 0.0498 0.1176 0.1396 

20 

0 0.0338 0.0338 0.0337 0.0333 0.0331 

1 -0.5880 -0.6015 -0.5864 -0.4229 -0.1163 

2 -0.6266 -0.7108 -0.7197 -0.5044 -0.1138 

5 -1.1706 -1.1012 -0.9656 -0.5067 -0.0843 

10 -1.5589 -1.2682 -0.9862 -0.3459 -0.0493 

 

 

 
 

 

Figure 5. Dimensionless axial σ̅x(
L

2
, z), normal σ̅z(

L

2
, z) and shear  stress σ̅xz(0, z)  through the thickness of the SS FGB for 

pz=2 and px=2, L/h=5 
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Table 10. Dimensionless maximum transverse deflections of the CS two-directional FGB for various gradation exponents in 

both directions. 

Aspect Ratio 

(L/h) 
pz 

px 

0 1 2 5 10 

5 

0 1.4497 1.7984 2.1844 3.3256 4.4754 

1 2.7943 3.2536 3.7003 4.7672 5.6600 

2 3.6053 4.0375 4.4382 5.3676 6.1134 

5 4.5443 4.9024 5.2356 5.9811 6.5451 

10 5.1527 5.4762 5.7665 6.3852 6.8235 

20 

0 1.2572 1.5297 1.8335 2.7508 3.6922 

1 2.2574 2.6612 3.0403 3.8831 4.7242 

2 2.8623 3.2657 3.6266 4.3313 4.9949 

5 3.2451 3.6310 3.8925 4.5933 5.2977 

10 3.8213 4.1552 4.3400 4,9688 5.6261 

 
Figure 6. Dimensionless axial 𝜎̅𝑥(

𝐿

2
, 𝑧), normal 𝜎̅𝑧(

𝐿

2
, 𝑧) and shear  stress 𝜎̅𝑥𝑧(0, 𝑧)  through the thickness of the SS FGB for 

pz=2 and px=2, L/h=20 

 

 
Figure 7. Dimensionless axial 𝜎̅𝑥(

𝐿

2
, 𝑧), normal 𝜎̅𝑧(

𝐿

2
, 𝑧) and shear  stress 𝜎̅𝑥𝑧(0, 𝑧)  through the thickness of the CS FGB for 

pz=2 and px=2, L/h=5 
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Figure 8. Dimensionless axial 𝜎̅𝑥(

𝐿

2
, 𝑧), normal 𝜎̅𝑧(

𝐿

2
, 𝑧) and shear  stress 𝜎̅𝑥𝑧(0, 𝑧)  through the thickness of the CS FGB for 

pz=2 and px=2, L/h=20 

Table 11. Dimensionless maximum transverse deflections of the C-C two-directional FGB for various gradation exponents 

in both directions. 

Aspect Ratio 
(L/h) 

pz 
Vo et al. [17] px 

px = 0 0 1 2 5 10 

5 

0 0.8327 0.8349 1.0660 1.3187 2.0188 2.6766 

1 1.5722 1.5868 1.8836 2.1655 2.8106 3.3063 

2 2.0489 2.0810 2.3585 2.6100 3.1762 3.5770 

5 2.6929 2.7180 2.9393 3.1597 3.5873 3.8630 

10 3.1058 3.1104 3.3217 3.4988 3.8290 4.0292 

20 

0 0.5894 0.5898 0.7532 0.9315 1.4187 1.8575 

1 1.1613 1.1630 1.3754 1.5737 2.0112 2.3388 

2 1.4811 1.4906 1.6764 1.8510 2.2307 2.5065 

5 1.7731 1.7762 1.9474 2.1065 2.4409 2.6534 

10 1.9694 1.9734 2.1479 2.2997 2.5867 2.7617 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Dimensionless axial 𝜎̅𝑥(
𝐿

2
, 𝑧), normal 𝜎̅𝑧(

𝐿

2
, 𝑧) and shear  stress 𝜎̅𝑥𝑧(0, 𝑧)  through the thickness of the CC FGB for 

pz=0 and px=1, L/h=5 
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It is observed in Fig. 10 that the dimensionless axial 

stress values computed by using the shear and normal 

deformation theory formulation increases as the  

gradation exponent in the x direction decreases. It is 

clear that the maximum normal stress values are found 

at the top surface of the beam. As the gradation 

exponent in the x direction decreases, the maximum 

normal stress increases. The dimensionless shear stress 

values are shown in Fig. 10. As it is seen, the minimum 

shear stress value is obtained when the gradation 

exponent in the z direction is set to zero. The shear 

stress values are zero at the bottom and top surfaces of 

the beam. 

 

 

6. CONCLUSION 

The SSPH basis functions are employed to analyze the 

elastostatic behaviour of the two directional functionally 

graded beams subjected to different sets of boundary 

conditions and uniformly distributed load by using strong 

formulation of the problem. A shear and normal 

deformation theory which includes both shear 

deformation and thickness stretching effect is used to 

evaluate the transverse deflections, axial, normal and 

shear stresses of two directional FGBs. The developed 

code is verified by studying a simply supported FGB 

problem and comparing the results with previous studies 

and the analytical solutions. Four different boundary 

conditions (SS, CS, CC and CF) are considered with 

different gradation exponents in both directions and 

 
Figure 10. Dimensionless axial 𝜎̅𝑥(

𝐿

2
, 𝑧), normal 𝜎̅𝑧(

𝐿

2
, 𝑧) and shear  stress 𝜎̅𝑥𝑧(0, 𝑧)  through the thickness of the CF FGB 

for pz=1 and px=2, L/h=5 

 

Table 12. Dimensionless maximum transverse deflections of the C-F two-directional FGB for various gradation exponents 

in both directions. 

Aspect 
Ratio 

(L/h) 
pz 

Li et al. [16] Vo et al. [17] px 

px = 0,  
εz = 0 

px = 0,  
εz ≠ 0 

0 1 2 5 10 

2 

0 38.4079 

- 

35.2697 38.8074 43.3814 58.5072 83.8566 

1 73.6361 67.7056 72.5379 78.1133 94.2687 116.6278 

2 96.4165 87.2699 91.4037 96.5571 109.5350 128.8880 

5 124.3960 109.6762 113.0652 116.5574 126.9298 141.5556 

10 143.2723 124.4861 127.9787 135.0984 137.1212 151.2053 

3 

0 32.4211 

- 

30.8511 33.7188 37.1688 49.7066 70.9790 

1 63.5249 59.6712 63.7506 68.1217 81.3383 100.2031 

2 82.3200 75.7549 80.0420 84.1371 96.7912 111.4601 

5 101.9579 92.9652 96.3159 100.7895 107.7395 122.6167 

10 114.9451 105.4147 109.0172 112.5187 119.6471 131.2405 

5 

0 29.3558 28.5524 27.6636 30.4944 33.6062 44.5715 63.7455 

1 58.3481 56.2002 56.7975 60.2980 64.0033 75.5193 93.3406 

2 75.1027 71.7295 71.6238 75.2135 78.7156 88.8993 103.9447 

5 90.4697 86.1201 86.5866 89.8121 92.9513 102.7237 114.2047 

10 100.3961 95.7582 97.6667 101.0233 104.1912 113.5742 123.2930 
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various aspect ratios. The effect of the normal strain is 

investigated and it is found that it is important and should 

be considered in the static behavior of the two directional 

functionally graded beams including sandwich structures 

which may be a subject of the future studies.  

Another important point is that for CF beam, the 

computed results for the aspect ratio which is higher than 

5 are not agree very well with the previous studies as the 

gradation exponent in the x direction is set to higher than 

2. At least within the scope of this work, it may be told 

that by using the SSPH method and present shear and 

normal deformation theory, it is not recommended to use 

a gradation exponent in the x direction greater than 2 as 

the aspect ratio increases with CF boundary condition 

and this should be investigated in future studies. 

It is found that the SSPH method provides satisfactory 

results at least for the problems studied here. Based on 

the results of the four numerical examples, it is 

recommended that the SSPH method can be applied for 

solving linear two directional functionally graded beam 

problems by employing different shear deformation 

theories including shear and normal deformation 

theories.  
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