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ABSTRACT
The paper developed the closed-form solution for the free vibration problem of inhomogeneous
orthotropic rectangular plates (IHORPs) resting on the inhomogeneous viscoelastic foundation (IHVEF).
TheYoung’smoduli anddensity of theorthotropic plate vary continuouslywith respect to three spatial coor-
dinates, while the characteristics of the viscoelastic foundation vary depending on the in-plane coordinates.
The relevant motion equation is obtained using the classical plate theory (CPT) and solved using method
of separation of variables. The influences of inhomogeneity of orthotropic materials, inhomogeneity of vis-
coelastic and elastic foundations on the non-dimensional frequencies (NDFs) of plates are studied in detail.

1. Introduction

An essential part of design and design calculation is the task
of ensuring vibration and stability. It is very important to take
a detailed account of the physic-mechanical factors, i.e. taking
into account the real properties of the material and the working
conditions of the products. One of these defining properties
is the heterogeneity of the construction, both natural and
technological, manifested in the process of manufacturing,
working off and operating individual parts or the structure
as a whole. Under a heterogeneous body in the general case
is understood a body, mechanical, rigid, thermo-physical and
other characteristics of which change in a certain way in its
volume. If the formulation of the problems of the mechanics of
inhomogeneous bodies does not cause any particular difficul-
ties, since the general equations of the theory and stresses and
deformations remain valid in this case, the methods for solving
problems of a particularly dynamic nature, for objects with
variable rigidity, density and curvature, are far from perfect in
engineering terms And require intensive research. The basic
knowledge on the changes of the material properties is given in
the work of Kolchin and Favarion [1]. Significant contributions
made in the future to consider different types of consideration
of the inhomogeneity of the materials are given in references
[2]–[12]. In many engineering applications, plates made of
traditional and new composites are in contact with various
elastic media and may have significant and inevitable effects
on their vibration and stability behaviors. The various elastic
and visco-elastic foundation models and their influences on
the behavior on the structural elements are included in the
works of Pasternak [13], Kerr [14], Vlasov and Leont’ev [15],
Bazhenov [16], Selvaduarı [17], Levinson and Bharata [18],
Gorbunov-Possadov et al. [19], Pronk [20] and Tsudik [21].
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Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/umcm.

Various studies have been carried out to analyze the vibration
of homogenous orthotropic plates resting on the homogeneous
elastic and viscoelastic elastic foundations, using various
approaches. Omurtag et al. [22] used mixed finite element
formulation based on the Gateaux differential Kirchhoff plates
resting on elastic foundation Sun [23] considered Kirchoff plate
model on viscoelastic foundation, Sharma [24] proposed Paster-
nak foundation model to study vibration of orthotropic plate,
Ferreira et al. [25] used wavelet collocation to analyze plates on
the Winkler elastic foundation, Arani and Jalaei [26] developed
visco-Pasternak model to study of orthotropic graphene sheet,
Tornabene [27] and Sofiyev et al. [28] presented the non-linear
elastic foundation model to the study of vibration shells.

Significantly increase the use of heterogeneous composite
plates, as the bearing structural elements which in contact with
various operating environments, have significantly increased
the urgency of solving their vibration problems. Because of this
urgency, some attempts have been made to study the influences
of homogeneous elastic or viscoelastic foundations on the
vibration behaviors of the inhomogeneous orthotropic plates
[29]–[40].

Some of above mentioned studies suggest that the hetero-
geneity changes only in the direction of thickness, in some
studies only in the longitudinal direction and in some studies
together in the transverse and longitudinal directions. However,
in the above studies, the elastic or viscoelastic foundation mod-
els are considered homogeneous. In the literature, the number of
publications related to the interaction of composite plates with
the heterogeneous foundations is limited [41]–[46].

To the best of the author’s knowledge, literature lacks in
analytical modeling for the vibration characteristics of inho-
mogeneous orthotropic plates resting on the inhomogeneous

©  Taylor & Francis

2019, VOL. 26, NO. 10, 886–897

https://doi.org/10.1080/15376494.2018.1430271
https://crossmark.crossref.org/dialog/?doi=10.1080/15376494.2018.1430271&domain=pdf&date_stamp=2018-01-31
mailto:abdullahavey@sdu.edu.tr
http://www.tandfonline.com/umcm


viscoelastic foundations. The proposed study describes closed
form solution of the free vibration problem of inhomogeneous
orthotropic plates resting on the inhomogeneous viscoelastic
foundation. It is assumed that the Young’s moduli and density of
plates vary continuously with respect to the spatial coordinates
and the viscoelastic foundation parameters vary continuously
with respect to the in-plane coordinates, while the Poisson’s
ratio of the materials are assumed to be unchanged. A new
closed-form solution for the free vibration problem of IHORPs
resting on the IHVEF is obtained.

2. Formulation of the problem

Consider a thin IHORP of the length a, the width b and the
thickness h. The plate is resting on the IHVEF. The mid-plane
being x3 = 0 and the origin of the coordinate system is at one
corners of the orthotropic plate as shown in Figure 1. The x1 and
x2 axes are taken along the principle directions of orthotropy and
x3 axis is normal to the them. The load-deflection relationship
of the IHVEF is assumed to be [13]–[21], [41]–[45]

R = K1(x1, x2)u3 + K2(x1, x2)
∂2u3
∂t2

(1)

where R is the force per unit area, K1(x1, x2) and K2(x1, x2) are
characteristics of the IHVEF, which are determined by experi-
ments, u3 is the deflection and t is time variable.

It is assumed that the Young’s moduli, E1(X1,X2,X3) and
E2(X1,X2,X3) in the x1 and x2 directions, shear modu-
lus G12(X1,X2,X3) and density ρ(X1,X2,X3) of the IHORP
depending on the spatial coordinates x1, x2 and x3, and the Pois-
son’s ratios ν12 and ν21 are assumed to be constant [2]–[12].

E1 = E01 f1(X1,X2) f2(X3),

E2 = E02 f1(X1,X2) f2(X3), G12 = G012 f1(X1,X2) f2(X3),

ρ = ρ0ψ1(X1,X2)ψ2(X3), ν12 = const; ν21 = const. (2)

where E01 and E02 are the Young’s moduli in the x1 and x2
directions, G012 is the shear modulus and ρ0 is the density
of the homogeneous orthotropic rectangular plate (HORP),
respectively. Here X1 = x1/a, X2 = x2/b, X3 = x3/h are the
dimensionless variables; f1(X1,X2) and ψ1(X1,X2) with their
partial derivatives up to the second order are continuous func-
tions and characterize the change of the Young’s moduli ad
density, respectively, in the x1 and x2 directions; f2(X3) and

Figure . The inhomogeneous orthotropic rectangular plate on the viscoelastic
foundation and the coordinate system.

ψ2(X3) are continuous functions and characterize the change of
the Young’s moduli and density, respectively, in the x3 direction.

3. Governing equation

Based on the CPT and using (2), the constitutive equations of
the IORPs may be expressed as [1]:

σ11 = E01 f1(X1,X2)

1 − ν12ν21
f2(X3) (ε11 + ν12ε22) ,

σ22 = E02 f1(X1,X2)

1 − ν12ν21
f2(X3) (ε22 + ν21ε11)

σ12 = G012 f1(X1,X2) f2(X3)ε12 (3)

For continuously IHORPs, the Kirchhoff-Love hypotheses
are valid and have [48]

ε11 = ε011 − x3χ11, ε22 = ε022 − x3χ22, ε12 = ε012 − x3χ12
(4)

where ε011, ε022, ε012 are strains in the mid-plane, χ11, χ22, χ12
are the curvatures of the middle plane and u1, u2, u3 are the
displacement components in which are related as follows:

ε011 = ∂u1
∂x1

, ε022 = ∂u2
∂x2

, ε012 = ∂u1
∂x1

+ ∂u2
∂x2

,

χ11 = ∂2u3
∂x12

, χ22 = ∂2u3
∂x22

, χ12 = 2
∂2u3
∂x1∂x2

(5)

The force and moment resultants are defined in terms of the
normal and shear stresses as [47], [48],

(T11, T22, T12, M11, M22, M12)

=
∫ h/2

−h/2
(σ11, σ22, σ12, x3σ11, x3σ22, x3σ12)dx3 (6)

The resultant forces are everywhere equal to zero, because
there are no external forces, T11, T22, T12, in the plane of the
plate. This case allows us to write the following conditions:

A1
(
ε011 + ν12ε

0
22

) − A2 (χ11 + ν12χ22) = 0,
A1

(
ε022 + ν21ε

0
11

) − A2 (χ22 + ν21χ11) = 0 A1ε
0
12 − A2χ12 = 0.

(7)

where the following definitions apply:

A1 =
∫ h/2

−h/2
f2(X3)dz, A2 =

∫ h/2

−h/2
x3 f2(X3)dx3 (8)

The moments are expressed in terms of the lateral deflection,
u3, by substituting (3) into expression (6):

m11 = 	D01 f1(X1,X2)

(
∂2u3
∂x12

+ ν12
∂2u3
∂x22

)
,

m22 = 	D02 f1(X1,X2)

(
∂2u3
∂x22

+ ν21
∂2u3
∂x12

)

m12 = 2	D0T f1(X1,X2)
∂2u3
∂x1∂x2

(9)

where 	 is the inhomogeneity parameter depending on the
dimensionless thickness parameter, D01, D02, D0T are flexu-
ral rigidities of the homogeneous orthotropic rectangular plate

MECHANICS OF ADVANCED MATERIALS AND STRUCTURES 887



(HORP) and are defined as:

	 = 12
h3

(
A2
2

A1
− A3

)
, D01 = E01h3

12(1 − ν12ν21)
,

D02 = E02h3

12(1 − ν12ν21)
, D0T = G012h3

12
(10)

in which

A3 =
∫ h/2

−h/2
x32 f2(x3)dx3 (11)

With considering Eqs. (1) and (2), the governing equation of
motion of the IHORPs resting on the IHVEF may be expressed
as [28], [37]–[45]:

∂2m11

∂x12
+ 2

∂2m12

∂x1∂x2
+ ∂2m22

∂x22
− K1(X1,X2)u3

− [K2(X1,X2)+ ρ̄0ψ1(X1,X2)]
∂2u3
∂t2

= 0 (12)

where the following notation is used:

ρ̄0 = ρ0h
∫ 1/2

−1/2
ψ2(X3)dX3 (13)

Writing expression (9) into Eq. (12), is transformed into the
following form

L(u3)− K1(X1,X2)u3 − [K2(X1,X2)+ ρ̄0ψ1(X1,X2)]
∂2u3
∂t2

= 0
(14)

where L(u3) is differential operator and defined as:

L(u3) = f1(X1,X2)

[
D1
∂4u3
∂x14

+ D2
∂4u3
∂x24

+ (D1ν21 + ν12D2 + 4DT )
∂4u3

∂x12∂x22

]

+ 2D1
∂ f1(X1,X2)

∂x1

(
∂3u3
∂x13

+ ν12
∂3u3
∂x1∂x12

)

+D1
∂2 f1(X1,X2)

∂x12

(
∂2u3
∂x12

+ ν12
∂2u3
∂x22

)

+ 2D2
∂ f1(X1,X2)

∂x1

(
∂3u3
∂x23

+ ν21
∂3u3
∂x12∂x2

)

+D2
∂2 f1(X1,X2)

∂x22

(
∂2u3
∂x22

+ ν21
∂2u3
∂x12

)

+ 4DT

[
∂ f1(X1,X2)

∂x1
∂3u3
∂x1∂x22

+ ∂ f1(X1,X2)

∂x2
∂3u3
∂x2∂x12

+ ∂2 f1(X1,X2)

∂x1∂x2
∂2u3
∂x1∂x2

]
(15)

which the following notations are used:

(D1,D2,DT ) = 	
(
D0

1, D0
2, D0

T
)

(16)

As f1(X1,X2) = ψ1(X1,X2) = 1, from Eq. (14) is obtained the
equation of motion for the plates made of inhomogeneous
orthotropicmaterials in which elastic properties vary only in the
thickness direction, z.

If f1(X1,X2) = ψ1(X1,X2) = 1 and f2(X3) = ψ2(X3) = 1,
from Eq. (14) is obtained equation of motion for the homoge-
neous orthotropic plates.

4. Solution of governing equation

As can be seen, Eq. (14) is complex, and is difficult to find an
exact solution. Therefore, to the solution of the Eq. (14) for the
homogeneous boundary conditions, we use method of separa-
tion of variables and method of Bubnov-Galerkin.

At the first stage, for the harmonic solution of the Eq. (14),
the displacement, u3, is assumed to be [48]:

u3 = U3(x1, x2)eiωt (17)

where i = √−1,U3(x1, x2) is unknown function, should satisfy
the boundary conditions and ω is the angular frequency of the
free vibration.

Substituting (17) into Eq. (14), we obtain:

L̄(U3)− K1(X1,X2)U3

+ω2 [K2(X1,X2)+ ρ̄0ψ1(X1,X2)] U3 = 0 (18)

where

L̄(U3) = f1(X1,X2)

[
D1
∂4U3

∂x14
+ D2

∂4U3

∂x24

+ (D1ν12 + ν21D2 + 4DT )
∂4U3

∂x12∂x22

]

+ 2D1
∂ f1(X1,X2)

∂x1

(
∂3U3

∂x13
+ ν12

∂3U3

∂x1∂x22

)

+D1
∂2 f1(X1,X2)

∂x12

(
∂2U3

∂x12
+ ν12

∂2U3

∂x22

)

+ 2D2
∂ f1(X1,X2)

∂x2

(
∂3U3

∂x23
+ ν21

∂3U3

∂x12∂x2

)

+D2
∂2 f1(X1,X2)

∂x22

(
∂2U3

∂x22
+ ν21

∂2U3

∂x12

)

+ 4DT

[
∂ f1(X1,X2)

∂x1
∂3U3

∂x1∂x22
+ ∂ f1(X1,X2)

∂x2
∂3U3

∂x12∂x2

+ ∂2 f1(X1,X2)

∂x1∂x2
∂2U3

∂x1∂x2

]
(19)

In the second stage, we will solve the Eq. (18) using the
Bubnov-Galerkin method and U3(x1, x2) represents in the fol-
lowing form:

U3(x1, x2) =
n∑
i=1

k∑
j=1

Ai jϕi(x1)η j(x2) (20)

where Ai j are unknown constants and each ϕi(x1) and η j(x2)
(i = 1, 2, . . . , n, j = 1, 2, . . . , k) must satisfy the correspond-
ing boundary conditions.

The error function is written in the following way:


(x1, x2) =
n∑

i=1

k∑
j=1

{
Ai j

〈
L

(
ϕi, η j

) − K1 (X1,X2) ϕi(x1)η j(x2)

+ω2 [K2(X1,X2)+ ρ̄0ψ1(X1,X2)]ϕi(x1)η j(x2)
〉}

(21)
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where L(ϕi, η j) is the differential operator and expressed as

L
(
ϕi, η j

) = f1(X1,X2)

[
D1

d4ϕi
dx14

η j + D2
d4η j

dx24
ϕi

+ (D1ν21 + D2ν12 + 4DT )
d2ϕi
dx12

d2η j

dx22

]

+ 2D1
∂ f1(X1,X2)

∂x1

(
d3ϕi
dx13

η j + ν12
dϕi
dx1

d2η j

dx22

)

+D1
∂2 f1(X1,X2)

∂x12

(
d2ϕi
dx12

η j + ν12
d2η j

dx22
ϕi

)

+ 2D2
∂ f1(X1,X2)

∂x2

(
d3η j

dx23
ϕi + ν21

d2ϕi
dx12

dη j

dx2

)

+D2
∂2 f1(X1,X2)

∂x22

(
d2η j

dx22
ϕi + ν21

d2ϕ j

dx12
ηi

)

+ 4DT

[
∂ f1(X1,X2)

∂x1
dϕi
dx1

d2η j

dx22

+ ∂ f1(X1,X2)

∂x2
d2ϕi
dx12

dη j

dx2
+ ∂2 f1(X1,X2)

∂x1∂x2
dϕi
dx1

dη j

dx2

]
(22)

The orthogonalization conditions have the following form:

� ≡
∫ a

0

∫ b

0

n∑
i=1

k∑
j=1

{
Ai j

〈
f1(X1,X2)

[
D1

d4ϕi
dx14

η j + D2
d4η j

dx24
ϕi

+ (D1ν21 + D2ν12 + 4DT )
d2ϕi
dx12

d2η j

dx22

]

+ 2D1
∂ f1(X1,X2)

∂x1

(
d3ϕi
dx13

η j + ν12
dϕi
dx1

d2η j

dx22

)

+D1
∂2 f1(X1,X2)

∂x12

(
d2ϕi
dx12

η j + ν12
d2η j

dx22
ϕi

)

+ 2D2
∂ f1(X1,X2)

∂x2

(
d3η j

dx23
ϕi + ν21

d2ϕi
dx12

dη j

dx2

)

+D2
∂2 f1(X1,X2)

∂x22

(
d2η j

dx22
ϕi + ν21

d2φ j

dx12
ηi

)

+ 4DT

[
∂ f1(X1,X2)

∂x1
dϕi
dx1

d2η j

dx22
+ ∂ f1(X1,X2)

∂x2
d2ϕi
dx12

dη j

dx2

+ ∂2 f1(X1,X2)

∂x1∂x2
dϕi
dx1

dη j

dx2

]
− K1(X1,X2)ϕi(x1)η j(x2)

+ ω2 [K2(X1,X2)+ ρ̄0ψ1(X1,X2)]ϕi(x1)η j(x2)
〉}

×ϕp(x1)ηq(x2)dx1dx2 = 0, (p, q = 1, 2, . . .) (23)

The values of ω2 can be determined from the system of linear
homogeneous algebraic equations (23). For the existence of a
nontrivial solution, the principal determinant must vanish:

|�| = 0 (24)

The Eq. (24) is the system of the nonlinear algebraic equa-
tions. However, in engineering practice are limited to the first
approximation, although the solution of this equation in an arbi-
trary approximation does not cause special difficulty.

In the first approximation, from Eq. (21), we obtain∫ a

0

∫ b

0

(x1, x2)ϕ1(x1)η1(x2)dx1dx2 = 0 (25)

It assumed that Young’s moduli, shear modulus and density
of the IHORPs vary with the spatial coordinates by the following
functional relations:

f1(X1,X2) = 1 + α1X1 + α2X2, f2(X3) = 1 + α3X3,

ψ1(X1,X2) = 1 + β1X1 + β2X2, ψ2(X3) = 1 + β3X3 (26)

where αi and βi(i = 1, 2, 3) inhomogeneity parameters for
material are changed from 0 to 1.

The IHVEF parameters varywith the in-plane coordinates by
the following functional relations:

K1(X1,X2) = K01 (1 + δ1X1 + δ2X2) ,

K2(X1,X2) = K02 (1 + δ1X1 + δ2X2) (27)

where δ j( j = 1, 2) inhomogeneity parameters for the viscoelas-
tic foundation are changed from 0 to 1.

Since the boundaries of a rectangular plate are simply-
supported, the approximation function is sought as [48]

ϕ1(x) = sin
mπx
a
, η1(y) = sin nπy

b
(28)

wherem and n are integers.
Substituting expressions (26)–(28) into Eq. (25), after inte-

grating we obtain expression for the frequency (in rad/s) of
IHORPs resting on the IHVEF:

ω =
√
1
2
K01 (δ1 + δ2 + 2)−	 (α1 + α2 + 2)

[
m4

1D01 + n41D02 + m2
1n21 (ν21D01 + ν12D02 + 4D0T )

]
K02 (δ1 + δ2 + 1)+ ρ0h (β1 + β2 + 1)

(29)

The expression for the non-dimensional frequencies (NDFs)
for IHORPs resting on the IHVEF is defined as:

ω1 = ω
a2

h

√
ρ0

E01
(30)

As αi = βi = δ j = 0 (i = 1, 2, 3; j = 1, 2), the frequency
coincideswith the frequency of theHORPs resting on the homo-
geneous viscoelastic foundation.

As αi = βi = 0 (i = 1, 2, 3) and K01 = K02 = 0, the fre-
quency coincides with the frequency of the HORPs without an
elastic foundation and expressed as:

ω0 =
√
m4

1D01 + n41D02 + m2
1n21 (ν21D01 + ν12D02 + 4D0T )

ρ0h
(31)

5. Numerical results and discussion

5.1. Comparative studies

The magnitudes of the NDF of HORPs without an elastic
foundation with a/h = 100 are compared with the results
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Table . Comparison of the values of NDF for HORPs with the results of Thai and
Kim [].

ω1 = ωa2/h
√
ρ0/E02

a/b E01/E02 Thai and Kim [] Present study

.  . .
 . .
 . .

.  . .
 . .
 . .

Table . Comparison of theNDF for IHORPswith the results of Xia et al. [] fora/h =
20 and a = 2b.

ω1 = ωa2
√
ρ0h/D0

α Xia et al. [] Present study

 . .
 . .

of Thai and Kim [33] using CPT and presented in Table 1.
The Levy type solution is used in the study of Thai and Kim
[33]. The expression (31) is used for comparison. The follow-
ing orthotropic material properties is used in the compari-
son: E01/E02 = 10, 25, 40; G012 = 0.5E02; ν12 = 0.25; ρ0 =
1. The values of the NDF obtained in this study are in a good
agreement with those obtained in the study of the Thai and Kim
[33].

In Table 2, the magnitudes of NDF for the inhomogeneous
(along the x1 axis) isotropic rectangular plate (IHIRP) are com-
pared with the results of Xia et al. [7]. The expression (29)
is used in the comparison by using, α1 = α − 1, α2 = α3 =
βi = δ j = 0, K01 = K02 = 0 (i = 1, 2, 3; j = 1, 2) and E01 =
E02 = E0, ν12 = ν21 = ν0. The Young’s modulus of the IHIRP
changes depending on the coordinate x1 as E = E0 f (X1), in
which f (X1) = 1 + X1(α − 1) is the inhomogeneity function,
α = f (1)

f (0) is parameter that f (0) and f (1) are the magnitudes of
the f (X1) at the left and right ends of the plate, respectively. The
homogeneousmaterial properties are given by:E0 = 3 × 107Pa,
ν0 = 0.3, G012 = E0

2(1+ν0) , ρ0 = 1 kg/m3 and D0 = E0h3
12(1−ν20 ) . It is

seen from Table 2 that the values of the NDF of the IHIRP are in
good agreement with those of Xia et al. [7]. The reason for the
difference between NDF values is the use of SDT in the study of
Xia et al. [7].

The values of the NDF, ω1 = ωb2
π2

√
ρ0h/D0, for the thin

homogeneous isotropic square plates resting on the homoge-
neous Winkler elastic foundation are compared with the stud-
ies of Leissa [49] and Ferreira et al. [50] and tabulated in
Table 3. The following plate and foundation parameters are used:

Table . Comparison of NDFs for the thin square plates on the homogeneous
Winkler elastic foundation.

K̄1 References ω1

 Leissa [] .
Ferreira et al. [] .
Present study .

×  Leissa [] .
Ferreira et al. [] .
Present study .

Table . Comparison of NDFs for IHRPs (in x1 direction) resting on the homoge-
neous Winkler elastic foundation for different a/h.

ω1

Present study Ref. []

a/h    
α = 1.5, β = 1 . . . .
α = β = 1.5 . . . .

E0 = 2 × 1011(Pa), ν0 = 0.3, ρ0 = 1, b/h = 100, and K1 =
K01a4
D0

, K02 = 0. The expression (29) is used in the compari-
son for the case, αi = βi = δ j = 0, K02 = 0 (i = 1, 2, 3; j =
1, 2) and E01 = E02 = E0, ν12 = ν21 = ν0. The magnitudes of
the NDF are in excellent agreement with the results of Refs. [49],
[50] for thin plates.

The values of NDFs of IHORPs resting on the homogeneous
Winkler elastic foundation are compared with the results of
Ref. [40] for different a/h (a/b = 0.5, b = 1 m, K01 = 2.5 ×
106 N/m3) and are presented in Table 4. The following homo-
geneous and inhomogeneous (in x1 direction) orthotropicmate-
rial properties are used [40], [48]:

E01 = 138.6GPa, E02 = 8.27GPa; G012 = 4.12GPa,
ν12 = 0.26, ρ0 = 1824 kg/m3

E1(X1) = E01αX1 ,E2(X1) = E02αX1 , G12(X1) = G012α
X1 ,

ρ(X1) = ρ0β
X1

Here α and β are the variation parameter of Young’s (or
shear) modulus and density, respectively, in the x1 direction
and they are defined as α = f (1)/ f (0) and β = ψ(1)/ψ(0) in
which f (0) and f (1) are the values of function, f (X1),ψ(0) and
ψ(1) are the values of the function, ψ(X1), on the x1 = 0 and
x1 = a ends of the plate, respectively. For comparison, formula
(15) is used in the Ref. [40]. It is seen that a very good agreement
between the present results and in the literature are achieved.

5.2. Study of influences of inhomogeneity and viscoelastic
foundations on the NDFs

This section presents new numerical calculations and analyzes
related to the influences of inhomogeneity in different directions
on the NDFs of the rectangular plates resting on the inhomoge-
neous viscoelastic and elastic foundations.

The elastic properties for the homogeneous boron-epoxy are
given by [48]

E01 = 206.9GPa, E02 = 20.69GPa;
G012 = 6.9GPa, ν12 = 0.25, ρ0 = 1950 kg/m3

The changes in the NDFs of HORPs and IHORPs with
and without homogeneous and inhomogeneous viscoelastic
and elastic foundations versus the ratio, a/h, are presented in
Tables 5 and 6, and Figures 2–4. In the following analyzes, the
values of the NDFs of unconstrained homogeneous orthotropic
plates are compared with IHORPs with and without homoge-
neous and inhomogeneous elastic and viscoelastic foundations
for different cases of inhomogeneity. It seems that the values
of the NDFs of HORPs and IHORPs-linear profiles (inhomo-
geneity functions are linear functions of the coordinates x1, x2
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Table . Distribution of NDFs of the HORPs and IHORPs resting on the elastic and viscoelastic foundations versus the a/h (a/b = 0.5,b = 1m).

ω1

αi = βi = 0 (i = 1, 2, 3)
δj = 0 (i = 1, 2)

α1 = 1, α2 = α3 = 0
βi = δj = 0

α1 = α2 = 1, α3 = 0
βi = δj = 0

αi = 1
βi = δj = 0

a/h (K01, K02) = (0, 0)

 . . . .
 . . . .
 . . . .
 . . . .
a/h (K01, K02) = (5 × 106, 0)

 . . . .
 . . . .
 . . . .
 . . . .
a/h (K01, K02) = (5 × 106, 10)

 .  . 
 .  . 
 .  . 
 .  . 

αi = βi = δ1 = 0 α1 = 1, α2 = α3 = 0
βi = δ1 = 0

α1 = α2 = 1,
α3 = βi = δ1 = 0

αi = 1,
βi = δ1 = 0

a/h (K01, K02) = (5 × 106, 0)

 .  . 
 .  . 
 .  . 
 .  . 

αi = βi = 0
δ1 = δ2 = 1

α1 = δ1 = δ2 = 1,
α2 = α3 = βi = 0

α1 = α2 = 1, α3 = 0
βi = 0, δ1 = δ2 = 1

αi = 1, βi = 0,
δ1 = δ2 = 1

a/h (K01, K02) = (5 × 106, 10)

 . . . .
 . . . .
 . . . .
 . . . .

and x3) without elastic foundations remain unchanged, as a/h
increases. If the material properties linearly change along the
x1, x2 and x3 directions, the effects of the inhomogeneity on
the NDFs of the unconstrained (δj = 0 , j = 1, 2; K01 = K02 =
0) orthotropic rectangular plates are considerable and remain
unchanged (see, Tables 5 and 6, and Figure 2).

Figure . Variation of NDFs for the HORPs and IHORPs with and without the HWEF
and HVEF versus the ratio a/h (a/b = 0.5,b = 1m).

It is appearing that the values of the NDFs of HORP and
IHORPs resting on the homogeneous and inhomogeneousWin-
kler elastic foundation (HWEF and IHWEF) increases, with
increasing of the ratio, a/h. If the inhomogeneity linearly
changes along the x1, x2 or x3 directions, the effects of the
inhomogeneity on the frequency parameters of the orthotropic

Figure . Variation of NDFs of the HORPs and IHORPs resting on the HWEF and
IHWEF and elastic foundations versus the ratio, a/h (a/b = 0.5,b = 1m).
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Table . Distribution of NDFs for HORPs and IHORPs resting on the HWEF, IHWEF, HVEF and IHVEF and elastic foundations versus the a/h (a/b = 0.5,b = 1m).

ω1

αi = δj = β3 = 0
β1 = β2 = 1

α1 = β1 = β2 = 1,
α2 = α3 = β3 = δj = 0

α1 = α2 = β1 = β2 = 1
α3 = β3 = δj = 0

αi = β1 = β2 = 1,
β3 = δj = 0

a/h (K01, K02) = (0, 0)

 . . . .
 . . . .
 . . . .
 . . . .
a/h (K01, K02) = (5 × 106, 0)

 . . . .
 . . . .
 . . . .
 . . . .
a/h (K01, K02) = (5 × 106, 10)

 .  . 
 .  . 
 .  . 
 .  . 

αi = β3 = δ2 = 0
β1 = β2 = δ1 = 1

α2 = α3 = β3 = δ2 = 0
α1 = β1 = β2 = δ1 = 1

α1 = α2 = β1 = β2 = 1,
α3 = β3 = δ2 = 0, δ1 = 1

β1 = β2 = αi = 1
β3 = δ2 = 0,δ1 = 1

a/h (K01, K02) = (5 × 106, 0)

 . . . .
 . . . .
 . . . .
 . . . .

αi = β3 = 0
β1 = β2 = δ j = 1

α1 = β1 = β2 = δj = 1,
α2 = α3 = β3 = 0

α1 = α2 = β1 = β2 = 1
α3 = β3 = 0, δj = 1

αi = δj = 1
β1 = β2 = 1, β3 = 0

a/h (K01, K02) = (5 × 106, 10)

 . . . .
 . . . .
 . . . .
 . . . .

rectangular plates resting on the homogeneous Winkler elas-
tic foundation (HWEF) ( δ1 = δ2 = 0, K01 = 5 × 106, K02 =
0) reduce for α1 = 1, βi = 0 (i = 1, 2, 3); α1 = α2 = 1, βi = 0
and αi = 1, βi = 0 (see, Table 5); the effect of inhomogeneity is
(−18.3%) forα1 = 0,β1 = 1; this effect increases forα1 = β1 =
1; changes irregularly for α1 = α2 = β1 = 1 and αi = β1 = 1
(see, Figure 2); the influence of inhomogeneity is (−29.3%)
for α1 = 0, β1 = β2 = 1; increase for α1 = β1 = β2 = 1; α1 =

Figure . Variation of NDFs of theHORPs and IHORPs resting on theHVEF and IHVEF
and elastic foundations versus the a/h (a/b = 0.5,b = 1m).

α2 = β1 = β2 = 1 and αi = β1 = β2 = 1 (see, Table 6), since
a/h increases from 25 to 100.

When plates resting on the inhomogeneous Winkler
elastic foundation (IHWEF) ( δ1 = 1, δ2 = 0, K01 =
5 × 106, K02 = 0) the influences of inhomogeneity decrease
for α1 = 1, βi = 0; α1 = α2 = 1, βi = 0 and αi = 1, βi = 0
(see, Table 5); the effect of inhomogeneity is (−18.4%) for
αi = 0, β1 = 1, increases for α1 = β1 = 1; changes between
14.85% and (−2.86%) for α1 = α2 = β1 = 1; changes irregu-
larly for αi = β1 = 1 (see, Figure 3); the effect of inhomogene-
ity is (−29.27%) for α1 = 0;β1 = β2 = 1; increment for α1 =
β1 = β2 = 1, α1 = α2 = β1 = β2 = 1 and αi = β1 = β2 = 1
(see, Table 6), since a/h increases from 25 to 100.

As the HVEF effect is taken into account, the values of the
NDF are significantly reduced compared to the case without
an elastic foundation, whereas, the effects of inhomogeneity
on the values of NDF vary with the change of the ratio, a/h.
For instance the effects of the inhomogeneity on the NDFs
for IHORPs resting on the homogeneous viscoelastic founda-
tion (HVEF) (δ1 = δ2 = 0, K01 = 5 × 106, K02 = 10) reduce
for α1 = 1, βi = 0; α1 = α2 = 1, βi = 0 and αi = 1, βi = 0 (see,
Table 5); the influences of the inhomogeneity diminish from
(−15.43%) to (−10.45%) for αi = 0, β1 = 1, changes between
3.21% and (−1.6%) for α1 = β1 = 1, diminish from 18.95% to
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6.54% forα1 = α2 = β1 = 1 and from13.96% to 3.91% forαi =
β1 = 1 (see, Figure 2); as Table 6 shows, the effects of the inho-
mogeneity decreases forαi = 0 β1 = β2 = 1, increases for α1 =
β1 = β2 = 1; changes irregularly for α1 = α2 = β1 = β2 = 1
and αi = β1 = β2 = 1, since a/h increases from 25 to 100.

If the cases of IHVEF and HVEF are compared, the val-
ues of the NDFs for the IHVEF are reduced. Consideration
of the effect of IHVEF, changes the influence of the inho-
mogeneity on the values of NDFs depending on the change
of the a/h ratio. For instance the plates resting on the inho-
mogeneous viscoelastic foundation, i.e., on the IHVEF (δ1 =
δ2 = 1, K01 = 5 × 106, K02 = 10) the effects inhomogeneity
decrease for α1 = 1, βi = 0; α1 = α2 = 1, βi = 0 and αi =
1, βi = 0 (Table 5); this effect decreases for α1 = 0;β1 =
1, α1 = α2 = β1 = 1; α1 = α2 = α3 = β1 = 1, and changes
irregularly for α1 = β1 = 1, (see, Figure 4); the effect of inho-
mogeneity decreases from (−22.42%) to (−13.21%) for αi =
0, β1 = β2 = 1, increases from (−5.63%) to (−7.72%) for α1 =
β1 = β2 = 1; changes between 8.58% and (−2.53%) for α1 =
α2 = β1 = β2 = 1; changes between 4.07% and (−4.21%) for
αi = β1 = β2 = 1 (see, Table 6), since a/h increases from
25 to 100.

As can be seen from Tables 5 and 6, and Figures 2–4, the
effects of inhomogeneity on the values of the NDFs of plates
resting on the IHVEF are greater than the plates resting on the
HVEF and the difference varies from 2% to 4%. In addition, the
effect of the inhomogeneity on the NDF does not depend on the
change in the ratio a/h, and remains approximately the same (-
18.4%) at αi = 0 and βi = 1 (i = 1, 2, 3), when the orthotropic
plate rests on the HWEF and IHWEF. When αi and βi change
together, the effects of the inhomogeneity on the NDFs of the
orthotropic plate rests on the HWEF and IHWEF vary with the
change in the ratio a/h, but the inhomogeneity effect decreases
compared to the case of αi = 0 and βi = 1 (i = 1, 2, 3).

When the values of the NDFs of HORP on the IHWEF are
compared with the non-dimensional frequency values of the
plates resting on the HWEF, the influence of the inhomogene-
ity of WEF on the values of the NDF increases from 0.54% to
13.68%, due to an increase in the ratio a/h.

As the values of the frequencies of HORP on the IHVEF
are compared with the NDF values of the plates resting on the
HVEF, the influence of the inhomogeneity of viscoelastic foun-
dation on the values of the NDF changes between (−7.59%) and
(2.57%) due to an increase in the ratio a/h from 25 to 100.

While the influences of HWEF and IHWEF on the NDFs
increase, the effects of HVEF and IHVEF on the NDFs change
irregularly in the HORP and IHORPs, as the ratio a/h increases.
It is noted that the influence of heterogeneity of elastic and vis-
coelastic foundations enhances the influence of foundations on
the NDFs.

If the inhomogeneity function is a linear function, the
numerical results and responses for β1 = 0 and β1 = 1 become
the samewith all αi(i = 1, 2, 3), since the integral with the coef-
ficient β3 is equal to zero.

It is seen from Tables 7 and 8, and Figures 5–7 that the val-
ues of the NDFs of HORPs and IHORPs-linear profiles with and
without elastic foundations increase, as the ratio, a/b increases.
As the inhomogeneity linearly change along the x1, x2 and x3
directions, the effect of the inhomogeneity on the NDFs of the

Figure . Distribution of NDFs for the HORPs and IHORPs with and without the
HWEF and HVEF against the a/b (a/h = 50,b = 1m).

Figure . Distribution of NDFs of the HORPs and IHORPs resting on the HWEF and
IHWEF and elastic foundations against the a/b (a/h = 50,b = 1m).

unconstrained (δj = 0 , j = 1, 2; K01 = K02 = 0) plates is sig-
nificantly and remains constant. For example, the greatest effect
are; 41.4% which occurs at α1 = α2 = 1, βi = 0 (see, Table 7);
(−18.36%) which occurs in αi = 0, β1 = 1 (see, Figure 5);
(−29.3%) which occurs in αi = 0, β1 = β2 = 1 (see, Table 8),
since a/b increases from 0.5 to 2.0.

If the inhomogeneity changes linearly along the x1, x2 and x3
directions, the greatest effect of the inhomogeneity on the NDFs
of the IHORPs resting on the HWEF ( δ1 = δ2 = 0, K01 =
5 × 106, K02 = 0) occurs inα1 = α2 = 1, βi = 0 and decreases

Figure . Distribution of NDFs of the HORPs and IHORPs resting on the HVEF and
IHVEF and elastic foundations against the a/b (a/h = 50,b = 1m).
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Table . Distribution of NDFs of HORPs and IHORPs resting on the elastic and viscoelastic foundations against the a/b (a/h = 50,b = 1m).

ω1

αi = βi = 0 (i = 1, 2, 3)
δj = 0 (i = 1, 2)

α1 = 1, α2 = α3 = 0
βi = δj = 0

α1 = α2 = 1, α3 = 0
βi = δj = 0

αi = 1
βi = δj = 0

a/b (K01, K02) = (0, 0)

. . . . .
. . . . .
. . . . .
. . . . .
a/b (K01, K02) = (5 × 106, 0)

. . . . .
. . . . .
. . . . .
. . . . .
a/b (K01, K02) = (5 × 106, 10)

. . . . .
. . . . .
. . . . .
. . . . .

αi = βi = δ1 = 0 α1 = 1, α2 = α3 = 0
βi = δ1 = 0

α1 = α2 = 1,
α3 = βi = δ1 = 0

αi = 1,
βi = δ1 = 0

a/b (K01, K02) = (5 × 106, 0)

. . . . .
. . . . .
. . . . .
. . . . .

αi = βi = 0
δ1 = δ2 = 1

α1 = δ1 = δ2 = 1,
α2 = α3 = βi = 0

α1 = α2 = 1, α3 = 0
βi = 0, δ1 = δ2 = 1

αi = 1, βi = 0,
δ1 = δ2 = 1

a/b (K01, K02) = (5 × 106, 10)

. . . . .
. . . . .
. . . . .
. . . . .

from 36.06% to 34.84%, whereas, as the plates resting on
the IHWEF ( δ1 = 1, δ2 = 0, K01 = 5 × 106, K02 = 0), the
greatest influence of inhomogeneity occurs in α1 = α2 = 1,
βi = 0 and decreases from 33.84% to 32.3% (see, Table 7), since
a/b increases from 0.5 to 2.0.

As the HVEF effect is taken into account, the values of the
NDF are reduced compared to the case without an elastic foun-
dation, whereas, the effects of inhomogeneity on the values
of NDF vary with the change of the ratio, a/b. The greatest
effect of the inhomogeneity on the NDFs for IHORPs resting on
the HVEF (i.e., δ1 = δ2 = 0, K01 = 5 × 106, K02 = 10) occurs
at α1 = α2 = 1, βi = 0 and decreases from 36.03% to 34.86%
(see, Table 7); the greatest effect occurs at α1 = α2 = β1 =
1 and decreases from 17.96% to12.25% which occurs at (see,
Figure 5); the greatest effect changes between (−22.41%) and
(−27.19%) which occurs at αi = 0, β1 = β2 = 1 (see, Table 8),
whereas, the plates resting on the IHVEF (δ1 = δ2 = 1, K01 =
5 × 106, K02 = 10) the greatest effects inhomogeneity occurs in
α1 = α2 = 1, βi = 0 and increase from 31.91% to 30.1% (see,
Table 7); the greatest effect changes between 28.13% and 9.09%
which occurs at α1 = α2 = β1 = 1 (see, Fig. 7); the greatest
effect changes between (−18.17%) and (−25.38%) which occurs
at αi = 0, β1 = β2 = 1 (see, Table 7), since a/b increases from
0.5 to 2.0.

As can be seen from Tables 7 and 8, and Figures 5–7 that,
the effects of inhomogeneity on the values of the frequencies of
plates resting on the inhomogeneous viscoelastic foundation are
greater than the plates resting on the homogeneous viscoelastic
foundation and the difference varies from 2% to 4%. In addi-
tion, the effect of the inhomogeneity on the frequency does not
depend on the change in the ratio a/b, and remains approx-
imately the same (−29.3%) at αi = 0 and βi = 1 (i = 1, 2, 3),
when the orthotropic plate rests on the homogeneous and inho-
mogeneousWinkler elastic foundations.When αi and βi change
together, the effect of the inhomogeneity on the frequencies of
the orthotropic plate rests on the homogeneous and inhomoge-
neous Winkler elastic foundations varies with the change in the
ratio a/b, but the inhomogeneity effect decreases compared to
the case of αi = 0 and βi = 1 (i = 1, 2, 3).

The effect ofmaterial inhomogeneity on the frequency values
increases due to an increase in the ratio a / b, when taking into
account the effects of HVEF and IHVEF. This effect varies from
2% to 5% compared to the frequencies of the plates located on
HWEF and IHWEF, whereas varies from 4% to 10% for the
plates resting on IHVEF, since the ratio a/b increases from 0.5
to 2.

If the values of the frequencies of HORP on the IHWEF are
compared with the frequency values of the plates resting on the
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Table . Distribution of NDFs for HORPs and IHORPs resting on the HWEF, IHWEF, HVEF and IHVEF and elastic foundations against the a/b (a/h = 50,b = 1m).

ω1

αi = δj = β3 = 0
β1 = β2 = 1

α1 = β1 = β2 = 1,
α2 = α3 = β3 = δj = 0

α1 = α2 = β1 = β2 = 1
α3 = β3 = δj = 0

αi = β1 = β2 = 1,
β3 = δj = 0

a/b (K01, K02) = (0, 0)

. . . . .
. . . . .
. . . . .
. . . . .
a/b (K01, K02) = (5 × 106, 0)

. . . . .
. . . . .
. . . . .
. . . . .
a/b (K01, K02) = (5 × 106, 10)

. . . . .
. . . . .
. . . . .
. . . . .

αi = β3 = δ2 = 0
β1 = β2 = δ1 = 1

α2 = α3 = β3 = δ2 = 0
α1 = β1 = β2 = δ1 = 1

α1 = α2 = β1 = β2 = 1,
α3 = β3 = δ2 = 0, δ1 = 1

β1 = β2 = αi = 1
β3 = δ2 = 0,δ1 = 1

a/b (K01, K02) = (5 × 106, 0)

. . . . .
. . . . .
. . . . .
. . . . .

αi = β3 = 0
β1 = β2 = δ j = 1

α1 = β1 = β2 = δj = 1,
α2 = α3 = β3 = 0

α1 = α2 = β1 = β2 = 1
α3 = β3 = 0, δj = 1

αi = δj = 1
β1 = β2 = 1, β3 = 0

a/h (K01, K02) = (5 × 106, 10)

. . . . .
. . . . .
. . . . .
. . . . .

HWEF, the influence of the inhomogeneity ofWEFon the values
of the frequency changes between 3.68% and 5.48% due to an
increase in the ratio a/b.

When the values of the frequencies of HORP on the IHVEF
are compared with the frequency values of the plates resting on
the HVEF, the influence of the inhomogeneity of viscoelastic
foundation on the values of the frequency changes between
(−7.35%) and 3.02% due to an increase in the ratio a/b from
0.25 to 2.

The effects of HVEF and IHVEF on the NDFs change irreg-
ularly in the HORP and IHORPs, whereas, the influences of
HWEF and IHWEF on the NDFs increase, as the ratio a/b
increases.

6. Conclusions

The paper developed the closed-form solution for the free
vibration problem of IHORPs resting on the IHVEF. The
Young’s moduli and density of the orthotropic plate vary con-
tinuously with respect to the three spatial coordinates, while the
characteristics of the viscoelastic foundation vary depending
on the in-plane coordinates. The relevant motion equation
is obtained using the CPT and solved using method of sepa-
ration of variables and then Bubnov–Galerkin method. The

frequencies obtained in this study were confirmed in com-
parison with studies in the literature. The influences of inho-
mogeneity of the orthotropic materials, the inhomogeneity of
viscoelastic and elastic foundations on the NDFs of the plates
are studied in detail.
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