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Abstract
This paper focuses on modeling and optimization of entropy-based uncertain multi-item solid transportation problems
(MISTPs), in which direct costs, supplies, demands, conveyance capacities are uncertain nature. The purpose is to mini-
mize the total uncertain cost via maximum entropy which ensures uniform delivery of products from sources to destinations
through conveyances. The expected value programming and expected constrained programming models for optimizing the
entropy-based uncertainMISTPs are constructed. Thesemodels are based on uncertainty theory. Subsequently, the constructed
models are converted into their deterministic equivalences which are solved using two known mathematical programming
methods. Finally, a numerical example is given to illustrate the models.

Keywords Uncertain entropy function · Multi-item transportation problem · Uncertain multi-objective optimization ·
Uncertainty theory

1 Introduction

The solid transportation problem (STP) is a problemof carry-
ing goods from numerous sources to different destinations by
different conveyances so that the task is optimum. STP was
introduced by Schell (1955). A solution procedure of STP
was presented by Haley (1962). Then, Bhatia et al. (1976)
presented a technique and achieved the minimum time for
the STP. Li et al. (1997) introduced neural network approach
for multi-criteria STPs.

In practice, the transportation system is required to carry
more than one item from several sources to several destina-
tions by different conveyances. Such a type of transportation
model is called multi-item solid transportation problem
(MISTP). But a problem appears when not all kinds of items
can be carried by all kinds of conveyances owing to nature
of the items. Nowadays, MISTP under different uncertainty
has been studied by some scholars (Dalman et al. 2016; Liu
et al. 2017) and so on.
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Since data cannot be estimated accurately in real world
transportation problems, it is hard to estimate the exact value
amounts of resources, demands, direct unit costs of trans-
portation systems.These shortcomings are sometimes treated
as random, fuzzy and uncertain variables. Stochastic pro-
gramming deals with situations where the input data are
imprecise in the stochastic sense and described by random
variables with the known probability distribution. Therefore,
the probability distributions of variables cannot be observed
generally. Thus, we can need some specialists to estimate
the belief degrees that each event will happen. Such a type
of indeterminate, a common view is to handle belief degrees
like probability distributions. Also, Liu (2012) showed that
it is inappropriate to determine belief degrees for probabil-
ity theory, and it will give rise to unacceptable outcomes.
In order to handle these types of uncertainties, Liu (2007)
presented uncertainty theory which is a branch of mathemat-
ics based on normality, monotonicity, self-duality, countable
subadditivity and product measure axioms. Then, the uncer-
tainty theorywas redefined by Liu (2010). Since then, studies
on uncertainty theory have started to increase in both theory
and practice. Moreover, it has been used in many areas such
as game theory (Yang andGao 2013;Gao et al. 2017), finance
(Liu 2013; Guo and Gao 2017; Xiao et al. 2016), differential
equation (Yao et al. 2013), regression (Yao and Liu 2017),
optimization (Liu and Chen 2015; Zhou et al. 2014), graph
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theory (Liu 2014; Shi et al. 2017; Chen et al. 2017; Cheng
et al. 2017; Rosyida et al. 2018; Chen et al. 2017).

STP with uncertain variables has been examined by
some scholars. Cui and Sheng (2013) presented uncertain
programmingmodels for the STP. Zhang et al. (2016) investi-
gated the fixed charge solid transportation problem applying
uncertainty theory. Chen et al. (2017) presented uncertain
bi-criteria models for the STP. Chen et al. (2017) studied
an entropy-based STP with Shannon entropy. MISTP mod-
els with uncertain variables were presented by Dalman et al.
(2016). Majumder et al. (2018) presented the uncertain fixed
charge MISTP with budget constraints.

None of the earlier works did discuss entropy-based
MISTP with uncertain variables. Entropy is employed to
produce a quantitative measure of the degree of uncertainty.
Based on the Shannon entropy of random variables (Shan-
non and Weaver 1949), fuzzy entropy was first introduced
by Zadeh (1968) to quantify the fuzziness, who represented
the entropy of a fuzzy event as a weighted Shannon entropy.
Based on the uncertainty theory, the concept of entropy of
uncertain variables is proposed by Liu (2009) to characterize
the uncertainty of uncertain variables resulting from informa-
tion deficiency. Chen and Dai (2011), Dai and Chen (2012)
investigated the maximum entropy principle of uncertainty
distribution for uncertain variables. They gave entropy of a
function of uncertain variables.

Entropy function describes ameasure of dispersals of trips
from sources to destinations via conveyances. It is useful to
minimize the transportation penalties as well as to maximize
entropy amount Chen et al. (2017), Ojha et al. (2009). That
ensures consistent distribution of commodities between ori-
gins and destinations. Thus, the contribution of this paper
is that we offer an entropy-based model to MISTP by using
uncertainty theory.

Therefore, in this paper, an entropy-based MISTP model
with uncertain variables is offered to provide the uniform
distribution of commodities. Thus, uncertain entropy func-
tion of dispersal of trips between origins and destinations
is considered as a second objective function. Thus, the sin-
gle objective MISTP with uncertain variables transformed to
multi-objective MISTP with uncertain variables. To model
the considered problem, expected value programming model
and expected constrained programming model are used. By
employing uncertainty theory, the entropy-based uncertain
MISTP models with uncertain variables are turned into its
deterministic equivalences that can be solved by using two
different mathematical programming methods.

The remainder of the paper is formed as follows; Sect. 2
and Sect. 3 give fundamental definitions and theorems. The
construction of MISTP is given in Sect. 4. Then, an entropy-
basedmodel is developed in Sect. 5. Sections 6 and 7 contain
the solution method and numerical experiment. The paper is
concluded in Sect. 8.

2 Preliminary

Basic definitions and notations of uncertainty theory are
given here.

Definition 2.1 (Liu 2007) Let L be a σ -algebra on a
nonempty set �. A set function M is called an uncertain
measure if it satisfies the following axioms:
Axiom 1. (Normality Axiom) M{�} = 1;
Axiom 2. (Duality Axiom) M{�} + M{�c} = 1 for any
� ∈ L;
Axiom3. (SubadditivityAxiom) For every countable sequence
of {�i } ∈ L, we have

M

{ ∞⋃
i=1

�i

}
≤

∞∑
i=1

M{�i }.

The triplet (�,L,M) is called an uncertainty space, and
each element � in L is called an event. In addition, in order
to obtain an uncertain measure of compound event, a product
uncertain measure is defined by Liu (2009) by the following
product axiom:
Axiom 4. (Product Axiom) Let (�k,Lk,Mk) be uncertainty
spaces for k = 1, 2, . . . The product uncertain measureM is
an uncertain measure satisfying

M

{ ∞∏
k=1

�k

}
=

∞∧
k=1

Mk{�k}

where �k are arbitrarily chosen events from Lk for k =
1, 2, . . ., respectively.

Definition 2.2 (Liu 2007) An uncertain variable ξ is a mea-
surable function from an uncertainty space (�,L,M) to the
set of real numbers, i.e., for any Borel set B of real numbers,
the set

{ξ ∈ B} = {γ ∈ �|ξ(γ ) ∈ B}

is an event.

Definition 2.3 (Liu 2007) The uncertainty distribution � of
an uncertain variable ξ is defined by

�(x) = M {ξ ≤ x} , ∀x ∈ �.

Definition 2.4 (Liu 2007) Let ξ be an uncertain variable. The
expected value of ξ is defined by

E[ξ ] =
∫ +∞

0
M{ξ ≥ r}dr −

∫ 0

−∞
M{ξ ≤ r}dr
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provided that at least one of the above two integrals is finite.
An uncertain variable ξ is called linear if it has a linear uncer-
tainty distribution

�(x) =
⎧⎨
⎩
0, x ≤ a
(x − a) / (b − a) , a ≤ x ≤ b
1, x ≥ b

denoted by Ł (a, b)where a and b are real numbers with a <

b. Suppose that ξ1 and ξ2 are independent linear uncertain
variables Ł (a1, b1) and Ł (a2, b2) . Then the sum ξ1 + ξ2 is
also a linear uncertain variable Ł (a1 + a2, b1 + b2) .

Definition 2.5 (Liu 2007) Let ξ be an uncertain variable with
a regular uncertainty distribution�(x). If the expected value
is available, then

E[ξ ] =
∫ 1

0
�−1(α)dα

where �−1(α) is the inverse uncertainty distribution of ξ .

Theorem 2.1 (Liu 2010) Assume ξ1, ξ2, . . . , ξn are indepen-
dent uncertain variables with regular uncertainty distribu-
tions �1,�2, . . . , �n, respectively. If the function f (x1, x2,
. . . , xn) is strictly increasing with respect to x1, x2, . . ., xm
and strictly decreasing with respect to xm+1, xm+2, . . . , xn,
then ξ = f (ξ1, ξ2, . . . , ξn) has an inverse uncertainty dis-
tribution

	−1(α)

= f
(
�−1

1 (α), . . . , �−1
m (α),�−1

m+1(1 − α), . . . , �−1
n (1 − α)

)
.

In addition, Liu and Ha (2010) proved that the uncertain
variable ξ has an expected value

E[ξ ]

=
∫ 1

0
f
(
�−1
1 (α), . . . , �−1

m (α),�−1
m+1(1 − α), . . . , �−1

n (1 − α)
) ∫

dα.

Theorem 2.2 (Liu 2010) Let ξ and η be independent uncer-
tain variables with finite expected values. Since then, for any
real numbers a and b, we obtain

E[aξ + bη] = aE[ξ ] + bE[η].

Theorem 2.3 (Liu (2009)) Let g({x, ξ1, ξ2, . . . , ξn) be con-
straint function. This function is strictly increasing with
respect to ξ1, ξ2, . . . , ξk and strictly decreasing with respect
to ξk+1. ξ1, ξ2, . . . , ξk are also independent uncertain vari-
ables with uncertain distributions �1,�2, . . . , �n, respec-
tively, then the chance constraint

M {g({x, ξ1, ξ2, . . . , ξn) ≤ 0} ≥ α

holds if and only if

g
(
{x,�−1

1 (α), . . . , �−1
k (α),

�−1
k+1(1 − α), . . . , �−1

n (1 − α)
)

≤ 0.

3 Entropy of function of uncertain variables

Here, we will give the definition and theory of uncertain
entropy function. The theory of entropy introduced by Liu
(2009) is as follows.

Theorem 3.1 Let ξ be an uncertain variable and its entropy
is determined as:

H [ξ ] =
∫ ∞

−∞
S (M {ξ ≤ x}) dx,

where S (t) = −t ln t − (1 − t) ln (1 − t) .

Theorem 3.2 Let ξ be an uncertain variable with regular
uncertainty distribution �. If the entropy H [ξ ] exists, then

H [ξ ] =
∫ 1

0
�−1 (α) ln

α

1 − α
dα.

Theorem 3.3 (Dai and Chen 2012) Let ξ1, ξ2, . . . , ξn be re
independent uncertain variables with regular uncertainty
distribution �1,�2, . . . , �n, respectively. If f : Rn → R
is a strictly monotone function, then the uncertain variable
ξ = f (ξ1, ξ2, . . . , ξn) has an entropy

H [ξ ] =
∣∣∣∣
∫ 1

0
f
(
�−1

1 (α) ,�−1
2 (α) , . . . , �−1

n (α)
)
ln

α

1 − α
dα

∣∣∣∣ .
Theorem 3.4 (Dai and Chen (2012)) Let ξ1, ξ2, . . . , ξn be
re independent uncertain variables with regular uncertainty
distribution�1,�2, . . . , �n, respectively. If f : Rn → R is
a strictly increasing function with respect to x1, x2, . . . , xm
and strictly decreasing function with xm+1, xm+2, . . . , xn
then the uncertain variable ξ = f (ξ1, ξ2, . . . , ξn) has an
entropy

H [ξ ] =
∫ 1

0
f
(
�−1

1 (α) , . . . , �−1
m (α) ,�−1

m+1 (1 − α) , . . . ,

�−1
n (1 − α)

)
ln

α

1 − α
dα.

Theorem 3.5 (Dai andChen (2012)) Assume that ξ and η are
independent uncertain variables. Then we obtain for a, b ∈
�,

H [aξ + bη] = |a| H [ξ ] + |b| H [η] .
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4 Uncertain programmingmodels for
multi-objective multi-item solid
transportation problem

In the MISTP, there is a multi-product to be carried from a
set of origins to a set of destinations by a set of both sim-
ilar or distinct conveyances. Every origin has such event to
provide any of the destinations employing some of the con-
veyances and every destination can receive its demand from
some of the origins employing some of the conveyances.
Thus, every origin can provide zero, one or more destina-
tions and the demand for each destination can be met by at
least one origin. Each conveyance also is employed for zero,
one or more unlocked ways from the origins to the destina-
tions. An unit charge is taken into account for carrying any
quantity of products between the origins and the destinations
via distinct conveyances. The purpose of the MISTP is to
minimize the total transportation cost by obtaining an opti-
mal outcome of the products communicated in the unlocked
directions by distinct conveyances.

In order to formulate the MISTP, the following notations
in this paper are employed.

M: the number of origins,
N : the number of destinations,
L: the number of conveyances,
R: the number of items,
i, j, k,p: the indexes used for source, destination and con-

veyance, respectively.
a p
i : the capacity of products of item p at origins i ,
bp
j : the demand of products of item p at destination j ,

ek : the total transportation capacity of conveyance k,
cpi jk the unit cost of transporting one unit of item p

from source i to destination j by conveyance k,
x p
i jk the amount of item p to be carried from source i

to destination j by conveyance k.

Using these notations, a mathematical model of single
objective MISTP can be formulated as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f (x) =
R∑

p=1

M∑
i=1

N∑
j=1

L∑
k=1

cpi jk x
p
i jk (a)

s.t .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N∑
j=1

L∑
k=1

x p
i jk ≤ a p

i , ∀i ∈ M; ∀p ∈ R (b)

M∑
i=1

L∑
k=1

x p
i jk ≥ bp

j ,∀ j ∈ N ; ∀p ∈ R (c)

R∑
p=1

M∑
i=1

L∑
k=1

x p
i jk ≤ ek,∀k ∈ L (d)

x p
i jk ≥ 0, ∀i ∈ M; ∀ j ∈ N ; ∀k ∈ L; ∀p ∈ R (e)

(1)

In this model, the objective function (a) decreases the whole
transportation cost which is the sum of each unit cost. Con-
straint (b) guarantees that the whole amount of merchandise
p carried from each origin to every destination should not
be greater than the magnitude of that origin. Constraint (c)
warrants that the demand for each destination should be
answered. Constraint (d) shows the capacity of each con-
veyance, and constraint (e) depicts nonnegative variables.

In order to construct its uncertain programming model, let
us consider that the per unit cost ξ

p
i jk, the capacity of each

origin ã p
i , that of each destination b̃ p

j and each conveyance

b̃ p
j are all uncertain variables, respectively. Then the MISTP

can be formulated as the following uncertain programming
model as follows.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f (x, ξ) =
R∑

p=1

M∑
i=1

N∑
j=1

L∑
k=1

x p
i jkξ

p
i jk

s.t .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N∑
j=1

L∑
k=1

x p
i jk ≤ ã p

i , ∀i ∈ M; ∀p ∈ R

M∑
i=1

L∑
k=1

x p
i jk ≥ b̃ p

j ,∀ j ∈ N ; ∀p ∈ R

R∑
p=1

M∑
i=1

L∑
k=1

x p
i jk ≤ ẽk,∀k ∈ L

x p
i jk ≥ 0, ∀i ∈ M; ∀ j ∈ N ; ∀k ∈ L; ∀p ∈ R

(2)

It is clear that model (2) contains uncertain parameters. So it
cannot be optimized as the deterministic programming prob-
lem. In order to optimize the model with uncertain variables,
we transform into its equivalent models. Therefore, two
programming models based on expected value and change
constraint programming are presented.

4.1 Expected value programmingmodel

Since the expected value is the average value of an uncertain
variable in the sense of uncertain measure, the main idea
of expected value programming model is to optimize the
expected value of the objective function under the expected
constraints.
Here, expected value programming model for optimizing
MISTP can be formulated as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E[ f(x, ξ)] = min E

[
R∑

p=1

M∑
i=1

N∑
j=1

L∑
k=1

(
ξ
p
i jk x

p
i jk

)]

s.t .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E

[
N∑
j=1

L∑
k=1

x p
i jk − ã p

i

]
≤ 0, ∀i ∈ M; ∀p ∈ R

E

[
b̃ j −

M∑
k=1

L∑
k=1

x p
i jk

]
≤ 0,∀ j ∈ N ; ∀p ∈ R

E

[
R∑

p=1

M∑
i=1

L∑
j=1

x p
i jk − ẽk

]
≤ 0,∀k ∈ L

x p
i jk ≥ 0,∀i ∈ M; ∀ j ∈ N ; ∀k ∈ L; ∀p ∈ R

(3)
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where ξ
p
i jk, ã

p
i , b̃ p

j , ẽk, ∀i jk are all independent uncertain
variables.

Theorem 4.1 Furthermore, model (3) is equivalent to the
model given below.

min
R∑

p=1

M∑
i=1

N∑
j=1

L∑
k=1

x p
i jk

1∫
0

�−1
ξ
p
i jk

(α) dα

s.t .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N∑
j=1

L∑
k=1

x p
i jk −

1∫
0

�−1
ã p
i
(1 − α

p
i )dα p

i ≤ 0, ∀i ∈ M; ∀p ∈ R

1∫
0

�−1
b̃ pj

(
β
p
j

)
dβ p

j −
M∑
k=1

L∑
k=1

x p
i jk ≤ 0, ∀ j ∈ N ; ∀p ∈ R

R∑
p=1

M∑
i=1

N∑
j=1

x p
i jk −

1∫
0

�−1
c̃k

(1 − δk)dδk ≤ 0, ∀k ∈ L

x p
i jk ≥ 0, ∀i ∈ M; ∀ j ∈ N ; ∀p ∈ R

(4)

Proof Since ξ
p
i jk, ã

p
i , b̃ p

j , ẽk, for ∀i jk are independent uncer-
tain variables with uncertainty distributions�ξ

p
i jk

,�ã p
i
,�b̃ pj

,

�ẽk .

Following from the linearity of expected value operator of
uncertain variable, model (3) turns into the following model.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E[ f(x, ξ)] = min
R∑

p=1

M∑
i=1

N∑
j=1

L∑
k=1

x p
i jkE

[
ξ
p
i jk

]

s.t .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N∑
j=1

L∑
k=1

x p
i jk − E

[
ã p
i

] ≤ 0, ∀i ∈ M; ∀p ∈ R

E
[
b̃ j

]
−

M∑
k=1

L∑
k=1

x p
i jk ≤ 0,∀ j ∈ N ; ∀p ∈ R

R∑
p=1

M∑
i=1

L∑
j=1

x p
i jk−E

[
ẽk
] ≤ 0, ∀k ∈ L

x p
i jk ≥ 0, ∀i ∈ M; ∀ j ∈ N ; ∀k ∈ L; ∀p ∈ R

(5)

From Definition 2.5 and Theorem 2.1, it is seen that this
model is equivalent to model (4). Thus, the theorem is veri-
fied. 	


4.2 Expected constrained programmingmodel

The expected constrained programming is another method to
deal with the optimal problem in the uncertain environment.
The main idea of the model is to optimize the expected value
of the objective function under the chance constraints. Its
mathematical model is as follows.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E [ f(x, ξ)] = min E

[
R∑

p=1

M∑
i=1

N∑
j=1

L∑
k=1

(
ξ
p
i jk x

p
i jk

)]

s.t .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M

{
N∑
j=1

L∑
k=1

x p
i jk − ã p

i ≤ 0

}
≥ γ

p
i , ∀i ∈ M; ∀p ∈ R

M

{
b̃ j −

M∑
k=1

L∑
k=1

x p
i jk ≤ 0

}
≥ β

p
j , ∀ j ∈ N ; ∀p ∈ R

M

{
R∑

p=1

M∑
i=1

L∑
j=1

x p
i jk − ẽk ≤ 0

}
≥ δk , ∀k ∈ L

x p
i jk ≥ 0, ∀i ∈ M; ∀ j ∈ N ; ∀k ∈ L; ∀p ∈ R

(6)

where α
p
i , β

p
j , δk, ∀i ∈ M; ∀ j ∈ N ; ∀k ∈ L; ∀p ∈ R are

the confidence levels of each of constraint.

Theorem 4.2 Further, the model given above is converted
into its equivalent deterministic form as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
R∑

p=1

M∑
i=1

N∑
j=1

L∑
k=1

x p
i jk

1∫
0

�−1
ξ
p
i jk

(α) dα

s.t .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N∑
j=1

L∑
k=1

x p
i jk − �−1

ã p
i
(1 − α

p
i ) ≤ 0, ∀i ∈ M; ∀p ∈ R

�−1
b̃ pj

(
β
p
j

)
−

M∑
k=1

L∑
k=1

x p
i jk ≤ 0, ∀ j ∈ N ; ∀p ∈ R

R∑
p=1

M∑
i=1

N∑
j=1

x p
i jk − �−1

c̃k
(1 − δk) ≤ 0, ∀k ∈ L

x p
i jk ≥ 0, ∀i ∈ M; ∀ j ∈ N ; ∀p ∈ R

(7)

where ξ
p
i jk, ã

p
i , b̃ p

j , ẽk, ∀i jk are independent uncertain vari-
ables with uncertainty distributions �ξ

p
i jk

,�ã p
i
,�b̃ pj

,�ẽk .

Proof Since ξ
p
i jk has a regular uncertainty distribution �

p
i jk,

from Theorems 2.1 and 2.2, we write

E

[
R∑

p=1

M∑
i=1

N∑
j=1

L∑
k=1

(
ξ
p
i jk x

p
i jk

)]

=
R∑

p=1

M∑
i=1

N∑
j=1

L∑
k=1

x p
i jkE

[
ξ
p
i jk

]
=

R∑
p=1

M∑
i=1

N∑
j=1

L∑
k=1

x p
i jk

1∫
0

�−1
ξ
p
i jk

.

Applying Theorem 2.3 to the constraints of model (3), we
have

M

⎧⎨
⎩

N∑
j=1

L∑
k=1

x p
i jk − ã p

i ≤ 0

⎫⎬
⎭ ≥ γ

p
i

⇔
N∑
j=1

L∑
k=1

x p
i jk − �−1

ã p
i
(1 − α

p
i ) ≤ 0, ∀i ∈ M; ∀p ∈ R

M

{
b̃ j −

M∑
k=1

L∑
k=1

x p
i jk ≤ 0

}
≥ β

p
j

⇔ �−1
b̃ pj

(
β
p
j

)
−

M∑
k=1

L∑
k=1

x p
i jk ≤ 0, ∀ j ∈ N ; ∀p ∈ R
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M

⎧⎨
⎩

R∑
p=1

M∑
i=1

L∑
j=1

x p
i jk − ẽk ≤ 0

⎫⎬
⎭ ≥ δk

⇔
R∑

p=1

M∑
i=1

N∑
j=1

x p
i jk − �−1

c̃k
(1 − δk) ≤ 0,∀k ∈ L

The above operations show that model (3) is equivalent to
model (4). 	


5 Entropy-basedMISTPmodels with
uncertain variables

MISTPs with the entropy function are studied by several
scholars in the literature (Chen et al. 2017; Ojha et al. 2009).
They used Shannon entropy function. Thus, they have shown
that the entropy function in a transportation problem operates
as a measure of dispersal of trips among origins, destinations
and conveyances. It is useful for achieving the minimum
transportation costs as well as maximum entropy amount.
Thus, the carried products are distributed to each destination
and besides the cost is expensive than that for the event of
entropy function. In this paper, we use the uncertain entropy
function as an additional objective in order to reach all direc-
tions in a transportation network, if likely.

By utilizing Theorems 3.4 and 3.5 to the objective func-
tion of model (4), we define the following uncertain entropy
function.

Lemma 5.1 Suppose ξ
p
i jk is an uncertain variable with regu-

lar uncertainty distribution�
p
i jk . If f : Rn → R is a strictly

increasing function with respect to x p
i jk then the uncertain

function f (x, ξ) has an entropy, i.e.,

H [x, ξ ] =
R∑

p=1

M∑
i=1

N∑
j=1

L∑
k=1

x p
i jk

1∫
0

�−1
ξ
p
i jk

(α) ln
α

1 − α
dα

It is noted that if f : Rn → R is a strictly decreasing
function with respect to x p

i jk, then the uncertain function
f (x, ξ) has an entropy

H [x, ξ ] =
R∑

p=1

M∑
i=1

N∑
j=1

L∑
k=1

x p
i jk

1∫
0

�−1
ξ
p
i jk

(1 − α) ln
α

1 − α
dα

Proof Since ξ
p
i jk has a regular uncertainty distribution �

p
i jk,

we obtain

H [x, ξ ] =
R∑

p=1

M∑
i=1

N∑
j=1

L∑
k=1

x p
i jk

∞∫
−∞

f

(
�

ξ
p
i jk

(x)

)
dx

From Theorem 3.5, this equality can be rewritten as:

H [x, ξ ] =
R∑

p=1

M∑
i=1

N∑
j=1

L∑
k=1

x p
i jk

0∫
−∞

�
ξ
p
i jk

(x)∫
0

f ′ (α) dαdx

+
R∑

p=1

M∑
i=1

N∑
j=1

L∑
k=1

x p
i jk

0∫
−∞

∞∫
�

ξ
p
i jk

(x)

− f ′ (α) dαdx

where f ′ (α) = (−α ln α − (1 − α) ln (1 − α))′ = − ln α
1−α

.

By applying the Fubini Theorem to the above function, we
obtain

H [x, ξ ] =
R∑

p=1

M∑
i=1

N∑
j=1

L∑
k=1

x p
i jk

0∫
−∞

0∫
�−1

ξ
p
i jk

(x)

f ′ (α) dαdx

+
R∑

p=1

M∑
i=1

N∑
j=1

L∑
k=1

x p
i jk

1∫
�

ξ
p
i jk

(0)

�
ξ
p
i jk

(x)∫
0

− f ′ (α) dαdx .

=
R∑

p=1

M∑
i=1

N∑
j=1

L∑
k=1

x p
i jk

1∫
0

�−1
ξ
p
i jk

(α) f ′ (α) dα

=
R∑

p=1

M∑
i=1

N∑
j=1

L∑
k=1

x p
i jk

1∫
0

�−1
ξ
p
i jk

(α) ln
α

1 − α
dα.

	


Example 5.1 Let us consider the objective function of (8) and
suppose x p

i jk are independent uncertain variables with linear

distribution L
(
a p
i jk, b

p
i jk

)
. Then the objective function of

model (8) has the following entropy function

H [x, ξ ] =
R∑

p=1

M∑
i=1

N∑
j=1

L∑
k=1

x p
i jk

1∫
0

�−1
ξ
p
i jk

(α) ln
α

1 − α
dα

=
R∑

p=1

M∑
i=1

N∑
j=1

L∑
k=1

x p
i jk

(
bp
i jk − a p

i jk

2

)

where

�−1
ξ
p
i jk

(α) = (1 − α) a p
i jk + αbp

i jk .

Example 5.2 Suppose x p
i jk are independent uncertain vari-

ables withwith zigzag distribution Z
(
a p
i jk, b

p
i jk, c

p
i jk

)
.Then

the objective function of model (8) has the following entropy
function
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H [x, ξ ] =
R∑

p=1

M∑
i=1

N∑
j=1

L∑
k=1

x p
i jk

1∫
0

�−1
ξ
p
i jk

(α) ln
α

1 − α
dα

=
R∑

p=1

M∑
i=1

N∑
j=1

L∑
k=1

x p
i jk

(
cpi jk − a p

i jk

2

)

where

�−1
ξ
p
i jk

(α) =
{

(1 − 2α) a p
i jk + 2αbp

i jk, if α < 0.5
(2 − 2α) bp

i jk + (2α − 1) cpi jk, if α ≥ 0.5.

Example 5.3 Suppose x p
i jk are independent uncertain vari-

ables withwith normal uncertain distribution N
(
epi jk, σ

p
i jk

)
.

Then the objective function of model (8) has the following
entropy function

H [x, ξ ] =
R∑

p=1

M∑
i=1

N∑
j=1

L∑
k=1

x p
i jk

1∫
0

�−1
ξ
p
i jk

(α) ln
α

1 − α
dα

=
R∑

p=1

M∑
i=1

N∑
j=1

L∑
k=1

x p
i jk

(
πσ

p
i jk√
3

)

where �−1
ξ
p
i jk

(α) = epi jk + σ
p
i jk

√
3

π
ln α

1−α
.

Adding the entropy function to model (4), it turns to the fol-
lowing multi-objective expected value programming model.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
R∑

p=1

M∑
i=1

N∑
j=1

L∑
k=1

x p
i jk

1∫
0

�−1
ξ
p
i jk

(α) dα

max
R∑

p=1

M∑
i=1

N∑
j=1

L∑
k=1

x p
i jk

1∫
0

�−1
ξ
p
i jk

(α) ln
α

1 − α
dα

s.t .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N∑
j=1

L∑
k=1

x p
i jk −

1∫
0

�−1
ã p
i
(1 − α

p
i )dα p

i ≤ 0,∀i ∈ M; ∀p ∈ R

1∫
0

�−1
b̃ pj

(
β
p
j

)
dβ p

j −
M∑
k=1

L∑
k=1

x p
i jk ≤ 0,∀ j ∈ N ; ∀p ∈ R

R∑
p=1

M∑
i=1

N∑
j=1

x p
i jk −

1∫
0

�−1
c̃k

(1 − δk)dδk ≤ 0,∀k ∈ L

x p
i jk ≥ 0,∀i ∈ M; ∀ j ∈ N ; ∀p ∈ R

(8)

Also adding entropy function to model (7), it turns into the
multi-objective expected constrained programming model,
as follows.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
R∑

p=1

M∑
i=1

N∑
j=1

L∑
k=1

x p
i jk

1∫
0

�−1
ξ
p
i jk

(α) dα

max
R∑

p=1

M∑
i=1

N∑
j=1

L∑
k=1

x p
i jk

1∫
0

�−1
ξ
p
i jk

(α) ln
α

1 − α
dα

s.t .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N∑
j=1

L∑
k=1

x p
i jk − �−1

ã p
i
(1 − α

p
i ) ≤ 0,∀i ∈ M; ∀p ∈ R

�−1
b̃ pj

(
β
p
j

)
−

M∑
k=1

L∑
k=1

x p
i jk ≤ 0,∀ j ∈ N ; ∀p ∈ R

R∑
p=1

M∑
i=1

N∑
j=1

x p
i jk − �−1

c̃k
(1 − δk) ≤ 0,∀k ∈ L

x p
i jk ≥ 0,∀i ∈ M; ∀ j ∈ N ; ∀p ∈ R

(9)

6 Methodologies for deterministic
equivalences

6.1 Minimizing distance function

This method combines multiple objectives E[ f1(x, ξ)] and
E[ f2(x, ξ)] employing the distance metric of any solution
from the ideal solution (E∗

1 , E
∗
2 ) where E∗

i for each i =
1, 2 are the optimal values of the i-th objective function.
Thus, multi-objective programming models (8) and (9) can
be reformulated as single objective programming problems
by using minimizing distance function, as follows.

⎧⎪⎨
⎪⎩
min
x

(√
(E[ f1(x, ξ)] − E∗

1 )
2 + (E[ f2(x, ξ)] − E∗

2 )
2
)

subject to:
constraints of (8) or (9))

(10)

Theorem 6.1 Let x∗ be an optimal solution for model (10).
Then x∗ should be a Pareto optimal solution for models (8)
and (9).

Assume that the optimal solution x∗ is not a Pareto optimal
solution of uncertain programming model (8) (or model 9).
So, there must exist a feasible solution x such that(√

(E[ f1(x, ξ)] − E∗
1 )

2 + (E[ f2(x, ξ)] − E∗
2 )

2

)

<

(√
(E[ f1(x∗, ξ)] − E∗

1 )
2 + (E[ f2(x∗, ξ)] − E∗

2 )
2

)
.

It implies that x∗ is not an optimal solution of model (10).
This contradiction gives that x∗ is a Pareto optimal solution
of model (8) (or model 9).
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Fig. 1 Representation of
network for the considered
MISTP

Table 1 Transportation cost ξ p
i jk

for item p = 1
ξ1i j1 1 2 3 4 ξ1i j2 1 2 3 4

1 N(10,2) N(9,1.5) N(12,2) N(8,1.5) 1 N(7,2) N(5,1.5) N(5,2) N(6,1.5)

2 N(8,1) N(9,1.5) N(11,2) N(10,1) 2 N(5,1) N(6,1.5) N(4,2) N(6,1)

3 N(8,1.5) N(17,1.5) N(6,1.5) N(10,1.5) 3 N(4,1.5) N(7,1.5) N(6,1.5) N(5,1.5)

Table 2 Transportation cost ξ p
i jk

for item p = 2
ξ2i j1 1 2 3 4 ξ2i j2 1 2 3 4

1 N(9,2) N(6,1.5) N(3,2) N(7,1.5) 1 N(5,2) N(6,1.5) N(7,2) N(9,1.5)

2 N(9,1) N(10,1.5) N(11,2) N(10,1) 2 N(5,1) N(5,1.5) N(3,2) N(3,1)

3 N(6,1.5) N(18,1.5) N(8,1.5) N(12,1.5) 3 N(2,1.5) N(8,1.5) N(7,1.5) N(3,1.5)

6.2 Linear weightingmethod

The linear weighted method has been widely employed for
solving the multi-objective programming problems. In this
method, the weights are the relative importance of each
objective as determined by the decision makers.
The problem involving multi-objective can be transformed
into the following single objective programming problem by
using a simple weighted method.⎧⎪⎨
⎪⎩
min
x

(w1E[ f1(x, ξ)] + (−w2)E[ f2(x, ξ)])
subject to:

constraints of(8) or (9)

(11)

where the weights w1, w2 are positive numbers with w1 +
w2 = 1.

Definition 6.1 Let x∗ be an optimal solution of problem (11).
Then x∗ must be a Pareto optimal solution of model (8) or
(9).

Suppose that x∗ is not a Pareto optimal solution of model (8)
or (9) and then there must exist a feasible solution x such that
(w1E[ f1(x, ξ)] + (−w2)E[ f2(x, ξ)]) ≤ (−w1E[ f1(x∗, ξ)]

+(−w2)E[ f2(x∗, ξ)]) where the weights w1, w2 are posi-
tive numbers withw1 +w2 = 1. This indicates that x∗ is not
an optimal solution of model (11). Therefore, x∗ is a Pareto
optimal solution of model (8) and/or (9).

7 A numerical example

In order to confirm the employment of these models, we
give a numerical experiment in this section. Suppose that
two products (items) are to be carried from three origins
(O1, O2, O3) to four destinations (D1, D2, D3, D4) through
two distinct conveyances (C1,C2).

The schematic illustration for the considered MISTP is
given with Fig. 1 where the hosts display all the potential
directions for carrying twodifferent products from the origins
to the destinations via conveyances.

Let us consider that variables of the objective function are
normal uncertain variables and also variables of constraints
are linear uncertain variables, respectively. All data of the
considered model are presented in Tables 1, 2, 3, 4 and 5,
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Table 3 Sources ã p
i i 1 2 3 1 2 3

ã1i Ł(200,300) Ł(250,350) Ł(100,150) ã2i Ł(100,150) Ł(125,250) Ł(110,160)

Table 4 Demands b̃ p
j j 1 2 3 4 1 2 3 4

b̃1j Ł(75,125) Ł(30,75) Ł(15,35) Ł(25,50) b̃2j Ł(55,100) Ł(60,100) Ł(20,30) Ł(10,20)

Table 5 Transportation
capacities ẽk

k 1 2

ẽk Ł(250,300) Ł(350,500)

respectively. Here, the computational procedures are carried
out on a personal computer (Intel (R) Core (TM) i3-4005U,
@ 1.70 GHz and 4 GB memory) employing Maple 2018
optimization toolbox.

ξ
p
i jk → N

(
epi jk , σ

p
i jk

)
, i ∈ [1, 3] ; j ∈ [1, 4] ; k ∈ [1, 2] ; p ∈ [1, 2]

ã p
i → L

(
a p
i , bp

i

)
, i ∈ [1, 3] ; p ∈ [1, 2]

b̃ p
j → L

(
bp
j , b

p
j

)
, j ∈ [1, 4] ; p ∈ [1, 2]

ẽk → L
(
bp
j , b

p
j

)
, k ∈ [1, 2]

Following from the abovedata tables, expectedvalue func-
tion for the MISTP is defined as;

2∑
p=1

3∑
i=1

4∑
j=1

2∑
k=1

x p
i jk

1∫
0

�−1
ξ
p
i jk

(α) dα

=
2∑

p=1

3∑
i=1

4∑
j=1

2∑
k=1

x p
i jke

p
i jk

and from Lemma 5.1, it has an entropy

2∑
p=1

3∑
i=1

4∑
j=1

2∑
k=1

x p
i jk

1∫
0

�−1
ξ
p
i jk

(α) ln
α

1 − α
dα

=
2∑

p=1

3∑
i=1

4∑
j=1

2∑
k=1

x p
i jk

(
πσ

p
i jk√
3

)

Assume that the expected value function and its entropy
function are f1 (x, ξ) , f2 (x, ξ) ,respectively.
Because the aim of this problem is to reach maximum
rootswithminimumcosts, the correspondingmulti-objective
expected value programmingmodel to entropy-basedMISTP
with uncertain variables is formulated as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
2∑

p=1

3∑
i=1

4∑
j=1

2∑
k=1

x p
i jk

1∫
0

�−1
ξ
p
i jk

(α) dα

max
2∑

p=1

3∑
i=1

4∑
j=1

2∑
k=1

x p
i jk

1∫
0

�−1
ξ
p
i jk

(α) ln
α

1 − α
dα

s.t .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N∑
j=1

L∑
k=1

x p
i jk −

1∫
0

�−1
ã p
i
(1 − α

p
i )dα p

i ≤ 0, i ∈ [1, 3] ; p ∈ [1, 2]

1∫
0

�−1
b̃ pj

(
β
p
j

)
dβ p

j −
3∑

i=1

2∑
k=1

x p
i jk ≤ 0, j ∈ [1, 4] ; p ∈ [1, 2]

2∑
p=1

3∑
i=1

4∑
j=1

x p
i jk −

1∫
0

�−1
c̃k

(1 − δk)dδk ≤ 0, k ∈ [1, 2]

x p
i jk ≥ 0, i ∈ [1, 3] ; j ∈ [1, 4] ; k ∈ [1, 2] ; p ∈ [1, 2]

(12)

Solving problem (12) as a single objective programming
problem ignoring another objective, respectively, the results
obtained are as follows:

min E [ f1] = 1637.5 andmax E [ f1] = 6340

min E [ f2] = 913.820 andmax E [ f2] = 2371.850

By applying distance minimization method (10) and lin-
ear weighted method (11) to multi-objective expected value
programming problem (12), the following single objective
programming problems are obtained, respectively.
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min

√√√√√
⎛
⎝ 2∑

p=1

3∑
i=1

4∑
j=1

2∑
k=1

x p
i jk

1∫
0

�−1
ξ
p
i jk

(α) dα − 1637.5

⎞
⎠

2

+
⎛
⎝ 2∑

p=1

3∑
i=1

4∑
j=1

2∑
k=1

x p
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min

⎛
⎝w1

2∑
p=1

3∑
i=1

4∑
j=1

2∑
k=1

x p
i jk

1∫
0

�−1
ξ
p
i jk

(α) dα

+
⎛
⎝−w2

2∑
p=1

3∑
i=1

4∑
j=1

2∑
k=1

x p
i jk

1∫
0

�−1
ξ
p
i jk

(α) ln
α

1 − α
dα

⎞
⎠
⎞
⎠

s.t .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N∑
j=1

L∑
k=1

x p
i jk −

1∫
0

�−1
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(14)

where the weights w1, w2 are positive numbers with w1 +
w2 = 1.

The above problems are solved by Maple 2018 optimiza-
tion toolbox and then the optimal solutions are obtained as
follows: Model (13):

x1122 = 52.500, x1141 = 12.500, x1232 = 25,

x1312 = 100, x1342 = 25, x2131 = 125, x2222 = 80, x2232 = 50,

x2312 = 77.500, x2342 = 15

Model (14):

x1122 = 52.500, x1141 = 12.500, x1232 = 25,

x1312 = 100, x1342 = 25, x2131 = 125, x2222 = 80,

x2232 = 50, x2312 = 115, x2342 = 15

Moreover, the value of each of objective (12) is given in
Table 6.

Similarly, the corresponding multi-objective expected
value programming model under chance constraints for

entropy-basedMISTP with uncertain variables is formulated
as follows:
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(15)

Let γ
p
i = 0.9; β

p
j = 0.85; δk = 0.95 and i = 1, 2.3, j =

1, 2, 3, 4, k = 1, 2, p = 1, 2 are the predetermined confi-
dence levels of model (15), respectively.
Solving (15) as a single objective programming problem
under the system constraints neglecting the different objec-
tive, respectively, we obtain

min E [ f1] = 1288.250 andmax E [ f1] = 5580.250

min E [ f2] = 721.759 andmax E [ f2] = 2083.419

Usingdistanceminimizationmethod (10) and linearweighted
method (11), the above multi-objective expected value pro-
gramming problem under chance constraints is transformed
into the following single objective programming problems,
respectively.

Minimizing distance function method under chance con-
straints:
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(16)

where the confidence levels are γ
p
i = 0.9; β

p
j = 0.85;δk =

0.95 and i = 1, 2.3, j = 1, 2, 3, 4, k = 1, 2, p = 1, 2,
respectively.
By applying the weightingmethod, model (15) can be rewrit-
ten in the following form.

The linear weighted method under chance constraints:
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(17)

where the weights w1, w2 are positive numbers with w1 +
w2 = 1. The confidence levels predetermined are as follows:
γ
p
i = 0.9; β

p
j = 0.85; δk = 0.95 and i = 1, 2.3, j =

1, 2, 3, 4, k = 1, 2, p = 1, 2, respectively.
Optimal solutions for problems (16) and (17) are obtained by
usingMaple 2018 optimization toolbox, and then, the results
obtained are as follows:
The above problems are solved by Maple 2018 optimiza-
tion toolbox, and then, the optimal solutions are obtained as
follows: Model (16):

x1122 = 36.750, x1141 = 6.25,

x1232 = 18, x1312 = 82.5, x1342 = 22.5, x2131 = 105,

x2222 = 66, x2232 = 58.5, x2312 = 61.75, x2342 = 11.5

Model (17):

x1122 = 36.750, x1141 = 6.25, x1232 = 18,

x1312 = 82.5, x1342 = 22.5, x2131 = 105, x2222 = 66,

x2232 = 10.5, x2312 = 103.5, x2342 = 11.5

Moreover, the value of each of objective (15) is given in
Table 6. To determine the degree of nearness of the obtained
solutions to the ideal solution, let us define the following
distance functions (Dalman and Bayram 2017):

Dp (γ, i) =
[

n∑
i=1

γ
p
i (1 − τi )

2

] 1
p

where τi denotes that the degree of nearness of the solutions
derived from (12) to the ideal solutions correspond to the i th
objective.

∑n
i=1 γi = 1 is a vector of objectives to be and

also, γi is taken as equal weighted. p represents the distance
parameter 1 ≤ p ≤ ∞. Here, τi is taken as:

Table 6 Comparative results for different models

Solution method Model E[ f1] E[ f2] D2

Minimizing
distance
function
method

Model (13) 2112.500 1711.995 0.446

Linear weighted
method (with
equal weights)

Model (14) 2012.500 1632.631 0.490

Minimizing
distance
function
method

Model (16) 1726.750 1440.117 0.514

Linear weighted
method (with
equal weights)

Model (17) 1653.750 1379.573 0.556
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τi = (the ideal value of E [ fi (x, ξ)] /

the obtained value of E [ fi (x, ξ)] by different methods)

So, we can point out that the maximum entropy value in
this paper which provides better solution near to the ideal
solution and the solution obtained is better than the other
solutions if min Dp (β, i) is obtained for some p.

Table 6 shows that the cost of transportation increases
when entropy increases. But when we look at to distance
function D2, the solutions which are closest to the ideal solu-
tions of the functions which are obtained by the increase
in the entropy function. Also, the closest results to ideals
for both models (expected value programming and expected
constrained programming models) were achieved with the
distance minimizing method.

8 Conclusions

This paper investigates the entropy-based multi-item solid
transportation problem with uncertain variables. Further,
uncertain entropy function has introduced the concept of
measure of entropy. It works as a measure of dispersal of
trips among the origins, destinations, and conveyances of
the model. When the one or more products, which are to be
carried and the root points are large enough, then uncertain
entropy measure is added as an additional objective. Apply-
ing expected value programming and expected constrained
programming to the MISTP with uncertain variables model,
it is transformed into deterministic multi-objective models.
Then these deterministic models are reduced to the single
objective programming problems by using the distance min-
imization and linear weighted methods. In order to obtain the
optimal solutions of these deterministic models, Maple 2018
optimization toolbox is used. Finally, numerical experiments
have shown that the solutions are closest to the ideal solu-
tions of the functions which can be obtained by the increase
in the entropy function.

The presented models and its solution procedures can be
applied to various uncertain optimizationmodels such as step
fixed charge solid transportation, uncertain portfolio distri-
bution and urban planning, etc.
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