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Abstract: Plasmonic nanoparticles have been mostly studied using conventional light sources. Recently, electron energy
loss spectroscopy (EELS) has started to be used to analyze plasmonic nanoparticles where incident electromagnetic fields
are created by swift electrons. To accurately simulate EELS experiments, several numerical methods have been adapted.
In this paper, a frequency domain surface integral equation (FDSIE) solver is modified to simulate EELS for plasmonic
nanoparticles of gold and silver. Accuracy and versatility of the proposed FDSIE solver are shown by several numerical

examples and compared to existing numerical, analytical, and experimental results.
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1. Introduction

The collective oscillations of electrons of nanoparticles (NPs) give rise to plasmon resonances. Manipulation
of plasmon resonances are crucial for various applications such as bio-imaging, bio-medicine, and improvement
of solar cells [1]. Plasmonic behavior of NPs have been examined mostly using conventional light sources
such as lasers and fluorescent lamps. Recently, electron energy loss spectroscopy (EELS) experiments have been
performed to analyze plasmonic behavior of NPs thanks to the high spatial and energy resolution of EELS [2, 3].
Two major differences between conventional light scattering experiments and EELS are the incident
electromagnetic field and the collected data after scattering. In the former, most of the time, the incident field
is assumed to be a plane electromagnetic wave propagating in a given direction with a fixed polarization. Then
the scattered light is measured at a certain angle or collected by an integrating sphere. However, in EELS,
incident fields are created by a beam of electron and the measurement is on the energy loss of the electron.
Energy loss of the electron depends on the materials along or near the electron path. When the electron passes
through materials, energy loss spectra give signatures about their atomic structure. When the electron passes
nearby an NP, it creates a field which excites the NP. The scattered light reaches back to the electron beam
causing an energy loss. The resonances of the EELS spectra correspond to the plasmon resonances of the NP.
Due to the excitation of the electron beam, new plasmon resonances of NP could be studied in EELS. These
resonances are not seen in conventional plasmonic experiments where incident light is a plane wave [4].

In accordance with the shift in the experimental approach, several numerical methods, such as boundary
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element method (BEM) [5, 6], frequency domain surface integral equation (FDSIE) [7], finite difference time
domain (FDTD) [8], and discrete dipole approximation (DDA) [9], were modified to simulate EELS experiments.
In this paper, another FDSIE solver is adapted for the simulation of EELS experiment.

FDTD and DDA are usually preferred solvers due to their simple implementation and easy use. However,
these solvers require volumetric discretization of NPs leading to higher number of unknowns. Specifically, on
the boundaries of NPs, electromagnetic fields change rapidly and therefore have to be modeled by finer meshes.
Moreover, artificial boundary conditions in FDTD might render the simulations inaccurate [10]. To avoid these
drawbacks, FDSIE (or BEM) could be employed because it requires discretization of surfaces leading to a
smaller number of unknowns and it satisfies radiation condition implicitly without requiring artificial boundary

conditions.
BEM and FDSIE are essentially same solvers based on the surface equivalence principle and the dis-

cretization of surfaces of NPs. The main difference is in the implementation of the solvers. In BEM [6], surfaces
are meshed by triangular patches; unknowns are electric charges and electric current densities; electric scalar
and vector potential is used to construct the equation; more importantly, a point collocation method is em-
ployed. Here, surfaces are meshed by triangular patches; unknowns are electric and magnetic current densities;
electric and magnetic fields are used to construct the main equation; lastly, well-known Rao—Wilton—Glisson
(RWG) basis functions [11] used with Galerkin testing. Although there are few differences, the main difference
is in the basis functions and testing; hence, BEM [6] could be named as point collocation FDSIE. However,
here, the method in [6] is referred to as BEM to be consistent with the literature [2, 5, 6, 12].

In terms of EELS simulations, there are subtle differences between the existing FDSIE (or BEM) solvers
and the present solver. Electron energy loss probability is defined as a line integral and could be computed along
the path of the electron [2, 8]. However, in [6], the computation of the line integral is reduced to an integral
on the surface of the NP. Although this is numerically feasible and correct, it hinders the comprehension of
physical aspect of the experiment. In [7], electron energy loss is related to the scattering cross section and
absorption cross section of the NP. However, scattering cross section is computed by the far fields while EELS
is a near-field phenomena. Here, energy loss probability is explicitly computed along the path of the electron,
as explained in the formulations, such that it gives a physical insight to the mechanism of EELS.

In the next section, EELS theory is given and FDSIE formulation is detailed. Then, numerical results
are presented to verify the accuracy and the versatility of the proposed solver. Finally, in the last section,

conclusions are drawn.

2. Method

In this section, a brief theory of EELS and a formulation of FDSIE is given. Among various FDSIE formulations,
Poggio—Miller—-Chan-Harrington-Wu-Tsai (PMCHWT) [13] is chosen because it gives accurate results for
plasmonic NPs [14]. Note that the present formulation of FDSIE is not specific to EELS simulation. The
main difference is two-fold. First, the incident fields are created by swift electrons in EELS. Second, the

computation of the energy loss function is carried out by using scattered near fields.

2.1. EELS theory

Consider an electron moving with a constant speed (v) comparable to the speed of light (¢) in a medium that

has the permittivity (&¢) and the permeability (uo). It is assumed that, without loss of generality, the electron
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moves along the z-axis passing through the origin. The motion of the electron gives rise to the incident fields [2]

inc Qeweijwz/v J pY Y\

E =——F =K K| — 1
o) = -t [ (22) 2 (%) . 1)
inc qewefjwz/v pw n

H =22 T g (2)é
o) oy (w) ¢

Here, q. is the charge of the electron, v = (1 — v?/c?)~1/? is the Lorentz contraction factor, Ky and K, are
modified Bessel functions, w is the angular frequency, p = \/22 + y? is the radial distance from the z-axis, and

(%2, p, <;3) are the unit vectors in cylindrical coordinates. Time dependence of the fields are assumed to be e/“*
and SI units are used unlike [2].

Due to the presence of NP, scattered fields occur and act back to the electron. The energy loss of the

electron caused by scattered fields could be written as:
AE = qe/ - EF (re(t), t)dt = / hwT (w (2)

Here, 7.(t) is the path of the electron, EJ™(re(t),t) is the scattered electric field in time domain, h is the
reduced Planck’s constant, and I'(w) is the loss probability function. It is assumed that the speed of the electron
is constant, i.e. no-recoil approximation. This approximation is valid when the electron has a high speed [2].

Using Fourier transform, energy loss probability could be written as in [5]:

INw) =

71_}_u'u/]%e{e“tv Ef*(re(t),w)}dt = M/Re{ewz/“ Ei*(z,w)}dz. (3)

Hence, the loss probability computed as a line integral of E{™(z,w) that is the scattered electric field in

frequency domain. Eq. (3) could be simply approximated by:

Nr . )

~ i SR B ) A (4)
In Eq. (4), Nr is the number of integration points, Az = L/Np, where L is the length of the path of the
electron, and z; = —L/2 + iAz. Theoretically, L should be infinite, but it will be shown that choosing L
comparable to the size of the NP ensures the accuracy of the approximation. When the electron passes through

a substrate, a bulk loss term which depends only on the thickness and permittivity of the substrate I gy (w)
should be added to the I'(w) [2].

2.2. Formulation of FDSIE

This section describes the surface integral equation solver used for computing the fields scattered from an
NP under excitation by an incident electromagnetic field. For the sake of simplicity, formulation is given for
a single NP. Generalization of the formulation for multiple scattering objects could be found in [15]. Let
V1 represent the volume of an NP residing in an unbounded background medium denoted by V. Constant

permittivity and permeability in V; , i € {0,1} are &; and p;, respectively. Let S denote the surface enclosing

Vi. An electromagnetic wave with electric and magnetic fields, EP°(r) and HY“(r), excites the scatterer.
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Enforcing the tangential continuity of the total electric and magnetic fields, E;(r) = E"(r) + E:®(r) and
H;(r)=H™(r) + H:(r), on S yields the PMCHWT surface integral equation [13]:

n(r) x Eg°(r) = —(r) x [E1(r) — B§™(r)], ()
n(r) x Hy'(r) = —(r) x [Hi*(r) — Hy*(r)].
Here, n(r) is the unit normal vector at r, r € S, pointing towards Vj, and Ei**(r) and H**(r) are
the scattered electric and magnetic fields in V;, ¢ € {0,1}. One can introduce equivalent current densities

J(r) = —1n(r) x Hy(r) = n(r) x Hyo(r) and M(r) = n(r) x E;(r) = —1(r) x Eo(r) on S. Using the surface

equivalence principle, E3®(r) and H{*(r) are expressed in terms of J(r) and M(r):
Eg™(r) = =Lo{J(x)} + Ko {M(r)}, (6)

H(r) = —%@{M(r)} ~ Ko{J(x)},

Ei*(r) = L:{J(r)} — Ki{M(r)}, (7)

Hi™ (r) = %cl{Ma)} + I},

where the integral operators £;{.} and K;{.} are given by

jwp; [ e IFEX(x) 1 / e IRBY X (1)
AX = ds’ — d
LifX(x)} 4 /s R y jw4ﬂ'€iv g R § ®)

e—dkiR

K {X(x)} = ﬁ [5 X(r') x Vg )

ki = wy/ei(w)p; is the wavenumber in V;, €;(w) is the frequency-dependent permittivity, and R = |r — r/|
is the distance between observation and source point r and r’ on S. To numerically solve Eq. (5), first S
is discretized into triangular patches. Then the unknown current densities J(r) and M(r) are approximated

using

N
I(r)=>_ Jfi(r), (10)
=1

N
M(r) =Y Mifi(r).
=1

Here, f;(r) represent the RWG basis functions [11], each of which is defined over a pair of triangular patches
that share an edge. N is the total number of RWGs defined on the discretized S. J; and M; are the unknown
current coefficients to be solved for. Inserting Eq. (10) into Eq. (5) and Galerkin testing the resulting equation
with £,,(r), m =1,..., N, yields the matrix system

ZI=V, (11)
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where the 2N x 1 vector I = [J1,.., Jn, My, .., Mx]T holds the unknown current coefficients, the entries of the

2N x 1 excitation vector are given by:
Vi = (£,(r),n(r) x Ebnc(r)>, (12)

VN = <fm(r),ﬁ(r) X HBHC(I‘)> m=1,..,N,

and the entries of the 2N x 2N matrix Z are given by:

Ly = (fn(r), Lo{fi(r)} + L1{fi(r)}), (13)
Zing = — (En(r), Ko{fi(r)} + Ki{fi(r)}),
Zoi+N = —LminN,,

E g
Zom NILN = <fm(r), M—Z,Co{fl(r)} 1 ullﬁl{fl(r)}> om=1,..,N,l=1,..,N.

In Egs. (12) and (13), the inner product is defined as (f,,(r), Y (r)) = [q f,(r')- Y(r')ds’, where S, is
the support of the testing function f,,(r). The matrix system in Eq. (11) is solved for the unknown current
coefficient vector I. Once current coefficients are found, electric field can be computed by inserting Eq. (10)

into Eq. (8). The loss probability can then be computed by putting the scattered electric field Eq. (6) into
Eq. (4).

3. Numerical results

In this section, several examples are given to show the accuracy of the proposed solver. First, silver and gold
spheres are simulated and compared with analytical results. Then, dimers composed of silver spheres or gold
spheres are simulated to show the versatility of the proposed solver. Lastly, a dimer composed of a silver and
a gold disk on a substrate is studied. In all of the examples, frequency-dependent relative permittivity of gold

and silver is taken from Johnson—Christy experiments [16]. The outer medium is assumed to be free space.

3.1. Sphere

The first example is a silver sphere with a radius of 40 nm placed on the xy-plane such that the shortest distance
to the electron beam, known as impact factor, is 10 nm [6]. The speed of the electron is v = 0.5¢ corresponding
to the energy of E = 80 keV. The sphere is meshed by triangular patches that have 241 nodes in total leading
to 478 patches and 717 RWG basis functions. In BEM simulations, two different meshes are used. The first
one is a triangular mesh composed of 625 nodes that gives almost three times denser mesh compared to FDSIE
simulation. The other mesh has 1444 nodes which is the biggest mesh for a sphere available in the toolbox [6].

Loss probability is computed for different L and Az values. Figure la shows the convergence of results
for Az =0.5 nm and L € {10, 20, 40,60, 80,100} nm. Results converge around L = 80 nm for photon energies
(light frequency) above 2eV. However, for lower frequencies, the path length L should be increased. This result
indicates that the main contribution to the integral for high frequencies in Eq. (3) comes from the fields close
to the NP. For lower frequencies, results converge around L = 400 nm. Note that this observation cannot be
achieved by using the method in [6], which converts the line integral in Eq. (3) into a surface integral. Figure 1b

shows the convergence of results for Az € {0.5,1,2,4,8} nm and L = 400 nm. Results converge around Az =1
nm.
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Figure 1. Convergence of EELS results as L changes (a). Convergence of results as Az changes (b).
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Figure 2. Comparison of FDSIE, BEM (625 and 1444 nodes), and analytical solver for the silver sphere (a) and the
gold sphere (b).

Figure 2a depicts the comparison of FDSIE, BEM [6], and the analytical solver [6, 12] for the same silver
sphere as in the previous case. Numerical results of FDSIE and BEM match reasonably well with analytical
results, but results of BEM solver deteriorate below 1.7 eV even with a much denser (1444 nodes) mesh.
Figure 2b shows the same kind of comparison for a gold sphere of radius 80 nm with an impact parameter of
2 nm [8]. Energy of the electron is 200 keV which corresponds to v = 0.695¢. In this example, L = 300 nm
and Az = 0.1 nm used. Both solvers capture the general plasmonic behavior in comparison to the analytical
solver. However, again, FDSIE provides closer EELS spectra to the analytical solver than the BEM solver for
lower frequencies. One reason for this mismatch would be that the real part of the relative permittivity of gold
and silver [16] reaches —60 at low frequencies. Hence, the simple collocation method used in [6] may not be
sufficient to solve the problem at low frequencies and diverges. Another cause might be that BEM [6] suffers

from low-frequency breakdown [17], yet a detailed analysis is beyond the scope of this work.

3.2. Dimer

In the next example, a dimer composed of two spheres on the xy-plane is analyzed. Radius of both spheres is
80 nm and the distance between them is 5 nm along the x-axis. Each sphere has 276 nodes, 548 patches, and
822 RWG in FDSIE simulations. In BEM, each sphere has 1444 nodes. The electron beam passes through the
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Figure 3. Comparison of FDSIE and BEM for the silver dimer (a) and the gold dimer (b).

midpoint between the spheres. The speed of the electron is v = 0.5¢ corresponding to the energy of E = 80
keV. In that example, L = 100 nm and Az = 0.1 nm. Figure 3a gives the comparison between FDSIE and
BEM solvers for the silver dimer. Both results match with each other above 1 eV. In Figure 3b, the same
comparison is given for the gold dimer. EELS spectra computed by FDSIE and BEM compare well above 1 eV,
yet BEM produces higher values for low frequencies.

As the last example, a dimer composed of a silver disc and a gold disc on a substrate is considered. Each
disc has a radius of 50 nm and a height of 30 nm. Substrate is chosen as rectangular prism with edge length
of 300 nm along x- and y-axis and 50 nm along the z-axis. Discs are placed on the substrate (xy-plane) along
the x-axis at a distance of 10 nm to each other. The mesh has total of 4642 triangular patches. The electron
beam passes in the midpoint of the gap along the z-axis. The speed of the electron is v = 0.765¢ corresponding
to the energy of £ = 300 keV. To calculate the energy loss, L = 200 nm and Az = 0.5 nm used. This system
has been studied experimentally on SiN substrate [18] and the relative permittivity is set to 4 for the substrate.
Figure 4 shows the comparison between the FDSIE solution and the experimental results [18]. FDSIE solution
matches the plasmonic resonance seen at 2.14 €V in the experiment. EELS computed by FDSIE solver captures
the main shape of the experimental data. However, there are differences in the results. The main reason for
these differences could be that in the simulations, perfect discs are used but in the experiments real NPs would

have defects in their shapes.

10°F '
=
g 1
= 10-1k
g ~Experiment
g ~FDSIE
S
—

10—2,

12 14 16 1.8 2 22 24 26

Energy (eV)

Figure 4. Comparison of FDSIE with an experiment of gold and silver discs on SiN substrate.
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4. Conclusions

In this work, a PMCHWT-FDSIE solver was adapted for the simulation of EELS experiments for plasmonic
gold and silver nanoparticles. The incident electromagnetic wave was created by swift electrons instead of
conventional light sources. The back-scattered light from nanoparticles acted back to the swift electrons
reducing their energy. The energy loss probability of electrons was computed by the proposed solver and
compared with analytical and BEM solvers. Good agreement was shown with analytical solver even at low
frequencies. Comparison with an experimental result showed a decent match, especially for the main plasmon

resonance. The present work will be adapted for a time domain surface integral equation solver [19, 20].
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