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A B S T R A C T

Purpose: In this research study, obtaining the analytical and soliton solutions to the perturbed
Radhakrishnan–Kundu–Lakshmanan (RKL) equation with Kerr law nonlinearity is aimed via the
generalized projective Riccati equations method (GPREM), a simple version of the new extended
auxiliary equation method (SAEM26), and unified Riccati equation expansion method (UREEM).
At the same time, the roles of some parameters included in the perturbed RKL equation on
soliton dynamics are analyzed.
Methodology: The presented methods are successfully employed to the perturbed RKL equa-
tion. In the application of the presented methods, to convert the perturbed RKL equation into
a nonlinear ordinary differential equation, we choose suitable complex wave transformation
for the proposed model. Later, a linear equation system is derived using the GPREM, SAEM26,
and UREEM, the system is solved, the appropriate solution sets are obtained, and the soliton
solutions are achieved, respectively.
Findings: The singular, bright and dark soliton solutions are generated by choosing the suitable
set and parameter values. To comprehend the physical dynamics of some solutions, 3D, contour,
and 2D graphs are demonstrated. In addition, 2D graphs are drawn to show how some
parameters in the main equation have an effect on soliton behaviors. The examination indicates
that the model parameters have a substantial effect on the soliton dynamics. Depending on the
soliton forms, the effect can be varied. The results presented in this paper will be useful for
future works in soliton theory and the presented methods can be effectively implemented to
such equations.
Originality: The effects of the model parameters included in the perturbed RKL equation on
soliton dynamics are analyzed for the first time in this study.

. Introduction

Modeling of nonlinear evolution equations (NLEEs) emerges in many scientific areas like quantum mechanics, biology, plasma
hysics, nonlinear optics, fluid dynamics and hydrodynamics. Various NLEEs form the basis for modeling the dynamics of soliton
ropagation through an optical waveguide. Soliton theory has a wide range of implementations in nonlinear physics fields [1–6].
btaining the analytical solutions of NLEEs is an important field of study in recent years to better understand complex phenomena.
ith the development of soliton theory, several approaches have been improved by researchers to solve NLEEs, such as the modified

imple equation technique [7–9], sine-Gordon expansion scheme [10–15], the modified Kudryashov method [16,17], the improved
-expansion method [18,19], the exp-function expansion scheme [20], the modified extended tanh expansion method [21], new
udryashov and the unified Riccati equation expansion [22], the Riccati Bernoulli sub-ODE approach [23,24], the first integral
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scheme [25–27], enhanced modified tanh expansion technique [28], the Hirota bilinear method [29], the F-expansion scheme [30],
Laplace–Adomian decomposition approach [31].

Since optical solitons have the characteristics of being carriers over long distances without changing their shape and without any
ttenuation in their amplitudes, they are of great importance in today’s telecommunication field and many models of optical solitons
ave been developed. Such as, Biswas–Milovic [22], Chen–Lee–Liu [32], Kundu–Mukherjee–Naskar [33,34], Kundu–Eckhaus [35],
chrödinger–Hirota [36], Lakshmanan–Porsezian–Daniel [37–40], Biswas–Arshed [41], Manakov [42] and Sasa–Satsuma equa-
ion [43,44]. Kerr is important because depending on the Kerr two solitons affect each other annihilate, merge or create many
ew solitons. But study on the equations that having Kerr, is not simple without taking into account some special methods like
erturbation technique or variational method. The RKL model that describes the soliton dynamics via a polarization-preserving
iber is one of the samples of the mathematical models. This model is the known nonlinear Schrödinger equation which is handled
ith a couple of perturbations because of the self-steepening and third-order distribution (3OD) effect. This equation firstly emerged

n 1999 [45].
The generalized Radhakrishnan–Kundu–Lakshmanan equation is defined as follows [46]:

𝑖𝛹𝑡 + 𝛼𝛹𝑥𝑥 + 𝛽𝐹
(

|𝛹 |2
)

𝛹 = 𝑖𝜆
{

𝐹
(

|𝛹 |2
)

𝛹
}

𝑥 − 𝑖𝛿𝛹𝑥𝑥𝑥. (1)

The general form of perturbed Radhakrishnan–Kundu–Lakshmanan equation having nonlinearity is given as [47]:

𝑖𝛹𝑡 + 𝛼𝛹𝑥𝑥 + 𝛽𝐹
(

|𝛹 |2
)

𝛹 = 𝑖𝜏𝛹𝑥 + 𝑖𝜆
{

𝐹
(

|𝛹 |2
)

𝛹
}

𝑥 + 𝑖𝛾
{

𝐹
(

|𝛹 |2
)}

𝑥 𝛹 − 𝑖𝛿𝛹𝑥𝑥𝑥, (2)

in which 𝛹 (𝑥, 𝑡) denotes the function of the complex-valued wave with spatial variable 𝑥 and temporal variable 𝑡. Besides, 𝐹 is
the real-valued algebraic function that determines the type of nonlinearity. The coefficients 𝛼 and 𝛽 represent the group-velocity
dispersion (GVD) and the nonlinearity terms, respectively. Moreover, 𝜏 indicates the coefficient of inter-modal dispersion, and 𝜆
specifies the coefficient of the self-steepening for short pulses. Furthermore, 𝛾 and 𝛿 describe the coefficients of the higher-order
dispersion term and the third-order dispersion (TOD) term, respectively. Herein, the interaction between GVD and TOD is very
important. When the GVD closes to zero, in order to keep and improve the performance of the pulse interaction along trans-oceanic
distances, it should be needed to consider the third-order dispersions. As the GVD changes, it should be considered the higher order
dispersion terms [48]. The perturbed RKL equation is one of the substantial models to represent short pulse propagation in optical
fiber [48]. That is, the model is utilized so that solitons’ propagation is modeled via optical fiber.

In the literature, various methods have been applied to the generalized Radhakrishnan–Kundu–Lakshmanan equation deriving
different types of soliton solutions, such as the (−𝜓(𝑞)) method [46], the ansatz of solitary wave [48], the modified simple equation
and the extended simplest equation techniques in [49], the improved modified extended tanh-function approach in [50]. The
perturbed RKL equation has been examined by some researchers in recent years. To acquire the analytical solutions for Eq. (2), the
generalized exponential rational function approach was implemented in [51]. Various kinds of soliton solutions to the perturbed RKL
equation were derived through the modified extended tanh expansion approach enhanced with the new Riccati solutions in [52].
For the perturbed RKL equation with considering Kerr law and power law nonlinearity, dark, bright, singular soliton solutions were
retrieved utilizing trial equation approach and modified simple equation technique in [53], the extended trial function approach
in [54]; besides, chirp-free bright soliton solutions were revealed with the aid of traveling wave hypothesis in [55].

The UREEM is one of the powerful technique in order to solve the NLEEs. Using this approach, Sirendaoreji acquired the exact
traveling wave solutions of two novel classes of Benjamin–Bona–Mahony models [56] and Zayed et al. retrieved dark, bright, singular
solitons in magneto-optic waveguides [57]. Another robust method is the GPREM that has been studied by some researchers. For
example, with the help of this approach, several types of soliton solutions were produced for Lakshmanan–Porsezian–Daniel model
in [58] and for the generalized Zakharov–Kuznetsov equation in [59]. SAEM26 is another effective approach that is utilized to
obtain analytical solutions proposed in [60].

The purpose of this paper is to enforce three efficient methods, namely GPREM, SAEM26, UREEM in constructing the analytical
solutions and analyze the effect of parameters on the obtained solutions for the perturbed RKL equation having Kerr law nonlinearity
by considering the 𝐹 (𝐺) = 𝐺 as follows:

𝑖𝛹𝑡 + 𝛼𝛹𝑥𝑥 + 𝛽|𝛹 |
2𝛹 = 𝑖𝜏𝛹𝑥 + 𝑖𝜆

(

|𝛹 |2𝛹
)

𝑥 + 𝑖𝛾
(

|𝛹 |2
)

𝑥 𝛹 − 𝑖𝛿𝛹𝑥𝑥𝑥. (3)

By now, the presented methods have not been employed to the perturbed Radhakrishnan–Kundu–Lakshmanan equation in the
literature. In this paper, it is aimed to indicate that these methods are alternative approaches for examining nonlinear partial
differential equations. It is aimed to successfully demonstrate that the proposed methods are not only easy to use and effective
methods for nonlinear partial differential equations, but also for higher order and dispersive optic problems. Furthermore, it is
aimed to investigate how have the effects of the model parameters on soliton dynamics.

The organization of the rest of this article is as follows: In Section 2, nonlinear ordinary differential form of the Eq. (3) is
presented. GPREM is described, and its implementation to Eq. (3) is offered in Section 3. We submit a summary the SAEM26 and its
enforcement for Eq. (3) in Section 4. We represent a brief and application to the perturbed RKL model of UREEM in Section 5. Some
2

results are discussed and, graphical visualizations are demonstrated in Section 6. In the last section, we present the conclusion.
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2. Nonlinear ordinary differential form of the perturbed RKL equation

Firstly, take into account the following wave transformations:

𝛹 (𝑥, 𝑡) = 𝛩(𝜂)𝑒𝑖𝜓 , 𝜂 = 𝑥 − 𝜔𝑡, 𝜓 = −𝜅𝑥 − 𝜈𝑡 + 𝜃, (4)

where 𝜅, 𝜈, 𝜃, and 𝜔 are non-zero constants. Herein, 𝛩(𝜂) is the shape of the soliton pulse, 𝜂 is a new variable, 𝜔 is the velocity,
𝜓 represents the phase-component, 𝜃 is defined as the phase-constant, 𝜅 denotes the frequency, and 𝜈 is the parameter of wave
number. Inserting Eq. (4) into Eq. (3), we derived the following nonlinear ordinary differential equations (NODEs) from the real
and imaginary parts, respectively:

− (3𝜏 + 3𝜔 + 6𝛼𝜅 + 9𝜅2𝛿)𝛩(𝜂) − (3𝜆 + 2𝛾)𝛩3(𝜂) + 3𝛿
𝑑2𝛩(𝜂)
𝑑𝜂2

= 0 (5)

nd

(𝜈 + 𝛼𝜅2 + 𝛿𝜅3 + 𝜏𝜅)𝛩(𝜂) + (𝛽 − 𝜆𝜅)𝛩3(𝜂) + (𝛼 + 3𝛿𝜅)
𝑑2𝛩(𝜂)
𝑑𝜂2

= 0. (6)

Considering that 𝛩(𝜂) satisfies both Eq. (5), and Eq. (6), the following constraint conditions are acquired:

𝛽 =
−6𝜅𝜆𝛿 − 6𝛿𝛾𝜅 − 3𝛼𝜆 + 2𝛾𝛼

3𝛿
, (7)

𝜔 = −8𝛿2𝜅3 − 8𝜅2𝛿𝛼 − 2𝛼2𝜅 − 2𝜅𝜏𝛿 − 𝛼𝜏 + 𝛿𝜈
3𝛿𝜅 + 𝛼

. (8)

In this study, we consider Eq. (6) as a NODE form of Eq. (3).

3. Sketch and practice of the GPREM to the perturbed RKL equation

In this section, the GPREM [61,62] is summarized and the application to Eq. (3) is given.

3.1. Sketch of the GPREM to the perturbed RKL equation

Step 1: Assume that Eq. (6) has a solution of the following form:

𝛹 (𝜂) = 𝐴0 +
𝑁
∑

𝑘=1
𝛩(𝜂)𝑘−1

[

𝐴𝑘𝛩(𝜂) + 𝐵𝑘𝛺(𝜂)
]

, (9)

in which 𝐴0, 𝐴𝑘 and 𝐵𝑘 are constants to be calculated. Herein, 𝑁 is the balancing constant. 𝛩(𝜂) and 𝛺(𝜂) satisfy the following
ODEs:

𝛩′(𝜂) = 𝜖𝛩(𝜂)𝛺(𝜂), (10)

𝛺′(𝜂) = 𝜎 + 𝜖𝛺(𝜂)2 − 𝜇𝛩(𝜂), 𝜖 = ±1, (11)

where

𝛺(𝜂)2 = −𝜖
(

𝜎 − 2𝜇𝛩(𝜂) +
𝜇2 + 𝑟
𝜎

𝛩(𝜂)2
)

. (12)

Herein, 𝜇 and 𝜎 are nonzero constants. If 𝜇 = 𝜎 = 0, Eq. (9) has the following solution:

𝛹 (𝜂) =
𝑁
∑

𝑘=1
𝐴𝑘𝛺

𝑘(𝜂), (13)

in which 𝛺(𝜂) satisfies the given ODE:

𝛺′(𝜂) = 𝛺2(𝜂). (14)

Step 3: The positive integer 𝑁 in Eq. (9) is calculated utilizing from the classical balancing rule in Eq. (6).
Step 4: Inserting Eq. (9) along with Eqs. (10)–(12) into Eq. (6), gathering all terms of the identical order of 𝛩𝑘(𝜂)𝛺𝑙(𝜂) (𝑘, 𝑙 =

, 1, 2,…) and taking each to zero, we procure a set of algebraic equations whose solutions yield the parameters of 𝐴0, 𝐴𝑘, 𝐵𝑘, 𝜇, 𝑟, 𝜎.
Step 5: Eq. (10) and Eq. (11) have the following solutions:
Family 1: If 𝜖 = −1, 𝑟 = −1, and 𝜎 > 0, we get,

𝛩1(𝜂) =
𝜎𝑠𝑒𝑐ℎ

(

√

𝜎𝜂
)

𝜇𝑠𝑒𝑐ℎ
(

√

𝜎𝜂
)

+ 1
, 𝛺1(𝜁 ) =

√

𝜎𝑡𝑎𝑛ℎ
(

√

𝜎𝜂
)

𝜇𝑠𝑒𝑐ℎ
(

√

𝜎𝜂
)

+ 1
. (15)
3
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Family 2: If 𝜖 = −1, 𝑟 = 1, and 𝜎 > 0, we get,

𝛩2(𝜂) =
𝜎𝑐𝑠𝑐ℎ

(

√

𝜎𝜂
)

𝜇𝑐𝑠𝑐ℎ
(

√

𝜎𝜂
)

+ 1
, 𝛺2(𝜂) =

√

𝜎𝑐𝑜𝑡ℎ
(

√

𝜎𝜂
)

𝜇𝑐𝑠𝑐ℎ
(

√

𝜎𝜂
)

+ 1
. (16)

Family 3: If 𝜖 = 1, 𝑟 = −1, and 𝜎 > 0, we get,

𝛩3(𝜂) =
𝜎𝑠𝑒𝑐

(

√

𝜎𝜂
)

𝜇𝑠𝑒𝑐
(

√

𝜎𝜂
)

+ 1
, 𝛺3(𝜂) =

√

𝜎𝑡𝑎𝑛
(

√

𝜎𝜂
)

𝜇𝑠𝑒𝑐
(

√

𝜎𝜂
)

+ 1
. (17)

𝛩4(𝜂) =
𝜎𝑐𝑠𝑐

(

√

𝜎𝜂
)

𝜇𝑐𝑠𝑐
(

√

𝜎𝜂
)

+ 1
, 𝛺4(𝜂) =

√

𝜎𝑐𝑜𝑡
(

√

𝜎𝜂
)

𝜇𝑐𝑠𝑐
(

√

𝜎𝜂
)

+ 1
. (18)

Family 4: If 𝜇 = 𝜎 = 0, we get,

𝛩5(𝜂) =
𝐾
𝜂
, 𝛺5(𝜂) =

1
𝜖𝜂
. (19)

where 𝐾 is a nonzero constant.
Step 6: Utilizing the parameters of 𝐴0, 𝐴𝑘, 𝐵𝑘, 𝜇, 𝑟, 𝜎 and Eqs. (15)–(19) by considering Eq. (4), the solutions of Eq. (3) are

cquired.

.2. Practice of the GPREM to the perturbed RKL equation

Utilizing the relation between the nonlinear term and the term that involves the highest order derivative in Eq. (6), we acquire
= 1. So, the proposed solution in Eq. (9) degenerates into the following form:

𝛹 (𝜂) = 𝐴0 + 𝐴1𝛩(𝜂) + 𝐵1𝛺(𝜂). (20)

Inserting Eq. (20) and its necessary derivatives by considering Eq. (10) and Eq. (11) into Eq. (6) and assuming each coefficients of
same power of 𝛩𝑖(𝜂)𝛺𝑗 (𝜂) as zero, an algebraic equation system is derived. After solving this system, the following solution sets are
obtained:

Family 1: Considering 𝜖 = −1 and 𝑟 = −1 in the algebraic system, the following result is derived:
Result 1:

𝜎 = −
2𝛶1

𝜉 (3𝜅𝛿 + 𝛼)
, 𝐴0 = 0, 𝐴1 = −

√

−3𝛶1𝛿 (3𝛿𝜅 + 1)
(

𝜇2 − 1
)

2𝛶1
, 𝐵1 =

√

6𝜉𝛿
2𝜉

, (21)

here 𝜉 = 2𝛾+3𝜆, 𝛶1 = 𝜉
(

𝛿𝜅3 + 𝛼𝜅2 + 𝜅𝜏 + 𝜈
)

. Inserting the parameters in Eq. (21) into Eq. (20) taking into account Eq. (15)-Eq. (19)
nd Eq. (4), we produce the solution of Eq. (3) as:

𝛹1,1 =

(

−𝐵1
√

𝜎 sinh
(

√

𝜎 (𝜔1𝑡−𝑥(3𝜅𝛿+𝛼))
3𝜅𝛿+𝛼

)

+ 𝜎𝐴1

)

ei(−𝜅𝑥+𝜈𝑡+𝜃)

𝜇 + cosh
(

√

𝜎 (𝜔1𝑡−𝑥(3𝜅𝛿+𝛼))
3𝜅𝛿+𝛼

) , (22)

here 𝜔1 = −8𝛿2𝜅3 +
(

−8𝛼 𝜅2 − 2𝜅𝜏 + 𝜈
)

𝛿 − 2𝛼2𝜅 − 𝜏𝛼.
Family 2: Considering 𝜖 = −1 and 𝑟 = 1 in the algebraic system, the following result is retrieved:
Result 2:

𝜎 = −
2𝛶1

𝜉 (3𝜅𝛿 + 𝛼)
, 𝐴0 = 0, 𝐴1 = −

√

−3𝛶1𝛿 (3𝛿𝜅 + 𝛼)
(

𝜇2 + 1
)

2𝛶1
, 𝐵1 =

√

6 𝜉𝛿
2𝜉

. (23)

nserting the parameters in Eq. (23) into Eq. (20) taking into account Eq. (15)-Eq. (19) and Eq. (4), we acquire the solution of Eq. (3)
s:

𝛹1,2 =
ei(−𝜅𝑥+𝜈𝑡+𝜃)

(

𝐵1
√

𝜎 cosh
(

(𝜔1𝑡−𝑥(3𝜅𝛿+𝛼))
√

𝜎
3𝜅𝛿+𝛼

)

+ 𝜎𝐴1

)

𝜇 − sinh
(

(𝜔!𝑡−𝑥(3𝜅𝛿+𝛼))
√

𝜎
3𝜅𝛿+𝛼

) . (24)

Family 3: Considering 𝜖 = 1 and 𝑟 = −1 in the algebraic system, the following result is derived:

𝜎 = −
2𝛶1 , 𝐴0 = 0, 𝐴1 = −

√

−3𝛶1𝛿 (3𝛿𝜅 + 𝛼)
(

𝜇2 − 1
)

, 𝐵1 =

√

6𝜉𝛿
. (25)
4

𝜉 (3𝜅𝛿 + 𝛼) 2𝛶1 2𝜉
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Inserting the parameters in Eq. (23) into Eq. (20) taking into account Eq. (15)-Eq. (19) and Eq. (4), we generate the solution of
Eq. (3) as:

𝛹1,3 =
ei(−𝜅𝑥+𝜈𝑡+𝜃)

(

−𝐵1
√

𝜎 sin
(

(𝜔1𝑡−𝑥(3𝜅𝛿+𝛼))
√

𝜎
3𝜅𝛿+𝛼

)

+ 𝜎𝐴1

)

𝜇 + cos
(

(𝜔1𝑡−𝑥(3𝜅𝛿+𝛼))
√

𝜎
3𝜅𝛿+𝛼

) , (26)

𝛹1,4 =

(

𝐵1
√

𝜎 cos
(

√

𝜎 (𝜔1𝑡−𝑥(3𝜅𝛿+𝛼))
3𝜅𝛿+𝛼

)

+ 𝜎𝐴1

)

eI(−𝜅𝑥+𝜈𝑡+𝜃)

𝜇 − sin
(

√

𝜎 (𝜔1𝑡−𝑥(3𝜅𝛿+𝛼))
3𝜅𝛿+𝛼

) . (27)

4. Sketch and practice of SAEM26 to the perturbed RKL equation

In this section, the main stages of the new extended auxiliary equation method which recently has been introduced in [60] are
detailed as follows.

4.1. Sketch of SAEM26 to the perturbed RKL equation

In order to employ the SAEM26 [60], we firstly construct the solutions of Eq. (6) as the following form:

𝛹 (𝜂) =
𝑀
∑

𝑙=0
𝛬𝑙𝛩

𝑙(𝜂), 𝛬𝑀 ≠ 0, (28)

in which 𝛬𝑙 will be evaluated later, 𝑀 is the balance number to be computed considering Eq. (6), Eq. (28) and Eq. (29), together.
The function 𝛩𝑙(𝜂) satisfies the next first order differential equation,

(𝛩′(𝜂))2 = 𝜚2𝛩2(𝜂)[1 − 𝜒𝛩4(𝜂)], (29)

in which 𝜒 , 𝜌 are nonzero values to be figure out later. We can represent the one of the solution for Eq. (29) with the following
form:

𝛩(𝜂) = ∓
√

2𝜖
√

𝜒
(

𝑒2𝜚𝜂 + 𝑒−2𝜚𝜂
) 𝑜𝑟 𝛩(𝜂) = ∓

√

2𝜖
(

𝑒2𝜚𝜂 + 𝜒𝑒−2𝜚𝜂
) , 𝜖 = ∓1, (30)

or in the hyperbolic form:

𝛩(𝜂) = ∓
√

𝜖
√

𝜒 cosh(2𝜚𝜂)
, 𝜖 = ∓1. (31)

4.2. Practice of SAEM26 to the perturbed RKL equation

With the aid of the homogeneous balance rule considering Eq. (6), Eq. (28) and Eq. (29), 𝑀 = 2 is derived. So, Eq. (28) turns
into the following form:

𝛹 (𝜂) = 𝛬0 + 𝛬1𝛩(𝜂) + 𝛬2𝛩
2(𝜂), 𝛬2 ≠ 0. (32)

When we insert Eq. (32) considering Eq. (29) into Eq. (6), gather all the 𝛩𝑙 coefficients and equating them to zero, afterwards the
following system is generated:

𝛩0(𝜂) ∶
(

3𝛿2𝜅3 + 3
(

𝛼 𝜅2 +
(

𝜉𝛬2
0 + 𝜏

)

𝜅 + 𝜈
)

𝛿 + 𝛼𝛬2
0𝜉
)

𝛬0 = 0,

𝛩1(𝜂) ∶ 𝛬1
((

𝜅3 − 3𝜅 𝜚2
)

𝛿2 +
(

𝛼 𝜅2 +
(

3𝜉𝛬2
0 + 𝜏

)

𝜅 − 𝜚2𝛼 + 𝜈
)

𝛿 + 𝛼𝛬2
0𝜉
)

= 0,

𝛩2(𝜂) ∶
((

−3𝜅3 + 36𝜅 𝜚2
)

𝛿2
(

−9𝜅𝜉𝛬2
0 − 3𝛼 𝜅2 + 12𝜚2𝛼 − 3𝜅𝜏 − 3𝜈

)

𝛿 − 3𝛼𝛬2
0𝜉
)

𝛬2

− 3𝛬0𝛬
2
1 (3𝛿𝜅 + 𝛼) 𝜉 = 0,

𝛩3(𝜂) ∶ 𝛬1
(

6𝛬0𝛬2 + 𝛬2
1
)

(3𝛿𝜅 + 𝛼) 𝜉 = 0,

𝛩4(𝜂) ∶
(

𝛬0𝛬2 + 𝛬2
1
)

𝛬2 (3𝛿𝜅 + 𝛼) 𝜉 = 0,

𝛩5(𝜂) ∶, 𝛬1
(

3𝜚2𝜒𝛿 + 𝛬2
2𝜉
)

(3𝛿𝜅 + 𝛼) = 0,

𝛩6(𝜂) ∶
(

24𝜚2𝜒𝛿 + 2𝛬2
2𝜉
)

𝛬2 (3𝛿𝜅 + 𝛼) = 0.

Herein, 𝜉 = 2𝛾 + 3𝜆. After solving the system of equations, we acquire the following solution results:

Result 1:

𝜈 = −𝛿 𝜅3 − 𝛼 𝜅2 +
(

12𝛿 𝜚2 − 𝜏
)

𝜅 + 4𝜚2𝛼, 𝛬0 = 0, 𝛬1 = 0, 𝛬2 =
2
√

−6𝜉𝜒𝛿 𝜚
. (33)
5

𝜉
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Inserting the parameters in Eq. (33) into Eq. (31) and Eq. (32) taking into account Eq. (4), we derive the following solution of
Eq. (3) as:

𝛹2,1(𝑥, 𝑡) =
4
√

−6𝜉𝜒𝛿 𝜚𝜖 ei(−𝜅𝑥+𝜈𝑡+𝜃)

𝜉
√

𝜒
(

e2𝜚(𝑥+𝜔𝑡) + e−2𝜚(𝑥−𝜔𝑡)
) , (34)

where 𝜈 is as expressed in Eq. (33).

esult 2:

𝜚 =
𝛶2
2
, 𝛬0 = 0, 𝛬1 = 0, 𝛬2 =

√

6𝛶2
√

−𝛿𝜉𝜒
𝜉

. (35)

where 𝛶2 =
√

(3𝛿𝜅+𝛼)(𝛿 𝜅3+𝛼 𝜅2+𝜅𝜏+𝜈)
(3𝛿𝜅+𝛼) . Inserting the parameters in Eq. (35) into Eq. (31) and Eq. (32) taking into account Eq. (4), we

roduce the following solution of Eq. (3) as:

𝛹2,2(𝑥, 𝑡) =
2𝛶2

√

−6𝜒𝛿𝜉 𝜖 e−i(𝜅𝑥−𝜈𝑡−𝜃)+𝛶2
(

8𝛿2𝜅3+
(

8𝛼 𝜅2+2𝜅𝜏−𝜈
)

𝛿+𝛼(2𝛼𝜅+𝜏)
)

𝑡+𝑥(3𝛿𝜅+𝛼)

(3𝛿𝜅+𝛼)

√

𝜒 𝜉

(

e−
2𝛶2((−8𝛿2𝜅3+(−8𝛼 𝜅2−2𝜅𝜏+𝜈)𝛿−2𝛼2𝜅−𝛼𝜏)𝑡−𝑥(3𝛿𝜅+𝛼))

(3𝛿𝜅+𝛼) + 1

) . (36)

5. Sketch and practice of the UREEM to the perturbed RKL equation

In this section, the main stages of the UREEM [56] are explained.

5.1. Sketch of the UREEM to the perturbed RKL equation

Presume that Eq. (6) has a solution of the form:

𝛹 (𝜂) =
𝑁
∑

𝑙=0
𝛬𝑙𝛩

𝑙(𝜂), 𝜆𝑁 ≠ 0 (37)

in which 𝛬𝑙 are real values to be computed. The function 𝛩(𝜂) fulfills the next first order differential equation,

𝛩′(𝜂) = 𝜌0 + 𝜌2𝛩(𝜂) + 𝜌2𝛩2(𝜂). (38)

The Eq. (38) has its special solutions as the following:
Set 1: If 𝛥 > 0, then,

𝛩1 = −
𝜌1
2𝜌2

−

√

𝛥
2𝜌2

tanh
(

√

𝛥
2
𝜂
)

,

𝛩2 = −
𝜌1
2𝜌2

−

√

𝛥
2𝜌2

coth
(

√

𝛥
2
𝜂
)

.

Set 2: If 𝛥 = 0, then,

𝛩3 = −
𝜌1
2𝜌2

− 1
𝜌2𝜂 + 𝐶

.

Set 3: If 𝛥 < 0, then,

𝛩4 = −
𝜌1
2𝜌2

−

√

−𝛥
2𝜌2

tan
(

√

−𝛥
2

𝜂
)

,

𝛩5 = −
𝜌1
2𝜌2

−

√

−𝛥
2𝜌2

cot
(

√

−𝛥
2

𝜂
)

.

n which 𝛥 = 𝜌21 − 4𝜌0𝜌2 and 𝐶 is an arbitrary constant. Despite Eq. (38) has twenty-seven solutions expressed in many
researches [63–65], these solutions are equivalent to the above solutions.

5.2. Practice of the UREEM to the perturbed RKL equation

With the help of the homogeneous balance rule by considering the terms 𝛹 ′′(𝜂) and 𝛹 3(𝜂) in Eq. (6), 𝑀 = 1 is achieved. Hence,
q. (37) turns into the following form:
6

𝛹 (𝜂) = 𝛬0 + 𝛬1𝛩(𝜂), 𝛬1 ≠ 0. (39)
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Insert Eq. (39) and its derivatives regarding Eq. (38) into Eq. (6), then we acquire the polynomial in powers of 𝛩(𝜂). Compiling all
he 𝛩𝑙 coefficients and considering the coefficients as zero, then the following algebraic system is resulted:

𝛩0(𝜂) ∶ −3𝛿
(

𝛿 𝜅3 + 𝛼 𝜅2 + 𝜅𝜏 + 𝜈
)

𝛬0 − (3𝜅𝛿 + 𝛼) 𝜉𝛬3
0 + 3𝛿 (3𝜅𝛿 + 𝛼)𝛬1𝜌0𝜌1 = 0,

𝛩1(𝜂) ∶ −𝛿
(

𝛿 𝜅3 + 𝛼 𝜅2 + 𝜅𝜏 + 𝜈
)

𝛬1 − (3𝜅𝛿 + 𝛼) 𝜉𝛬2
0𝛬1 + 2𝛿 (3𝜅𝛿 + 𝛼)𝛬1𝜌0𝜌2 + 𝛿 (3𝜅𝛿 + 𝛼)𝛬1𝜌

2
1 = 0,

𝛩2(𝜂) ∶
(

−𝛬0𝜉𝛬1 + 3𝜌1𝜌2𝛿
)

(3𝜅𝛿 + 𝛼)𝛬1 = 0,

𝛩3(𝜂) ∶ − (3𝜅𝛿 + 𝛼) 𝜉𝛬3
1 + 6𝛿 (3𝜅𝛿 + 𝛼)𝛬1𝜌

2
2 = 0.

here 𝜉 = 2𝛾 + 3𝜆. Solving the system above, the following solution sets are derived:
Result 1:

𝜌1 =

√

6𝜉𝛿 𝛶3
3𝛿

, 𝐴0 = 𝛶3, 𝐴1 =

√

6
√

𝜉𝛿 𝜌2
𝜉

, (40)

where 𝛶3 =
√

−3𝜉𝛿(3𝛿𝜅+𝛼)(𝛿 𝜅3−6𝛿𝜅𝜌0𝜌2+𝛼 𝜅2−2𝛼𝜌0𝜌2+𝜅𝜏+𝜈)
(3𝛿𝜅+𝛼)𝜉 .

Inserting the parameters in Eq. (40) into Eq. (31) and Eq. (32) taking into account Eq. (4), we derive the following solutions of
q. (3) as:

𝛹3,1(𝑥, 𝑡) =
ei(−𝜅𝑥+𝜈𝑡+𝜃) tanh

( (𝜔2𝑡−𝑥(3𝜅𝛿+𝛼))𝛶3
6𝜅𝛿+2𝛼

)

√

6𝜉𝛿 𝛶4
2𝜉

, (41)

𝛹3,2(𝑥, 𝑡) =
ei(−𝜅𝑥+𝜈𝑡+𝜃) coth

( (𝜔2𝑡−𝑥(3𝜅𝛿+𝛼))𝛶4
6𝜅𝛿+2𝛼

)

√

6𝜉𝛿 𝛶4
2𝜉

, (42)

𝛹3,3(𝑥, 𝑡) = −
ei(−𝜅𝑥+𝜈𝑡+𝜃) 𝛶5 tan

(
√

2 (𝜔2𝑡−𝑥(3𝜅𝛿+𝛼))
6𝜅𝛿+2𝛼 𝛶5

)

√

3𝜉𝛿

𝜉
, (43)

𝛹3,4(𝑥, 𝑡) = −
ei(−𝜅𝑥+𝜈𝑡+𝜃) 𝛶5 cot

(
√

2 (𝜔2𝑡−𝑥(3𝜅𝛿+𝛼))
6𝜅𝛿+2𝛼 𝛶5

)

√

3𝜉𝛿

𝜉
, (44)

where 𝜔2 =
(

−8𝛿2𝜅3 − 8𝛼𝛿 𝜅2 +
(

−2𝛼2 − 2𝛿𝜏
)

𝜅 + 𝛿𝜈 − 𝛼𝜏
)

, 𝛶4 =
√

−2𝛿 𝜅3−2𝛼 𝜅2−2𝜅𝜏−2𝜈
3𝜅𝛿+𝛼 and 𝛶5 =

√

𝛿 𝜅3+𝛼 𝜅2+𝜅𝜏+𝜈
3𝜅𝛿+𝛼 .

6. Results and discussion

In this section, the graphical portraits of some solution functions are given. These illustrations both demonstrate the soliton
graphs of some solutions and involve the graphs which examine the effects of the presented model’s parameters on soliton dynamics.
Selecting suitable variables of unknown parameters in the obtained solutions, we depict different graphs with 3D, contour and 2D
plots.

In Fig. 1a and 1b, we demonstrate the 3D and contour graphs of |𝛹1,1(𝑥, 𝑡)|
2 in Eq. (22) for 𝜆 = 1.5, 𝛾 = 1, 𝛼 = 1, 𝛿 = 2, 𝜅 = 0.25, 𝜏 =

2, 𝜈 = −0.75, 𝜇 = 2, and 𝜃 = 1. Besides, 2D visualization at t = 3,5,7 is displayed in Fig. 1c. We can interpret from Fig. 1c that the
oliton goes to the right as 𝑡 increases. Fig. 1a and 1c show the dark soliton type of |𝛹1,1(𝑥, 𝑡)|

2. Fig. 1d, 1e and 1f represent the 3D,
ontour and 2D portraits for the real part of 𝛹1,1(𝑥, 𝑡).

In Fig. 2a and 2b, we exhibit the 3D and contour graphs of |𝛹2,1(𝑥, 𝑡)|
2 in Eq. (34) for 𝜆 = 1.5, 𝛾 = 1, 𝛼 = 3, 𝜒 = 1, 𝛿 = 2, 𝜅 = −1, 𝜏 =

2, 𝜈 = −2, 𝜚 = −0.5, 𝜃 = 10, and 𝜖 = 1. 2D visualization at t = 3,5,7 is also displayed in Fig. 2c. We can understand from Fig. 2c that
he soliton goes to the left as 𝑡 decreases. Fig. 2a and 2c show the bright soliton type of |𝛹2,1(𝑥, 𝑡)|

2. In Fig. 3, we examine that how
he parameters 𝜏, 𝜆, 𝛾, and 𝛿 in the perturbed RKL model have an effect on soliton behavior. Fig. 3a shows the effect of the parameter
, which indicates the inter-modal dispersion, for the values −3,−2,−1, 3, 2, 1, respectively. We can say from Fig. 3a that if 𝜏 < 0
nd increasing, the soliton goes to the left. If 𝜏 > 0 and decreasing, the soliton moves to the right. In addition, in both cases, there
s no change in the vertical amplitude of the soliton and the skirts of the soliton stay on the same horizontal axis. Fig. 3b represents
he role of the parameter 𝜆, which specifies the coefficient of the self-steepening for short pulses, for the values −3,−2,−1, 3, 2, 1,
espectively. For 𝜆 < 0, the soliton’s height increases as 𝜆 increases. For 𝜆 > 0, the soliton’s height decreases as 𝜆 increases. Although
he position of the peak of the soliton changes vertically, in both cases there is no change in the horizontal position of the soliton; in
ther words, the soliton remains symmetrical with respect to a vertical axis passing through the peak. Fig. 3c represents the impact
f the parameter 𝛾, which describes the coefficient of the higher-order dispersion, for the values −3,−2,−1, 3, 2, 1, respectively. Even
f we obtain a graph in Fig. 3b similar to the previous one in Fig. 3c, we cannot say that the effect of the 𝛾 is exactly the same as
n the previous one. Because although the soliton appears symmetrical with respect to the vertical axis passing through the peak,
ts skirts stay on the same horizontal axis, and the position of the soliton’s peak changes according to different 𝛾 values, in the case
f 𝛾 < 0 and increasing, the vertical amplitude of the soliton decreases for −3 and −1 values. For 𝛾 = −2, we see that this effect
ccurs as an increase in the vertical amplitude of the soliton. Moreover, the amplitude formed for 𝛾 = −2 is a situation in which
he amplitude of the soliton is maximally formed among all the 𝛾 values examined. We can explain this situation for 𝛾 = −2 as the
7

ifficulty of controlling both the nonlinear parameters and their interaction with other parameters. When 𝛾 > 0 and increasing, the
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Fig. 1. Some plots of 𝛹1,1(𝑥, 𝑡) in Eq. (22) for 𝜆 = 1.5, 𝛾 = 1, 𝛼 = 1, 𝛿 = 2, 𝜅 = 0.25, 𝜏 = −2, 𝜈 = −0.75, 𝜇 = 2, 𝜃 = 1.

Fig. 2. Some views of 𝛹2,1(𝑥, 𝑡) in Eq. (34) for 𝜆 = 1.5, 𝛾 = 1, 𝛼 = 3, 𝜒 = 1, 𝛿 = 2, 𝜅 = −1, 𝜏 = −2, 𝜈 = −2, 𝜚 = −0.5, 𝜃 = 10, and 𝜖 = 1.

amplitude of the soliton decreases. Fig. 3d expresses the impact of the parameter 𝛿, which is the third-order dispersion (TOD) term,
for the values −1.5,−1.75,−2, 1.5, 1.75, 2, respectively. While 𝛿 < 0 and increasing, the soliton goes to the left and the soliton’s height
decreases. When 𝛿 > 0 and increasing, the soliton goes to the left and the soliton’s height increase. As can be seen from Fig. 3d
that, when the absolute values of 𝛿 parameter are the same (positive or negative), the vertical amplitude of the soliton becomes the
same, only a decrease (when negative) or increase (when positive) and left movement (increase) are observed in the amplitude of
the soliton.

In Fig. 4a and 4b, we indicate the 3D and contour graphs of |𝛹3,1(𝑥, 𝑡)|
2 in Eq. (41) for 𝛼 = −1, 𝜏 = 1.5, 𝜆 = −3, 𝛾 = 1.5, 𝛿 =

−1, 𝜃 = 10, 𝜅 = 0.5, 𝜈 = 1.5, 𝜌0 = 1, 𝜌2 = 0.5. 2D visualization at 𝑡 = 3, 5, 7 is also displayed in Fig. 4c. We can say from Fig. 4c
that the soliton goes to the right as 𝑡 increases. Fig. 4a and 4c show the dark soliton type of |𝛹3,1(𝑥, 𝑡)|

2. In Fig. 5, we examine that
how the parameters 𝜏, 𝜆, 𝛾, and 𝛿 in the perturbed RKL equation have an effect on soliton dynamics. Fig. 5a shows the effect of
the parameter 𝜏 for the values −1.75,−1.5,−1, 1.75, 1.5, 1, respectively. We can say that if 𝜏 < 0 and increasing, the soliton’s height
increases and the soliton’s peak goes to the right on the horizontal axis. If 𝜏 > 0 and decreasing, the soliton’s height decreases and
the soliton’s peak also goes to the right on the horizontal axis. In addition, we can say from Fig. 5a that the horizontal amplitude of
the soliton (solid lines) when 𝜏 < 0 is larger than when 𝜏 > 0 (dashed lines). Fig. 5b represents the role of the parameter 𝜆 for the
values −3,−2.25,−1.5, 3, 2.25, 1.5, respectively. For 𝜆 < 0 and increases, the soliton’s height increases. For 𝜆 > 0 and decreases, the
soliton’s height increases. Fig. 5c represents the impact of the parameter 𝛾 for the values −3,−2,−1, 3, 2, 1, respectively. Although
the graph of Fig. 5c is similar in shape to the graph of Fig. 5b, it has differences in terms of parameter effect. That is: when 𝛾 is
both negative and positive, the vertical amplitude of the soliton increases depending on the increase in 𝛾, and this increase occurs
more when 𝛾 is negative than when 𝛾 is positive. The soliton again remains symmetrical with respect to the vertical axis passing
8
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Fig. 3. The different silhouettes of 𝛹2,1(𝑥, 𝑡) in Eq. (34) for 𝛼 = 3, 𝜒 = 1, 𝜅 = −1, 𝜈 = −2, 𝜚 = −0.5, 𝜃 = 10, and 𝜖 = 1.

Fig. 4. Various plots of 𝛹3,1(𝑥, 𝑡) in Eq. (41) for 𝛼 = −1, 𝜏 = 1.5, 𝜆 = −3, 𝛾 = 1.5, 𝛿 = −1, 𝜃 = 10, 𝜅 = 0.5, 𝜈 = 1.5, 𝜌0 = 1, 𝜌2 = 0.5.

through its peak. Fig. 5d expresses the impact of the parameter 𝛿 for the values −1,−2,−3, respectively. As 𝛿 < 0 and increases,
the soliton moves to the left and the soliton’s height decreases. Here, although the amount of increase in 𝛿 from −3 to −2 (red to
blue) is equal to the amount of increase from −2 to −1 (blue to black), the vertical distance between the skirts of the soliton is not
proportional, we see that this drop is especially more dramatic for 𝛿 = −1 (black line). We can explain this issue with the control
difficulty of the situations arising from the interaction of the mentioned parameters both with themselves and with other nonlinear
terms, and the reflection of this difficulty on the soliton behavior.
9
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Fig. 5. The various portraits of 𝛹3,1(𝑥, 𝑡) in Eq. (41) for 𝛼 = −1, 𝜃 = 10, 𝜅 = 0.5, 𝜈 = 1.5, 𝜌0 = 1, and 𝜌2 = 0.5. (For interpretation of the references to color in this
igure legend, the reader is referred to the web version of this article.)

In Fig. 6a and 6b, the 3D and contour graphs of |𝛹3,3(𝑥, 𝑡)|
2 in Eq. (34) for 𝛼 = 1.5, 𝜏 = 2, 𝛾 = 1.5, 𝜆 = 2, 𝛿 = 2, 𝜅 = −0.5, 𝜈 =

0.5781, 𝜃 = 10, 𝜌0 = 0.5, and 𝜌2 = 1 are displayed. 2D visualization at 𝑡 = 3, 5, 7 is also demonstrated in Fig. 6c. We can see from
ig. 6c that the soliton goes to the left as 𝑡 increases. Fig. 6a and 6c show the singular soliton type of |𝛹3,3(𝑥, 𝑡)|

2. In Fig. 7, we
how that how the parameters 𝜏, 𝜆, 𝛾, and 𝛿 in the perturbed RKL equation have an effect on soliton behavior. Fig. 7a shows the
ffect of the parameter 𝜏 for the values −0.5,−0.4,−0.3, 0.5, 0.4, 0.3, respectively. We can say that if 𝜏 < 0 and increasing, the soliton
oes to the left on the horizontal axis (solid lines). When 𝜏 > 0 and increasing, the soliton also moves to the left on the horizontal
xis. Fig. 7b represents the role of the parameter 𝜆 for the values −3,−2.25,−1.5, 3, 2.25, 1.5, respectively. For 𝜆 < 0 and increases,
he skirts of the soliton remain on the horizontal axis and the horizontal distance between the skirts of the soliton increases. While
> 0 and increases, the inverse effect is observed as in the previous situation. Fig. 7c represents the impact of the parameter 𝛾

or the values −1.5,−1,−0.5, 1.5, 1, 0.5. According to Fig. 7b for 𝛾 < 0, the amount of horizontal decrease between the skirts of the
oliton is realized with smaller reduction amounts in Fig. 7c. At the same time, the height of the soliton is higher than Fig. 7b.
ig. 7d expresses the impact of the parameter 𝛿 for the values −1.5,−1,−0.5, 1.5, 1, 0.5. As 𝛿 is negative or positive and increasing,
he soliton moves to the left.

. Conclusion

In this study, the GPREM, SAEM26, and UREEM as powerful mathematical tools have been implemented to derive the soliton
olutions of the perturbed RKL equation. Various soliton solutions have also been acquired. These solutions include various wave
tructures, such as singular, bright, and dark solitons. 3D, contour and 2D graphics of the obtained soliton solutions have been
emonstrated. Moreover, the effects of the model parameters on soliton dynamics are for the first time examined. It is also shown
10
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Fig. 6. The plots of 𝛹3,3(𝑥, 𝑡) in Eq. (43): (a) the 3D graph of the square of modulus, (b) the contour graph of the square of modulus, (c) the 2D graph of the
square of modulus for 𝛼 = 1.5, 𝜏 = 2, 𝛾 = 1.5, 𝜆 = 2𝛿 = 2, 𝜅 = −0.5, 𝜈 = −0.5781, 𝜃 = 10, 𝜌0 = 0.5, and 𝜌2 = 1.

Fig. 7. The various portraits of 𝛹3,3(𝑥, 𝑡) in equation Eq. (43) for 𝛼 = 1.5, 𝜅 = −0.5, 𝜈 = −0.5781, 𝜃 = 10, 𝜌0 = 0.5, and 𝜌2 = 1.

how the parameters 𝜏, 𝜆, 𝛾, and 𝛿 in the perturbed RKL model have an effect on soliton dynamics. As a result of the study, this study
includes a number of complexities and difficulties, both due to the definition and limitations of the problem, and to the interaction
of the parameters themselves and other nonlinear terms. In this sense, long trials were made for parameter selection to obtain the
soliton types obtained in the study and to preserve the shape of these solitons in order to examine the parameter effect. Therefore,
in such problems, the determination of the parameters in question and the preservation of the obtained soliton involve a series
11
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of difficulties. It has also been shown in this study that the effects of such parameters on different soliton types can be different.
The presented graphics will help to understand the physical properties and dynamical behavior of the perturbed RKL equation. It
can be concluded that soliton solutions of a large family of nonlinear physics models can be productively constructed utilizing the
proposed methods. It can be said that GPREM, SAEM26, and UREEM will be very profitable approaches for researchers. So, the
GPREM, SAEM26, and UREEM can be successfully employed to acquire successful results when analyzing and investigating soliton
solutions of different nonlinear fractional complex models.
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