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A B S T R A C T

Objective: The principal purpose of this paper is to examine the perturbed Schrödinger–Hirota
equation with the effect of spatio-temporal dispersion and Kerr law nonlinearity which governs
the propagation of dispersive pulses in optical fibers by proposing and using a direct algebraic
form of the enhanced modified extended tanh expansion method for the first time. Our aim
is not only restricted to obtaining different and more soliton solutions by proposed method
for the first time in this study, but also includes examining the effect of the coefficients of
self-steepening and nonlinear dispersion terms to the soliton propagation in the investigated
problem.
Methodology: Utilizing a traveling wave transformation, the perturbed Schrödinger–Hirota
equation with the effect of spatio-temporal dispersion and Kerr law nonlinearity can be
transformed into an nonlinear ordinary differential equation (NODE). Then, the NODE is convert
into a set of algebraic equations by taking account into the Riccati differential equation.
Solving the set of algebraic equations, we acquire the analytical soliton solutions of the
perturbed Schrödinger–Hirota equation with the effect of spatio-temporal dispersion and Kerr
law nonlinearity. In the proposed method, the modified extended tanh function method is
enhanced by presenting more solutions of Riccati differential equations with the direct algebraic
form, is utilized.
Results: The more solutions have been established to the literature with new significant
physical properties of the perturbed Schrödinger–Hirota equation with the effect of spatio-
temporal dispersion and Kerr law nonlinearity. We indicated that the presented method are
effective, easily computable, and reliable in solving such nonlinear problems. Moreover, we
demonstrate the dynamical behaviors and physical significance of some soliton solutions at
appropriate values of parameters.
Originality: A variety of soliton solutions to the perturbed Schrödinger–Hirota equation with
Kerr law non-linearity by the direct algebraic form of enhanced modified extended tanh expan-
sion method have been acquired. These solutions are dark–bright, trigonometric, hyperbolic,
periodic, and singular soliton solutions. 3D, contour and 2D plots of some obtained solutions
have been demonstrated to interpret the physical meaning of the equation. For some parameter
values in the equation, the behavior of soliton solutions has been examined. The constraint
conditions are established to confirm the existence of valid solutions. The obtained results can
be effective in interpreting the physical meaning of this nonlinear system. We have seen that
the proposed direct algebraic form of the enhanced modified extended tanh expansion method
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is a powerful mathematical technique which can be utilized to acquire the analytical solutions
to different complex nonlinear mathematical models.

1. Introduction

Nonlinear evolution equations (NLEEs) are applied to identify a variety of the physical phenomena in the several branches of
cience like optical fibers, plasma physics, biology, chemistry, physics. In recent years, soliton solutions and their features have
een particularly examined in different fields such as fluid dynamics, optical fibers, birefringent fibers, ocean engineering, etc
n [1–3]. Acquiring the analytical and soliton solutions of NLEEs has importance since they have strong practical importance in
arious areas. So, a variety of the efficient method have been improved to achieve the analytical and soliton solutions of NLEEs
uch as the Jacobi elliptic function approach [4], the extended auxiliary equation approach [5], the Lie symmetry analysis [6,7], the
nified Riccati equation [8], the extended trial function algorithm [9], the Kudryashov’s method [10], the extended Kudryashov’s
ethod [11], the semi-inverse variational principle [12,13], the Sardar subequation and the new Kudryashov methods [14], the
odified extended tanh expansion method [15], the extended sinh-Gordon equation expansion method [16,17], the 𝐺′

𝐺2 expansion
function method [16,18,19], the sine–cosine method [19], the 𝐺′

𝐺 -expansion method [20,21], the exp-function method [21,22],
iccati–Bernoulli sub-ODE method [23,24], the Kudryashov-expansion method [25,26], the rational sine–cosine method [26], the
odified simple equation method [27–30], the trial equation method [29,30], the modified tanh–coth method [31], the asymmetric
ethod [32], the 𝐹 -expansion scheme [33], the functional variable method and first integral approach [34], He’s semi-inverse

ariational principle [35].
The dynamics of soliton propagation through optical fibers is governed by the nonlinear evolution equation. As is known, in some

ases, one of the methods used to prevent the low group velocity dispersion (GVD) in optical fibers is the addition of third-order
ispersion (3OD), which causes dispersive optical solitons. The Schrödinger–Hirota equation (SHE) is one of the important models
n which this type of modeling [36]. SHE describes the real-world models in nonlinear optics and dispersive optical fibers. The
quation and its solutions, which ensure interpret phenomena, have attracted a lot of attention recently, thanks to applications in
wide variety of fields, particularly in optical communication systems.

In order to model the optical propagation in fiber in presence of 3OD is given by nonlinear Schrödinger equation as [37]

𝑖 𝜕ℎ
𝜕𝑡

+ 1
2
𝜕2ℎ
𝜕𝑥2

+ |ℎ|2ℎ = −𝑖𝛼 𝜕
3ℎ
𝜕𝑥3

, (1)

in which ℎ = ℎ(𝑥, 𝑡) is solution profile and, 𝜕ℎ𝜕𝑡 is the linear temporal evolution term, 𝜕
2ℎ
𝜕𝑥2

is the GVD term, |ℎ|2 is Kerr law nonlinearity
erm, 𝜕3ℎ

𝜕𝑥3
is the 3OD and, 𝛼 is the coefficient of 3OD term.

Using the Lie transform [37,38]:

𝜗 = ℎ − 3𝑖𝛼
[

ℎ𝑥 + 2ℎ∫

𝑥

−∞
|ℎ(𝜉)|2𝑑𝜉

]

. (2)

Eq. (1) converts to the following equation:

𝑖𝜗𝑡 +
1
2
𝜗𝑥𝑥 + |𝜗|2𝜗 + 𝑖𝛼

(

𝜗𝑥𝑥𝑥 + 6|𝜗|2𝜗𝑥
)

= 0, (3)

in which 𝜗 = 𝜗(𝑥, 𝑡). If the nonlinear terms are omitted, Eq. (3) is called the nonlinear Schrödinger equation (NLSE) with Kerr law
nonlinearity and it can be given in the following general form by organizing the coefficient with arbitrary numbers:

𝑖 𝜕𝜗
𝜕𝑡

+ 𝜆1
𝜕2𝜗
𝜕𝑥2

+ 𝜆3|𝜗|
2𝜗 + 𝑖

(

𝛼 𝜕
3ℎ
𝜕𝑥3

+ 𝛽|𝜗|2 𝜕𝜗
𝜕𝑥

)

= 0, (4)

in which 𝜆1, 𝜆3 and, 𝛽 are any real non-zero free parameters. 𝜆1 and 𝛽 are the coefficients of the GVD and the nonlinear dispersion
erm, respectively. Because of the relation of the GVD and ill-pose of the model, in order to make the model well-pose an additional
erm which is called spatio-temporal dispersion (STD) is added [36,39]. So, Eq. (4) becomes:

𝑖 𝜕𝜗
𝜕𝑡

+ 𝜆1
𝜕2𝜗
𝜕𝑥2

+ 𝜆2
𝜕2𝜗
𝜕𝑥𝜕𝑡

+ 𝜆3|𝜗|
2𝜗 + 𝑖

(

𝛼 𝜕
3𝜗
𝜕𝑥3

+ 𝛽|𝜗|2 𝜕𝜗
𝜕𝑥

)

= 0, (5)

n which 𝜆2 is the coefficient of the STD term. When the perturbation term is taken into account, Eq. (5) turns into the perturbed
chrödinger–Hirota equation with the effect of spatio-temporal dispersion and Kerr law nonlinearity (pSHE-STD-KL), which we have
iscussed in the article.

In this paper, we carried out optical soliton solutions of the perturbed Schrödinger–Hirota equation with the effect of
SHE-STD-KL which models the propagation of dispersive pulses in optical fibers is described by [36,40]:

𝑖 𝜕𝜗
𝜕𝑡

+ 𝜆1
𝜕2𝜗
𝜕𝑥2

+ 𝜆2
𝜕2𝜗
𝜕𝑥𝜕𝑡

+ 𝜆3|𝜗|
2𝜗 + 𝑖

(

𝛼 𝜕
3𝜗
𝜕𝑥3

+ 𝛽|𝜗|2 𝜕𝜗
𝜕𝑥

)

= 𝑖

(

𝑎 𝜕𝜗
𝜕𝑥

+ 𝑏
𝜕(|𝜗|2𝜗)
𝜕𝑥

+ 𝑐
𝜕|𝜗|2

𝜕𝑥
𝜗

)

, (6)

in which 𝜆1, 𝜆2 and 𝛼 are the coefficients of the GVD, the STD and the 3OD terms, respectively. The parameters 𝜆3 and 𝛽 are the
coefficients of nonlinear dispersion term. The coefficients 𝑎, 𝑏, and 𝑐 stand for the inter-modal dispersion (IMD), the self-steepening,
2
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and the nonlinear dispersion, respectively. The complex function 𝜗 = 𝜗(𝑥, 𝑡) is the soliton profile, 𝑖 =
√

−1, and Eq. (6) is expressed
as generalization of the NLSE. Besides, in Eq. (6), the right-hand side symbolizes the perturbation.

In this paper, we aim to introduce the direct algebraic enhanced modified extended tanh expansion method to examine analytical
and soliton solutions of the pSHE-STD-KL equation. Up to now, the proposed method has not been implemented to any nonlinear
partial differential equations in the literature as presented. To date, pSHE-STD-KL has been examined to get a variety of solutions by
few methods. These methods are the improved Sardar sub-equation method [36], the auxiliary equation and the modified auxiliary
equation method [41], the Q-deformed hyperbolic functions method and Q-deformed trigonometric functions method [42], the
modified Khater method [43]. In [44], numerical solutions for the dispersive optical soliton solutions of the pSHE-STD-KL were
obtained via the improved Adomian decomposition method.

This research paper is parted into the following sections. In Section 2, the mathematical analysis of the pSHE-STD-KL is
constituted. In a detailed manner, the direct algebraic enhanced modified extended tanh expansion method is proposed in Section 3.
The method is employed to the pSHE-STD-KL to acquire various soliton solutions in Section 4. The obtained results are reported in
Section 5. In the last section, conclusion part is presented.

2. Description of the proposed method

In this section, we introduce a different version of direct algebraic form of modified extended tanh expansion method with more
solution sets. In the generalized modified extended tanh expansion method [45], the following Riccati equation is utilized:

𝛹 ′(𝜂) = 𝑤 + 𝛹 2(𝜂), (7)

and in the literature, generally Eq. (7) is given with the solutions 𝛹+
1 (𝜂), 𝛹

+
2 (𝜂), 𝛹

+
8 (𝜂), 𝛹

+
9 (𝜂) and 𝛹+

15(𝜂) in Situation-1 to Situation-3.
Consider the following nonlinear partial differential equation:

𝑃 (𝜗, 𝜗𝑥, 𝜗𝑡, 𝜗𝑡𝑡, 𝜗𝑥𝑡, 𝜗𝑥𝑥,…) = 0, (8)

n which 𝜗 = 𝜗(𝑥, 𝑡) and, subscript 𝑥, 𝑡 denotes the partial derivatives of 𝜗(𝑥, 𝑡) with respect to 𝑥 and 𝑡.
In order to transform Eq. (8) to NODE, we apply the following new transformation:

𝜗(𝑥, 𝑡) = 𝜓(𝜂), 𝜂 = 𝑥 − 𝜐𝑡 (9)

here 𝜐 is the wave speed of the soliton. Inserting Eq. (9) into Eq. (8), we get the following NODE in the following form:

𝑄(𝜓(𝜂), 𝜓 ′(𝜂), 𝜓 ′′(𝜂),…) = 0. (10)

he solution of Eq. (10) is proposed as follow:

𝜓(𝜂) = 𝐴0 +
𝑀
∑

𝑚=1
𝐴𝑚𝛹

𝑚(𝜂) +
𝑀
∑

𝑚=1

𝐵𝑚
𝛹𝑚(𝜂)

. (11)

In Eq. (11), 𝐴0, 𝐴𝑚, 𝐵𝑚, (𝑚 = 1, 2,… ,𝑀) are unknown coefficients to be calculated and 𝑀 is the balancing constant which is acquired
by the balancing rule in Eq. (10), also 𝐴𝑚, 𝐵𝑚 should not be zero, simultaneously.

In Eq. (11), the 𝛹 (𝜂) function admits the following formula:

𝛹 ′(𝜂) = 𝑙𝑛(𝐾)

(

𝑤 ∓ 𝛹 2(𝜂)

)

, 0 < 𝐾 ≠ 1, (12)

in which 𝑤 is real value. We can write some solutions of Eq. (12) as follow:

Situation-1:

𝛹∓
1 (𝜂) = ±

√

±𝑤 tanh𝐾
(

√

±𝑤
(

𝜂 + 𝜂0
)

)

,

𝛹∓
2 (𝜂) = ±

√

±𝑤 coth𝐾
(

√

±𝑤
(

𝜂 + 𝜂0
)

)

,

𝛹∓
3 (𝜂) = ±

√

±𝑤
(

tanh𝐾
(

2
√

±𝑤
(

𝜂 + 𝜂0
)

)

∓ 𝑖𝛾𝑠𝑒𝑐ℎ𝐾
(

2
√

±𝑤
(

𝜂 + 𝜂0
)

))

,

𝛹∓
4 (𝜂) = ∓

(

𝑤 −
√

±𝑤 tanh𝐾
(

√

±𝑤
(

𝜂 + 𝜂0
)

))

(

1 ∓
√

±𝑤 tanh𝐾
(

√

±𝑤
(

𝜂 + 𝜂0
)

)) ,

𝛹∓
5 (𝜂) = ∓

√

±𝑤
(

5 − 4 cosh𝐾
(

2
√

±𝑤
(

𝜂 + 𝜂0
)

))

(

3 + 4 sinh𝐾
(

2
√

±𝑤
(

𝜂 + 𝜂0
)

)) ,

𝛹∓
6 (𝜂) = ∓

𝛾
√

±𝑤
(

𝜌2 + 𝜎2
)

− 𝜌
√

±𝑤 cosh𝐾
(

2
√

±𝑤
(

𝜂 + 𝜂0
)

)

𝜌 sinh
(

2
√

±𝑤
(

𝜂 + 𝜂
)

)

+ 𝛽
,

3

𝐾 0
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𝛹∓
7 (𝜂) = 𝛾

√

±𝑤

⎡

⎢

⎢

⎢

⎣

1 −
2𝜌

𝜌 + cosh𝐾
(

2
√

±𝑤
(

𝜂 + 𝜂0
)

)

± 𝛾 sinh𝐾
(

2
√

±𝑤
(

𝜂 + 𝜂0
)

)

⎤

⎥

⎥

⎥

⎦

,

in which

sinh𝐾
(

𝛺𝜂
)

= 𝐾𝛺𝜂 −𝐾−𝛺𝜂

2
,

cosh𝐾
(

𝛺𝜂
)

= 𝐾𝛺𝜂 +𝐾−𝛺𝜂

2
,

tanh𝐾
(

𝛺𝜂
)

= 𝐾𝛺𝜂 −𝐾−𝛺𝜂

𝐾𝛺𝜂 +𝐾−𝛺𝜂 ,

coth𝐾
(

𝛺𝜂
)

= 𝐾𝛺𝜂 +𝐾𝛺𝜂

𝐾𝛺𝜂 −𝐾−𝛺𝜂 ,

𝑠𝑒𝑐ℎ𝐾
(

𝛺𝜂
)

= 2
𝐾𝛺𝜂 +𝐾−𝛺𝜂 .

ituation-2:

𝛹∓
8 (𝜂) = ∓

√

∓𝑤 tan𝐾
(

√

∓𝑤
(

𝜂 + 𝜂0
)

)

,

𝛹∓
9 (𝜂) = ±

√

∓𝑤 cot𝐾
(

√

∓𝑤
(

𝜂 + 𝜂0
)

)

,

𝛹∓
10(𝜂) = ∓

√

∓𝑤
(

tan𝐾
(

2
√

∓𝑤
(

𝜂 + 𝜂0
)

)

∓ sec𝐾
(

2
√

∓𝑤
(

𝜂 + 𝜂0
)

))

,

𝛹∓
11(𝜂) = ±

√

∓𝑤
(

1 − tan𝐾
(

√

∓𝑤
(

𝜂 + 𝜂0
)

))

(

1 + tan𝐾
(

√

∓𝑤
(

𝜂 + 𝜂0
)

)) ,

𝛹∓
12(𝜂) = ∓

√

∓𝑤
(

4 − 5 cos𝐾
(

2
√

∓𝑤
(

𝜂 + 𝜂0
)

))

(

3 + 5 sin𝐾
(

2
√

∓𝑤
(

𝜂 + 𝜂0
)

)) ,

𝛹∓
13(𝜂) = ∓

𝛾
√

∓𝑤
(

𝜌2 − 𝜎2
)

− 𝜌
√

∓𝑤 cos𝐾
(

2
√

∓𝑤
(

𝜂 + 𝜂0
)

)

𝜌 sin𝐾
(

2
√

∓𝑤
(

𝜂 + 𝜂0
)

)

+ 𝜎
,

𝛹∓
14(𝜉) = 𝑖𝛾

√

∓𝑤

⎡

⎢

⎢

⎢

⎣

1 −
2𝜌

𝜌 + cos𝐾
(

2
√

∓𝑤
(

𝜂 + 𝜂0
)

)

± 𝑖𝛾 sin𝐾
(

2
√

∓𝑤
(

𝜂 + 𝜂0
)

)

⎤

⎥

⎥

⎥

⎦

,

in which

sin𝐾
(

𝛺𝜂
)

= −𝑖𝐾
𝑖𝛺𝜂 −𝐾−𝑖𝛺𝜂

2
,

cos𝐾
(

𝛺𝜂
)

= 𝐾 𝑖𝛺𝜂 +𝐾−𝑖𝛺𝜂

2
,

tan𝐾
(

𝛺𝜂
)

= −𝑖𝐾
𝑖𝛺𝜂 −𝐾−𝑖𝛺𝜂

𝐾 𝑖𝛺𝜂 +𝐾−𝑖𝛺𝜂 ,

cot𝐾
(

𝛺𝜂
)

= 𝑖𝐾
𝑖𝛺𝜂 +𝐾−𝑖𝛺𝜂

𝐾 𝑖𝛺𝜂 −𝐾−𝑖𝛺𝜂 ,

𝑠𝑒𝑐𝐾
(

𝛺𝜂
)

= 2
𝐾 𝑖𝛺𝜂 +𝐾−𝑖𝛺𝜂 .

ituation-3: If 𝑤 = 0, then

𝛹∓
15(𝜂) = ± 1

𝑙𝑛(𝐾)(𝜂 + 𝜂0)
,

in which 𝛺 =
√

∓𝑤, 𝛾 = ∓1, 𝜌, 𝜎, 𝜂0 and 𝑤 are any real non-zero free parameter.

Remark 1. In Situation-1 to Situation-2, for
√

𝑤, 𝑤 is positive, for
√

𝑤, 𝑤 is negative.
4
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Remark 2. In the presented method, we utilize a direct algebraic form of enhanced modified extended expansion method in [46].

Remark 3. In this paper, we will use Eq. (12) in the following form:

𝛹 ′(𝜂) − 𝑙𝑛(𝐾)(𝑤 − 𝛹 2(𝜂)) = 0.

3. Application

Consider the next wave transformations to acquire analytical traveling wave solutions of Eq. (6),

𝜗(𝑥, 𝑡) = 𝜓(𝜂)𝑒𝑖𝜃 , 𝜂 = 𝑝(𝑥 − 𝜐𝑡), 𝜃 = −𝑘𝑥 + 𝜔𝑡 + 𝜚0, (13)

in which 𝜐 is the soliton velocity, 𝜃, 𝑘, 𝜔 and 𝜚0 are the phase component, the soliton frequency, the soliton wave number, and the
phase constant, respectively. Inserting Eq. (13) into Eq. (6) and dividing into real and imaginary parts yields a pair of relations. The
real part and imaginary part are acquired as follows, respectively:

(

−𝑏𝑘 + 𝛽𝑘 + 𝜆3
)

3𝛼𝑘 𝑝2 − 𝑝2𝑣𝜆2 + 𝑝2𝜆1
𝜓3 +

(

−𝛼 𝑘3 − 𝑘2𝜆1 + 𝑘𝜔𝜆2 − 𝑎𝑘 − 𝜔
)

𝜓

3𝛼𝑘 𝑝2 − 𝑝2𝑣𝜆2 + 𝑝2𝜆1
+ 𝜓 ′′ = 0, (14)

(

1
3 𝛽𝑝 − 𝑏𝑝 −

2
3 𝑐𝑝

)

𝛼 𝑝3
𝜓3 +

(

−3𝛼 𝑘2𝑝 + 𝑘𝑝𝑣𝜆2 − 2𝑘𝑝𝜆1 + 𝜔𝑝𝜆2 − 𝑎𝑝 − 𝑝𝑣
)

𝜓

𝛼 𝑝3
+ 𝜓 ′′ = 0, (15)

where 𝜓 = 𝜓(𝜂), 𝜓 ′ = 𝑑𝜓(𝜂)
𝑑𝜂 and after using the homogeneous balance principle between Eq. (14) and, Eq. (15), we acquire the

following constraint conditions:

𝜆3 =
6𝛼𝑏𝑘 + 6𝛼𝑐𝑘 − 3𝑏𝑣𝜆2 + 𝛽𝑣𝜆2 − 2𝑐𝑣𝜆2 + 3𝑏𝜆1 − 𝛽𝜆1 + 2𝑐𝜆1

3𝛼
, (16)

𝑎 =
−8𝛼2𝑘3 + 6

(

𝑣𝜆2 −
4𝜆1
3

)

𝛼 𝑘2 +
(

−𝑣2𝜆22 +
(

2𝛼𝜔 + 3𝑣𝜆1
)

𝜆2 − 3𝛼𝑣 − 2𝜆21
)

𝑘 − 𝜔𝑣𝜆22 +
(

𝜔𝜆1 + 𝑣2
)

𝜆2 − 𝑣𝜆1 + 𝛼𝜔

2𝛼𝑘 − 𝑣𝜆2 + 𝜆1
. (17)

Under these constraint conditions, Eq. (15) can be taken into account NODE form of Eq. (6) and, with the assistance of the
homogeneous balance rule by taking the terms 𝜓 ′′ and 𝜓3 in Eq. (15), 𝑀 = 1 is acquired. So, Eq. (11) transforms into the following
form:

𝜓(𝜂) = 𝐴0 + 𝐴1𝛹 (𝜂) +
𝐵1
𝛹 (𝜂)

. (18)

Substituting Eq. (18) into Eq. (15) by taking account of Eq. (12) and equalizing the coefficients of 𝛹 𝑗 (𝜂) to zero, a system of algebraic
equations is acquired as follows:

𝛹−3(𝜂) ∶ (𝛽𝑝 − 3𝑏𝑝 − 2𝑐𝑝)𝐵3
1 + 6𝐵1 ln(𝐾)2𝑤2𝛼 𝑝3 = 0,

𝛹−2(𝜂) ∶ (𝛽𝑝 − 3𝑏𝑝 − 2𝑐𝑝)𝐵2
1𝐴0 = 0,

𝛹−1(𝜂) ∶ −
(−𝛽 + 3𝑏 + 2𝑐)𝐵1

(

𝐴2
0 + 𝐴1𝐵1

)

𝑝2𝛼
+

(

2𝛼 𝑘3 − 𝑘2𝑣𝜆2 + 𝑘2𝜆1 + 𝑘𝑣 − 𝜔
)

𝐵1

𝑝2
(

2𝛼𝑘 − 𝑣𝜆2 + 𝜆1
) − 2𝐵1 ln(𝐾)2𝑤 = 0,

𝛹 0(𝜂) ∶

(

1
3 𝛽𝑝 − 𝑏𝑝 −

2
3 𝑐𝑝

)

(

4𝐵1𝐴0𝐴1 + 𝐴0
(

𝐴2
0 + 2𝐴1𝐵1

))

𝛼 𝑝3
+

(

2𝛼 𝑘3 − 𝑘2𝑣𝜆2 + 𝑘2𝜆1 + 𝑘𝑣 − 𝜔
)

𝐴0

𝑝2
(

2𝛼𝑘 − 𝑣𝜆2 + 𝜆1
) = 0,

𝛹 (𝜂) ∶ −
(−𝛽 + 3𝑏 + 2𝑐)𝐴1

(

𝐴2
0 + 𝐴1𝐵1

)

𝑝2𝛼
+

(

2𝛼 𝑘3 − 𝑘2𝑣𝜆2 + 𝑘2𝜆1 + 𝑘𝑣 − 𝜔
)

𝐴1

𝑝2
(

2𝛼𝑘 − 𝑣𝜆2 + 𝜆1
) − 2𝐴1 ln(𝐾)2𝑤 = 0,

𝛹 2(𝜂) ∶ (𝛽 − 3𝑏 − 2𝑐)𝐴2
1𝐴0 = 0,

𝛹 3(𝜂) ∶ (𝛽 − 3𝑏 − 2𝑐)𝐴3
1 + 6𝐴1𝑝

2𝛼 ln(𝐾)2 = 0.

hen this algebraic system is solved with the assistance of a Computer Algebraic Software, many solution sets are acquired. In
rder not to take up much volume in the article we presented some of them which we used for the graphical representations. One
an also get and use other solution sets easily:

et 1:

{𝑤 =
2𝛼 𝑘3 − 𝑘2𝑣𝜆2 + 𝑘2𝜆1 + 𝑘𝑣 − 𝜔
2𝑝2 ln(𝐾)2

(

2𝛼𝑘 − 𝑣𝜆2 + 𝜆1
)
, 𝐴0 = 0, 𝐴1 = 0,

𝐵1 =

√

6𝛼
(

2𝛼 𝑘3 − 𝑘2𝑣𝜆2 + 𝑘2𝜆1 + 𝑘𝑣 − 𝜔
)

2
√

(−𝛽 + 3𝑏 + 2𝑐) ln(𝐾)
(

2𝛼𝑘 − 𝑣𝜆2 + 𝜆1
)

𝑝
}. (19)
5
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Set 2:

{𝑤 =
−2𝛼 𝑘3 +

(

𝑣𝜆2 − 𝜆1
)

𝑘2 − 𝑘𝑣 + 𝜔

4
(

2𝛼𝑘 − 𝑣𝜆2 + 𝜆1
)

𝑝2 ln(𝐾)2
, 𝐴0 = 0, 𝐴1 = −

√

6 𝛼 𝑝 ln(𝐾)
√

(−𝛽 + 3𝑏 + 2𝑐)
,

𝐵1 = −

(

3
√

6
√

𝛼 (−𝛽 + 3𝑏 + 2𝑐) +
√

18𝛼𝑏 − 6𝛼𝛽 + 12𝛼𝑐
)

(

2𝛼 𝑘3 − 𝑘2𝑣𝜆2 + 𝑘2𝜆1 + 𝑘𝑣 − 𝜔
)

16 (−𝛽 + 3𝑏 + 2𝑐)
(

2𝛼𝑘 − 𝑣𝜆2 + 𝜆1
)

𝑝 ln(𝐾)
}. (20)

Set 3:

{𝑝 =

√

2
√

𝑤
(

2𝛼 𝑘3 − 𝑘2𝑣𝜆2 + 𝑘2𝜆1 + 𝑘𝑣 − 𝜔
)

2𝑤
√

(

2𝛼𝑘 − 𝑣𝜆2 + 𝜆1
)

ln(𝐾)
, 𝐴0 = 0, 𝐴1 = 0,

𝐵1 = ∓

√

3𝑤
(

−2𝛼 𝑘3 +
(

𝑣𝜆2 − 𝜆1
)

𝑘2 − 𝑘𝑣 + 𝜔
)

𝛼
√

(−𝛽 + 3𝑏 + 2𝑐)
(

−2𝛼𝑘 + 𝑣𝜆2 − 𝜆1
)

}. (21)

et 4:

{𝑝 =

√

−𝑤
(

2𝛼 𝑘3 − 𝑘2𝑣𝜆2 + 𝑘2𝜆1 + 𝑘𝑣 − 𝜔
)

2𝑤
√

(

2𝛼𝑘 − 𝑣𝜆2 + 𝜆1
)

ln(𝐾)
, 𝐴0 = 0,

𝐴1 = −

(

2𝛼 𝑘3 +
(

−𝑣𝜆2 + 𝜆1
)

𝑘2 + 𝑘𝑣 − 𝜔
)

√

6 𝛼

2
√

−3𝑤
(

− 𝛽
3 + 𝑏 + 2𝑐

3

)

(

−2𝛼 𝑘3 +
(

𝑣𝜆2 − 𝜆1
)

𝑘2 − 𝑘𝑣 + 𝜔
) (

−2𝛼𝑘 + 𝑣𝜆2 − 𝜆1
)

𝛼
,

𝐵1 = −

√

6
√

−𝑤
(

−2𝛼 𝑘3 +
(

𝑣𝜆2 − 𝜆1
)

𝑘2 − 𝑘𝑣 + 𝜔
)

𝛼

2
√

(

2𝛼𝑘 − 𝑣𝜆2 + 𝜆1
)

(−𝛽 + 3𝑏 + 2𝑐)
}. (22)

Set 5, 6:

{𝑤 =
2𝛼 𝑘3 +

(

−𝑣𝜆2 + 𝜆1
)

𝑘2 + 𝑘𝑣 − 𝜔

8
(

2𝛼𝑘 − 𝑣𝜆2 + 𝜆1
)

𝑝2 ln(𝐾)2
, 𝐴0 = 0, 𝐴1 = ∓

√

6𝛼 𝑝 ln(𝐾)
√

−𝛽 + 3𝑏 + 2𝑐
,

𝐵1 = ∓

(

3
√

6
√

𝛼 (−𝛽 + 3𝑏 + 2𝑐) +
√

18𝛼𝑏 − 6𝛼𝛽 + 12𝛼𝑐
)

(

2𝛼 𝑘3 − 𝑘2𝑣𝜆2 + 𝑘2𝜆1 + 𝑘𝑣 − 𝜔
)

16 (−𝛽 + 3𝑏 + 2𝑐)
(

2𝛼𝑘 − 𝑣𝜆2 + 𝜆1
)

𝑝 ln(𝐾)
}. (23)

Accepting the 𝜂0 = 0 and 𝛾 = 1, then substituting the functions 𝛹𝑖(𝜂), (𝑖 = 1, 2,… , 15) in Situation-1 to Situation-3 into Eq. (18)
utilizing Eqs. (13), (16) and (17), one can acquire the solutions of Eq. (6) by substituting the Sets 1–6 above into 𝜗𝑖(𝑥, 𝑡). We expose
the solution functions of Eq. (6), in the following general form:

𝜗1(𝑥, 𝑡) =
(

𝐴0 + 𝐴1
√

𝑤 tanh𝐾 (𝜉) +
𝐵1 coth𝐾 (𝜉)

√

𝑤

)

𝑒𝑖𝜃 , (24)

𝜗2(𝑥, 𝑡) =
(

𝐴0 + 𝐴1
√

𝑤 coth𝐾 (𝜉) +
𝐵1 tanh𝐾 (𝜉)

√

𝑤

)

𝑒𝑖𝜃 , (25)

𝜗3(𝑥, 𝑡) =
(

𝐴0 + 𝐴1
√

𝑤 (tanh𝐾 (2𝜉) − 𝑖𝛾𝑠𝑒𝑐ℎ𝐾 (2𝜉)) +
𝐵1

√

𝑤(tanh𝐾 (2𝜉) − 𝑖𝛾𝑠𝑒𝑐ℎ𝐾 (2𝜉))

)

𝑒𝑖𝜃 , (26)

𝜗4(𝑥, 𝑡) =
(

𝐴0 −
𝐴1(𝑤 −

√

𝑤 tanh𝐾 (𝜉))

1 −
√

𝑤 tanh𝐾 (𝜉)
−
𝐵1(1 −

√

𝑤 tanh𝐾 (𝜉))

𝑤 −
√

𝑤 tanh𝐾 (𝜉)

)

𝑒𝑖𝜃 , (27)

𝜗5(𝑥, 𝑡) =
(

𝐴0 −
𝐴1

√

𝑤(5 − 4 cosh𝐾 (2𝜉))
3 + 4 sinh𝐾 (2𝜉)

−
𝐵13 + 4 sinh𝐾 (2𝜉)

√

𝑤(5 − 4 cosh𝐾 (2𝜉))

)

𝑒𝑖𝜃 , (28)

𝜗6(𝑥, 𝑡) =
(

𝐴0 −
𝐴1(𝛾

√

𝑤(𝜌2 + 𝜎2) − 𝜌
√

𝑤 cosh𝐾 (2𝜉))
𝜌 sinh𝐾 (2𝜉) + 𝜎

−
𝐵1(𝜌 sinh𝐾 (2𝜉) + 𝜎)

(𝛾
√

𝑤(𝜌2 + 𝜎2) − 𝜌
√

𝑤 cosh𝐾 (2𝜉))

)

𝑒𝑖𝜃 , (29)

𝜗7(𝑥, 𝑡) =
(

𝐴0 + 𝐴1𝛾
√

𝑤
(

1 −
2𝜌

𝜌 + cosh𝐾 (2𝜉) + 𝛾 sinh𝐾 (2𝜉)

)

+
𝐵1

𝛾
√

𝑤
(

1 − 2𝜌
𝜌+cosh𝐾 (2𝜉)+𝛾 sinh𝐾 (2𝜉)

)

)

𝑒𝑖𝜃 , (30)

𝜗8(𝑥, 𝑡) =
(

𝐴0 + 𝐴1
√

−𝑤 tan𝐾 (𝜁 ) +
𝐵1 cot𝐾 (𝜁 )

√

)

𝑒𝑖𝜃 , (31)
6
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Fig. 1. The diverse plots of 𝜗7(𝑥, 𝑡) in Eq. (30) for the Set 1. and, the parameters 𝜆1 = 0.5, 𝜆2 = 2, 𝛼 = 0.75, 𝛽 = 1.5, 𝑏 = 0.7, 𝐾 = 50, 𝜐 = 1.5, 𝑝 = 1, 𝜔 = 1, 𝜚0 = 10, 𝑐 =
−2, 𝑘 = 0.75, 𝜌 = −1 and, 𝜎 = 2. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

𝜗9(𝑥, 𝑡) =
(

𝐴0 + 𝐴1
√

−𝑤 cot𝐾 (𝜁 ) +
𝐵1 tan𝐾 (𝜁 )

√

−𝑤

)

𝑒𝑖𝜃 , (32)

𝜗10(𝑥, 𝑡) =
(

𝐴0 − 𝐴1
√

−𝑤 (tan𝐾 (2𝜁 ) − 𝛾 sec(2𝜁 )) −
𝐵1

√

−𝑤(tan𝐾 (2𝜁 ) − 𝛾 sec𝐾 (2𝜁 ))

)

𝑒𝑖𝜃 , (33)

𝜗11(𝑥, 𝑡) =
(

𝐴0 +
𝐴1

√

−𝑤 (1 − tan𝐾 (𝜁 ))
1 + tan𝐾 (𝜁 )

−
𝐵1(1 + tan𝐾 (𝜁 ))

√

−𝑤 (1 − tan𝐾 (𝜁 ))

)

𝑒𝑖𝜃 , (34)

𝜗12(𝑥, 𝑡) =
(

𝐴0 −
𝐴1

√

−𝑤(4 − 5 cos𝐾 (2𝜁 ))
3 + 5 sin(2𝜁 )

−
𝐵1(5 sin𝐾 (2𝜁 ) + 3)

√

−𝑤(4 − 5 cos𝐾 (2𝜁 ))

)

𝑒𝑖𝜃 , (35)

𝜗13(𝑥, 𝑡) =
(

𝐴0 −
𝐴1(𝛾

√

−𝑤(𝜌2 − 𝜎2) − 𝜌
√

−𝑤 cos𝐾 (2𝜁 ))
𝜌 sin𝐾 (2𝜁 ) + 𝜎

−
𝐵1(𝜌 sin𝐾 (2𝜉) + 𝜎)

(𝛾
√

−𝑤(𝜌2 − 𝜎2) − 𝜌
√

−𝑤 cos𝐾 (2𝜁 ))

)

𝑒𝑖𝜃 , (36)

𝜗14(𝑥, 𝑡) =
(

𝐴0 + 𝑖𝐴1𝛾
√

−𝑤
(

1 −
2𝜌

𝜌 + cos𝐾 (2𝜁 ) + 𝑖𝛾 sin𝐾 (2𝜁 )

)

−
𝐵1

𝛾
√

−𝑤
(

1 − 2𝜌
𝜌+cos𝐾 (2𝜁 )+𝑖𝛾 sin𝐾 (2𝜁 )

)

)

𝑒𝑖𝜃 , (37)

𝜗15(𝑥, 𝑡) =
(

𝐴0 +
𝐴1

−𝑘𝑥 + 𝜔𝑡 + 𝜚0
+ 𝐵1(−𝑘𝑥 + 𝜔𝑡 + 𝜚0)

)

𝑒𝑖𝜃 , (38)

in which 𝜉 =
√

𝑤(−𝑘𝑥 + 𝜔𝑡 + 𝜚0) and 𝜁 =
√

−𝑤(−𝑘𝑥 + 𝜔𝑡 + 𝜚0).

4. Results and discussion

In this part, we successfully carried out plethora of soliton solution for the nonlinear Schrödinger–Hirota equation in existence
of perturbation terms with the effect of spatio-temporal dispersion and Kerr law nonlinearity using Mathematica, Matlab and Maple
symbolic computation programs. We visualized 3D, contour and 2D plots of some solutions to present the soliton dynamic of the
acquired solution with Matlab. Besides, the effect of the perturbation parameters on the solution propagation is investigated and
interpreted by giving the 2D graphs obtained for different parameter values. In Fig. 1, we depict a plethora of views of 𝜗7(𝑥, 𝑡)
in Eq. (30) for the selected special parameters, which are chosen in accordance with the constraint conditions for the presence of
related solutions, 𝜆 = 0.5, 𝜆 = 2, 𝛼 = 0.75, 𝛽 = 1.5, 𝑏 = 0.7, 𝐾 = 50, 𝜐 = 1.5, 𝑝 = 1, 𝜔 = 1, 𝜚 = 10, 𝑐 = −2, 𝑘 = 0.75, 𝜌 = −1 and,
7
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Fig. 2. The diverse plots of 𝜗13(𝑥, 𝑡) in Eq. (36) for the Set 2. and, the parameters 𝜆1 = 0.5, 𝜆2 = 2, 𝛼 = 0.75, 𝛽 = 1.5, 𝑏 = 0.7, 𝐾 = 50, 𝜐 = 1.5, 𝑝 = 1, 𝜔 = 1, 𝜚0 = 10, 𝑐 =
−2, 𝑘 = 0.75, 𝜌 = −1 and, 𝜎 = 2. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

𝜎 = 2 and in Eq. (19). Figs. 1(a), 1(b) and 1(c) represent 3D, contour and 2D plots of |
|

𝜗7(𝑥, 𝑡)||
2, respectively. Figs. 1(a), 1(b), 1(c)

depict dark soliton solution and Fig. 1(c) also shows the traveling wave properties of the soliton, which soliton moves to the right,
for 𝑡 = 2 (blue line), 𝑡 = 3 (red line) and 𝑡 = 4 (yellow line). In Figs. 1(d) and 1(e) , the effect of the parameters 𝑏, 𝑐 which are the
coefficients of self-steepening and nonlinear dispersion terms in Eq. (6) is examined while 𝑎 = 0.380. Our main purpose is to observe
how the optical soliton solution or soliton propagation behaves if these parameters change. The Fig. 1(d) shows the soliton profile of
at 𝑐 = −2 (black line), 𝑐 = −1.5 (blue line), 𝑐 = −1 (red line), 𝑐 = 2 (dashed black line), 𝑐 = 1.5 (dashed blue line) and 𝑐 = 1 (dashed
red line), respectively. We observed that, despite, there is no any movement along the 𝑥-axis, when the parameter 𝑐 changes, the
amplitude of |

|

𝜗7(𝑥, 1)||
2 is changes. If 𝑐 < 0 and 𝑐 increases, the amplitude of |

|

𝜗7(𝑥, 1)||
2 also increases. So, in this situation we can

say that 𝑐 has a positive correlation on the amplitude of |
|

𝜗7(𝑥, 1)||
2. If 𝑐 > 0 and 𝑐 increases, the amplitude of |

|

𝜗7(𝑥, 1)||
2 decreases.

So, in this situation 𝑐 has a inverse correlation on the amplitude of |
|

𝜗7(𝑥, 1)||
2. The Fig. 1(e) projects the soliton profile of at 𝑏 = −1.5

(black line), 𝑏 = −1.2 (blue line), 𝑏 = −1 (red line), 𝑏 = 1.5 (dashed black line), 𝑏 = 1.2 (dashed blue line) and 𝑏 = 0.7 (dashed red
line), respectively. Although, there is no any movement along the 𝑥-axis, when the parameter b changes, the amplitude of |

|

𝜗7(𝑥, 1)||
2

is also changes. If 𝑏 < 0 and 𝑏 increases, the amplitude of |

|

𝜗7(𝑥, 1)||
2 also increases. So, in this situation we can say that 𝑏 has a

positive correlation on the amplitude of |
|

𝜗7(𝑥, 1)||
2. If 𝑏 > 0 and 𝑏 increases, the amplitude of |

|

𝜗7(𝑥, 1)||
2 increases. So, 𝑏 has a also

positive correlation on the amplitude of |
|

𝜗7(𝑥, 1)||
2. In case b>0 the increase in amplitude is much greater than in case b<0.

In Fig. 2, we visualize the diverse plots of the soliton solution of 𝜗13(𝑥, 𝑡) in Eq. (36) for the selected special parameters, which
are chosen in accordance with the constraint conditions for the existence of related solutions, 𝜆1 = 0.5, 𝜆2 = 2, 𝛼 = 0.75, 𝛽 = 1.5, 𝑏 =
0.7, 𝐾 = 50, 𝜐 = 1.5, 𝑝 = 1, 𝜔 = 1, 𝜚0 = 10, 𝑐 = −2, 𝑘 = 0.75, 𝜌 = −1 and, 𝜎 = 2. Figs. 2(a), 2(b) and 2(c) represent 3D, contour and 2D
plots of |

|

𝜗13(𝑥, 𝑡)||
2, respectively. Figs. 2(a), 2(b), 2(c) depict the periodic bright–dark soliton solution and Fig. 2(c), and also show

the traveling wave properties of the soliton, which soliton moves to the right, for 𝑡 = 3 (blue line), 𝑡 = 5 (red line) and 𝑡 = 7 (yellow
line). In Figs. 2(d) and 2(e), our main purpose is to observe how the optical soliton solution or soliton propagation behaves if the
parameters 𝑏, 𝑐 parameters change while 𝑎 = 0.380. The Fig. 2(d) shows the soliton profile of at 𝑐 = −2 (black line), 𝑐 = −1.5 (blue
line), 𝑐 = −1 (red line), 𝑐 = 2 (dashed black line), 𝑐 = 1.5 (dashed blue line) and 𝑐 = 1 (dashed red line), respectively. We observed
that, despite, there is no any movement along the 𝑥-axis as the parameter 𝑐 changes, the amplitude of |

|

𝜗13(𝑥, 1)||
2 is changes. As 𝑐

increases for 𝑐 < 0, the amplitude of |
|

𝜗13(𝑥, 1)||
2 also increases. So, in this situation we can say that 𝑐 has a positive correlation on

the amplitude of |

|

𝜗13(𝑥, 1)||
2. As 𝑐 increases for 𝑐 > 0, the amplitude of |

|

𝜗13(𝑥, 1)||
2 decreases. So, in this situation 𝑐 has a inverse

correlation on the amplitude of |
|

𝜗13(𝑥, 1)||
2. The Fig. 2(e) projects the soliton profile of at 𝑏 = 1.5 (black line), 𝑏 = −1.2 (blue line),

𝑏 = −0.7 (red line), 𝑏 = 0.7 (dashed black line), 𝑏 = 1.2 (dashed blue line) and 𝑏 = 1.5 (dashed red line), respectively. Although, there
| |

2
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is no any movement along the 𝑥-axis as the parameter b changes, the amplitude of
|

𝜗13(𝑥, 1)| is also changes. As 𝑏 increases for
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𝑏 < 0, the amplitude of |
|

𝜗13(𝑥, 1)||
2 also increases. So, in this situation we can say that 𝑏 has a positive correlation on the amplitude

of |
|

𝜗13(𝑥, 1)||
2. As 𝑏 increases for 𝑏 > 0, the amplitude of |

|

𝜗13(𝑥, 1)||
2 increases. So, 𝑏 has a also positive correlation on the amplitude

of |
|

𝜗13(𝑥, 1)||
2. In case 𝑏 > 0 the increase in amplitude is much greater than in case 𝑏 < 0.

In Fig. 3, we present some projections of 𝜗4(𝑥, 𝑡) in Eq. (37) for the selected special parameters, which are chosen in accordance
ith the constraint conditions for the presence of related solutions, 𝜆1 = 2, 𝜆2 = 1, 𝜌 = −1, 𝜎 = 2, 𝛼 = 0.5, 𝛽 = 0.8, 𝑏 = 0.5, 𝐾 =
0, 𝜐 = 1, 𝜔 = 1.5, 𝜚0 = 0, 𝑐 = 1, 𝑘 = 0.75 and, 𝑤 = 1.5 and in Eq. (22). Figs. 3(a), 3(b) and 3(c) represent 3D, contour and 2D
lots of |

|

𝜗4(𝑥, 𝑡)||
2 for 𝑡 = 1, respectively.Figs. 3(a), 3(b), and 3(c) depict the periodic bright–dark soliton solution and Fig. 3(c) also

how the traveling wave properties of the soliton, which soliton moves to the right, for 𝑡 = 1 (blue line), 𝑡 = 3 (red line) and 𝑡 = 5
yellow line). In Fig. 3(d) and e, our main purpose is to observe how the optical soliton solution or soliton propagation behaves if
he parameters 𝑏, 𝑐 parameters change when 𝑎 = −2.660. The Fig. 3(d) respectively shows the soliton profile of at 𝑐 = −1.5 (black

line), 𝑐 = −1.25 (blue line), 𝑐 = −1 (red line), 𝑐 = 1.5 (dashed black line), 𝑐 = 1.25 (dashed blue line) and 𝑐 = 1 (dashed red line). We
observed that, despite, there is no any movement along the 𝑥-axis as the parameter 𝑐 changes, the amplitude of |

|

𝜗4(𝑥, 1)||
2 changes.

As 𝑐 increases for 𝑐 < 0, the amplitude of |
|

𝜗4(𝑥, 1)||
2 also increases. So, in this situation we can say that 𝑐 has a positive correlation

on the amplitude of |
|

𝜗4(𝑥, 1)||
2. As 𝑐 increases for 𝑐 > 0, the amplitude of |

|

𝜗4(𝑥, 1)||
2 decreases. So, in this situation 𝑐 has a inverse

orrelation on the amplitude of |
|

𝜗4(𝑥, 1)||
2. The Fig. 3(e) projects the soliton profile of at 𝑏 = −1.5 (black line), 𝑏 = −1.25 (blue line),

𝑏 = −1 (red line), 𝑏 = 1.5 (dashed black line), 𝑏 = 1.25 (dashed blue line) and 𝑏 = 1 (dashed red line), respectively. Although, there
is no any movement along the 𝑥-axis as the parameter b changes, the amplitude of |

|

𝜗4(𝑥, 1)||
2 is also changes. As 𝑏 increases for

< 0, the amplitude of |
|

𝜗4(𝑥, 1)||
2 also increases. So, in this situation we can say that 𝑏 has a positive correlation on the amplitude

f |
|

𝜗4(𝑥, 1)||
2. As 𝑏 increases for 𝑏 > 0, the amplitude of |

|

𝜗4(𝑥, 1)||
2 increases. So, 𝑏 has a also positive correlation on the amplitude of

𝜗4(𝑥, 1)||
2. In case 𝑏 > 0 the increase in amplitude is much greater than in case 𝑏 < 0.

In Fig. 4, we illustrate some portraits of 𝜗10(𝑥, 𝑡) in Eq. (33) for the selected special parameters, which are chosen in accordance
ith the constraint conditions for the existence of related solutions, 𝜆1 = 0.5, 𝜆2 = 1, 𝛼 = 0.5, 𝛽 = 1, 𝑏 = 0.5, 𝐾 = 50, 𝜐 = 1, 𝑝 = 1, 𝜔 =

1.5, 𝜚0 = 10, 𝑘 = 0.75, 𝜌 = −1 and, 𝜎 = 2. Fig. 4(a), Fig. 4(b) and Fig. 4(c) represent 3D, contour and 2D plots of |
|

𝜗10(𝑥, 𝑡)||
2 for 𝑡 = 1,

espectively. Fig. 4(a), Fig. 4(b) and Fig. 4(c) depict the bright soliton solution and, Fig. 4(c) also show the traveling wave properties
f the soliton, which soliton moves to the right, for 𝑡 = 3 (blue line), 𝑡 = 5 (red line) and 𝑡 = 7 (yellow line). In Figs. 4(d) and 4(e),
ur main purpose is to observe how the optical soliton solution or soliton propagation behaves if the parameters 𝑏, 𝑐 parameters
hange when 𝑎 = 0.875. The Fig. 3(d) shows the soliton profile of at 𝑐 = −1.5 (black line), 𝑐 = −1.25 (blue line), 𝑐 = −1 (red line),
= 1.5 (dashed black line), 𝑐 = 1.25 (dashed blue line) and 𝑐 = 1 (dashed red line), respectively. We observed that, despite, there

s no any movement along the 𝑥-axis as the parameter 𝑐 changes, the amplitude of |
|

𝜗10(𝑥, 1)||
2 is changes. As 𝑐 increases for 𝑐 < 0,

he amplitude of |

|

𝜗10(𝑥, 1)||
2 also increases. So, in this situation we can say that 𝑐 has a positive correlation on the amplitude of

𝜗10(𝑥, 1)||
2. As 𝑐 increases for 𝑐 > 0, the amplitude of |

|

𝜗10(𝑥, 1)||
2 decreases. So, in this situation 𝑐 has a inverse correlation on the

amplitude of |

|

𝜗10(𝑥, 1)||
2. The Fig. 4(e) projects the soliton profile of at 𝑏 = −1.5 (black line), 𝑏 = −1.25 (blue line), 𝑏 = −0.7 (red

line), 𝑏 = 1.5 (dashed black line), 𝑏 = 1.25 (dashed blue line) and 𝑏 = 0.7 (dashed red line), respectively. Although, there is no
any movement along the 𝑥-axis as the parameter b changes, the amplitude of |

|

𝜗10(𝑥, 1)||
2 is also changes. As 𝑏 increases for 𝑏 < 0,

the amplitude of |

|

𝜗10(𝑥, 1)||
2 also increases. So, in this situation we can say that 𝑏 has a positive correlation on the amplitude of

|

|

𝜗10(𝑥, 1)||
2. As 𝑏 increases for 𝑏 > 0, the amplitude of |

|

𝜗10(𝑥, 1)||
2 decreases. So, 𝑏 has an inverse correlation on the amplitude of

|

|

𝜗10(𝑥, 1)||
2. In case 𝑏 > 0 the increase in amplitude is much greater than in case 𝑏 < 0.

In Fig. 5, we give a plethora of silhouettes of 𝜗14(𝑥, 𝑡) in Eq. (37) for the selected special parameters, which are chosen in
accordance with the constraint conditions for the presence of related solutions, 𝜆1 = 0.8, 𝜆2 = 1, 𝜌 = −1, 𝜎 = 2, 𝛼 = 0.75, 𝛽 = 1, 𝑏 =
1, 𝐾 = 50, 𝜐 = 1, 𝜔 = 1.5, 𝜚0 = 10, 𝑐 = 1, 𝑘 = 0.75 and, 𝑤 = −5 and in Eq. (22). Figs. 5(a), 5(b) and 5(c) represent 3D, contour and
2D plots of |

|

𝜗14(𝑥, 𝑡)||
2 for 𝑡 = 1, respectively. Figs. 5(a), 5(b), 5(c) depict the singular soliton solution and Fig. 5(c) also show the

traveling wave properties of the soliton, which soliton moves to the right, for 𝑡 = 3 (blue line), 𝑡 = 5 (red line) and 𝑡 = 7 (yellow
line). In Fig. 5(d). and Fig. 5(e), our main purpose is to observe how the optical soliton solution or soliton propagation behaves if
the parameters 𝑏, 𝑐 parameters change when 𝑎 = −1.029. The Fig. 5(d) shows the soliton profile of at 𝑐 = −0.75 (black line), 𝑐 = −0.5
(blue line), 𝑐 = −0.25 (red line), 𝑐 = 0.75 (dashed black line), 𝑐 = 0.5 (dashed blue line) and 𝑐 = 0.25 (dashed red line), respectively.
We observed that, despite, there is no any movement along the 𝑥-axis as the parameter 𝑐 changes, the amplitude of |

|

𝜗14(𝑥, 1)||
2 is

changes. As 𝑐 increases for 𝑐 < 0, the amplitude of |
|

𝜗14(𝑥, 1)||
2 also increases. So, in this situation we can say that 𝑐 has a positive

correlation on the amplitude of |
|

𝜗14(𝑥, 1)||
2. As 𝑐 increases for 𝑐 > 0, the amplitude of |

|

𝜗14(𝑥, 1)||
2 decreases. So, in this situation 𝑐 has

a inverse correlation on the amplitude of |
|

𝜗14(𝑥, 1)||
2. The Fig. 5(e) projects the soliton profile of at 𝑏 = −0.75 (black line), 𝑏 = −0.5

(blue line), 𝑏 = −0.25 (red line), 𝑏 = 0.75 (dashed black line), 𝑏 = 0.5 (dashed blue line) and 𝑏 = 0.25 (dashed red line), respectively.
Although, there is no any movement along the 𝑥-axis as the parameter b changes, the amplitude of |

|

𝜗14(𝑥, 1)||
2 is also changes. As 𝑏

increases for 𝑏 < 0, the amplitude of |
|

𝜗14(𝑥, 1)||
2 also increases. So, in this situation we can say that 𝑏 has a positive correlation on

the amplitude of |
|

𝜗14(𝑥, 1)||
2. As 𝑏 increases for 𝑏 > 0, the amplitude of |

|

𝜗14(𝑥, 1)||
2 decreases. So, 𝑏 has an inverse correlation on the

amplitude of |
|

𝜗14(𝑥, 1)||
2.

Last of all, we would like to emphasize that the forms of all solution functions obtained in the article with all the solution sets
obtained provide the main investigated problem in Eq. (6).

5. Conclusion

In this article, we have examined a variety of solutions to the perturbed Schrödinger–Hirota equation with Kerr law non-linearity
by presenting and applying the direct algebraic form of enhanced modified extended tanh expansion method. We have derived dark–
bright, trigonometric, hyperbolic, periodic, and singular soliton solutions. For some values of the appropriate parameters, the 2D,
9
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Fig. 3. The diverse plots of |𝜗4(𝑥, 𝑡)|
2 in Eq. (27) for the Set 3 and, the parameters 𝜆1 = 2, 𝜆2 = 1, 𝜌 = −1, 𝜎 = 2, 𝛼 = 0.5, 𝛽 = 0.8, 𝑏 = 0.5, 𝐾 = 10, 𝜐 = 1, 𝜔 = 1.5, 𝜚0 =

0, 𝑐 = 1, 𝑘 = 0.75 and, 𝑤 = 1.5. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. The diverse plots of |𝜗10(𝑥, 𝑡)|
2 in Eq. (33) for the Set 3. and, the parameters 𝜆1 = 0.5, 𝜆2 = 1, 𝛼 = 0.5, 𝛽 = 1, 𝑏 = 0.5, 𝐾 = 50, 𝜐 = 1, 𝑝 = 1, 𝜔 = 1.5, 𝜚0 = 10, 𝑘 =

0.75, 𝜌 = −1 and, 𝜎 = 2. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

contour and 3D graphs to some of the obtained solutions are illustrated. Besides, the effect of the coefficients of the self-steepening

and nonlinear dispersion terms to the soliton propagation is investigated, obtained results presented graphically and interpreted in
10
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Fig. 5. The diverse plots of |𝜗14(𝑥, 𝑡)|
2 in Eq. (37) for the Set 4. and, the parameters 𝜆1 = 0.8, 𝜆2 = 1, 𝜌 = −1, 𝜎 = 2, 𝛼 = 0.75, 𝛽 = 1, 𝑏 = 1, 𝐾 = 50, 𝜐 = 1, 𝜔 = 1.5, 𝜚0 =

10, 𝑐 = 1, 𝑘 = 0.75 and, 𝑤 = −5. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

detail. The acquired results can be more helpful in interpreting the physical meaning of this nonlinear system. The proposed direct
algebraic form of enhanced modified extended tanh expansion method is a powerful mathematical method which can be utilized to
get the analytical solutions to a variety of the complex nonlinear mathematical models and we believe that the results obtained in
the article will contribute to the studies in this field in every aspect.
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