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Abstract
Gene expression data play a significant role in the development of effective cancer 
diagnosis and prognosis techniques. However, many redundant, noisy, and irrelevant 
genes (features) are present in the data, which negatively affect the predictive accu-
racy of diagnosis and increase the computational burden. To overcome these chal-
lenges, a new hybrid filter/wrapper gene selection method, called mRMR-BAOAC-
SA, is put forward in this article. The suggested method uses Minimum Redundancy 
Maximum Relevance (mRMR) as a first-stage filter to pick top-ranked genes. Then, 
Simulated Annealing (SA) and a crossover operator are introduced into Binary 
Arithmetic Optimization Algorithm (BAOA) to propose a novel hybrid wrapper fea-
ture selection method that aims to discover the smallest set of informative genes 
for classification purposes. BAOAC-SA is an enhanced version of the BAOA in 
which SA and crossover are used to help the algorithm in escaping local optima 
and enhancing its global search capabilities. The proposed method was evaluated on 
10 well-known microarray datasets, and its results were compared to other current 
state-of-the-art gene selection methods. The experimental results show that the pro-
posed approach has a better performance compared to the existing methods in terms 
of classification accuracy and the minimum number of selected genes.
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1  Introduction

As biomedical research and healthcare continue to advance in the genomic era, 
one of the most critical challenges facing bioinformatics is the high dimensional-
ity of genomic data. Limited sample size and imbalanced class in data make it 
even more difficult. DNA microarray gene expression datasets are good examples 
of such high dimensional data [1]. Microarray datasets have offered expression 
measurements on tens of thousands of genes (dimensions), opening up new ave-
nues for prognosis and diagnosis of life-threatening diseases like cancer, Alzhei-
mer’s, diabetes, etc. The extraction of disease-related biomarkers and the precise 
classification of cancer types are the two most important applications of microar-
ray data. However, a large proportion of genes in microarray data are redundant 
and irrelevant for clinical use. Extracting disease-related information from a mas-
sive amount of redundant data and noise is a challenging task. It negatively influ-
ences the accuracy and computational cost of classification [2, 3] and makes bio-
marker discovery and data interpretation more difficult [4]. Therefore, effective 
extraction of the informative genes from a high dimensional microarray dataset 
referred to as gene (feature) selection, is crucial. Gene selection (GS) plays an 
important role in achieving better classification accuracy, increasing data inter-
pretability, and reducing clinical costs by identifying the most promising gene 
subset. GS is the most challenging preprocessing step in biomedical data analysis 
due to the existence of a huge number of genes, a small number of patient sam-
ples, and complicated gene interactions [2]. It’s been already proven that finding 
the best gene subsets is an NP-hard problem [5, 6]. All this motivates research-
ers to search for possible solutions and to suggest different algorithms. Although 
several Nature-inspired optimization algorithms (NIOAs) have already been stud-
ied for gene selection, due to the complicated interplay between the genes and 
large-scale search space, most of the NIOA based GS techniques suffer from the 
stagnation problem and often drop in local optima [1, 5–8]. Moreover, because 
the NIOAs based strategies are stochastic, there is no certainty that the best set of 
genes will be found in GS problems. Therefore, there is still a need for powerful 
search strategies to improve the performance of gene selection. One of the effi-
cient NIOAs that has been recently suggested is Arithmetic Optimization Algo-
rithm (AOA).

AOA, introduced by Abualigah et  al. [9], has been inspired by the distribution 
behavior of the four basic arithmetic operators: multiplication, division, subtraction, 
and addition. AOA has some advantages over other NIOAs such as simplicity, flex-
ibility, easy implementation, less number of parameters, and local optima avoidance. 
As a result, AOA and its binary [10], enhanced [11–13], hybrid [14, 15] versions 
have been successfully applied to a variety of optimization issues, including global 
optimization problems [11–13], image processing [16], neural network training [17], 
and feature selection [10, 14, 15]. However, to our knowledge, binary AOA (BAOA) 
is not yet properly investigated for GS and cancer classification problems.

The Simulated Annealing (SA) algorithm, on the other hand, is a hill-climb-
ing method that is often employed in conjunction with other NIOAs to overcome 
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the problem of local optima stagnation and so handle feature selection problems 
more effectively. Some of the examples include the hybrid of SA with Whale 
Optimization Algorithm (WOA) [18], SA with binary Corel Reefs Optimization 
(BCRO) [8], SA with Harris Hawks Optimization (HHO) algorithm [19], SA with 
Salp Swarm Algorithm (SSA) [20], SA with binary Dragonfly Algorithm (BDA 
or BDF) [21], SA with Teaching–Learning-based Optimization (TLBO) [22], and 
SA with Grey Wolf Optimizer (GWO) [23]. This inspired us to combine the SA 
with the BAOA to find robust and stable discriminative genes for cancer clas-
sification due to the difficulties of the learning process induced by the intricate 
interaction between the genes and the huge gene search space.

This paper presents a new BAOA-based hybrid GS approach, called mRMR-
BAOAC-SA. The Minimum Redundancy Maximum Relevance (mRMR) [5] fil-
ter approach is initially used in the suggested hybrid method to find top-ranked 
genes in order to fine-tune the search space to the wrapper method. Then, hybrid 
BAOA with crossover operator (C) and SA algorithm is utilized as a new wrap-
per GS approach to efficiently tackle the gene selection problem and find the best 
gene subset. SA is combined with BAOA to enhance the exploitation property 
of BAOA and avoid falling into the optima problem, while the crossover opera-
tor improves the global search ability of BAOA and accelerates the convergence 
speed. Note that Random Forest (RF) [24] classifier is employed to evaluate each 
candidate gene subset in BAOAC-SA. Especially, the main contribution of this 
work can be summarized as follows:

•	 This is the first time the BAOA has been applied to gene selection where two 
versions of BAOA are proposed (i.e. BAOAC and BAOAC-SA).

•	 The crossover operator and SA are added to BAOA in order to enhance the 
local exploitation of the algorithm.

•	 Hybridization of mRMR and BAOAC-SA is suggested for gene selection uti-
lizing an RF classifier.

•	 The performance of the suggested method (mRMR-BAOAC-SA) is investi-
gated to see whether it can obtain the smallest subset of genes with higher 
classification accuracy when compared with current state-of-the-art GS meth-
ods.

To assess the efficacy of the proposed method, extensive experiments were 
carried out on ten widely used microarray datasets. The conducted experiments 
demonstrate that the suggested hybrid mRMR-BAOASA has a better performance 
compared to current state-of-the-art techniques in terms of accuracy and number 
of selected genes.

The paper’s organization is as follows: Sect.  2 provides a literature review 
of the GS techniques. Section 3 briefly introduces the AOA, SA algorithm, and 
crossover operator. The primary concepts and details of the suggested mRMR-
BAOAC-SA schema are elaborated in Sect.  4. The performed experiments on 
well-known datasets and achieved results are presented and analyzed in Sect. 5. 
Finally, Sect. 6 presents the conclusions and future direction.
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2 � Related works

There are three types of GS techniques in literature: filter, wrapper, and hybrid 
methods. The filter models are independent of any classifier and instead rely on 
interior properties of training data such as distance, information theory, and prob-
ability distribution. As a result, they are extremely fast when dealing with high-
dimensional microarray data [25]. Filter methods can be divided into two cat-
egories: univariate and multivariate approaches. Univariate filter models assign 
a rank to each gene independently of the other genes, while multivariate filter 
approaches consider the possible dependency between genes to rank the signif-
icance of genes [26]. The highest-ranking genes can then be chosen for future 
analysis. Some of the widely used filter approaches are Fisher-score [4], mRMR 
[5], Information Gain (IG) [27], Mutual Information (MI)[7], etc.

The wrapper methods use a classifier to evaluate the quality of gene subsets in 
the search space iteratively. The search strategy and evaluation are the two basic 
components of wrapper approaches. The predictive accuracy of candidate gene 
subsets generated by the search strategy is evaluated using the machine learn-
ing classifiers. An increase in the number of genes causes the gene search space 
to grow exponentially, which gives rise to a laborious search over all possible 
combinations of features [28]. NIOAs have been devoted as search techniques 
in wrapper methods to solve various optimization problems. Some of them are 
binary Black Hole Algorithm (BBHA) [2, 29], GWO [6], Moth Flame Optimi-
zation Algorithm (MFOA) [7], Harmony Search Algorithm (HSA) [30], TLBO 
[31], Ant Colony Optimization (ACO) [32], WOA [33], etc. [34–36]. Wrapper 
approaches are more computationally expensive than filter methods, but in terms 
of classification accuracy, they outperform filter methods. Hybrid methods com-
bine filter and wrapper approaches to take advantage of the computational effi-
ciency of filter methods as well as the wrapper methods’ proper performance 
[1]. However, the hybrid methods are still in their infancy, and more research is 
needed to develop more efficient hybrid approaches.

Various hybrid methods have been introduced in the literature to solve GS 
problems. A hybrid GS method based on the Binary Jaya algorithm and a multi-
attribute decision-making (MADM) method was proposed by Chaudhuri and 
Sahu [1]. Technique for order preference by similarity to ideal solution (TOPSIS) 
approach, as a MADM method, is used to filter noisy genes at the first stage. 
A binary Jaya algorithm with a time-varying transfer function is utilized in the 
second stage to choose informative genes. In [2], the authors introduced a GS 
approach based on the BDF and BBHA using a Support Vector Machine (SVM). 
The mRMR filtering approach is first applied to eliminate noisy and redundant 
genes, then the BDF-BBHA wrapper approach is employed to find the best genes. 
Zhang et al. [3] proposed a hybrid strategy based on IG and the modified binary 
krill herd (MBKH) algorithm. A hyperbolic tangent transfer function, an adaptive 
transfer factor, and a chaos memory weight factor were introduced into MBKH 
to facilitate a better searching of the possible gene subsets. Dashtban and Bal-
afar [4] utilized two well-known filter methods, Laplacian (L) and Fisher-score 
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(F), to reduce the dimensionality of feature space. Then,  a hybrid evolutionary 
algorithm called an intelligent dynamic genetic algorithm (IDGA) based on the 
genetic algorithm (GA) and some artificial intelligence concepts,  was used to 
determine the biomarkers. Alomari et al. [5] suggested Robust mRMR (RMRMR) 
and Hybrid Bat-inspired Algorithm (RMRMR-HBA) for gene selection. The 
BA algorithm was hybridized with � hill-climbing local search to empower 
BA’s search capabilities. In another study, Alomari et al. [6] used RMRMR and 
Modified GWO (MGWO) to seek further small sets of genes. New optimization 
operators inspired by the TRIZ-inventive solution were combined with the origi-
nal GWO in MGWO to boost the population’s diversity. In [24], Random Forest 
Ranking (RFR) method was utilized as a filter approach to choose the top-ranked 
genes, and IDGA was used as a wrapper approach to seeking the most informa-
tive genes. In another GS method, called MIM-MFOA, the Mutual Information 
Maximization (MIM) was combined with the MFOA [7]. A two-phase hybrid 
model based on Correlation Feature Selection (CFS) and improved Binary Par-
ticle Swarm Optimization (iBPSO) was introduced in [37], for cancer diagnosis 
and classification. Pashaei et  al. [38] proposed a hybrid RFR-BBHA approach 
for gene selection and classification of microarray data. It employed the bagging 
classifier as the fitness evaluator. In [39], BBHA was combined with the Chi-
squared filtering approach and RF classifier. A hybrid BPSO- BBHA approach 
was developed for gene selection in [40], in which RF Recursive Feature Elimi-
nation (RF-RFE) technique was utilized to provide initial input for the model. 
Sparse Partial Least Squares Discriminant Analysis (SPLSDA) classifier played 
the role of classifier in the model. Wang et al. [41] introduced Bacterial Colony 
Optimization (BCO) for gene selection using the K-nearest neighbor (KNN) clas-
sifier. A two-stage method based on the combination of ensemble gene selection 
(EGS) and Adaptive GA (AGA) algorithm was proposed in [42], to find biomark-
ers that can help diagnose cancer. A combination of TLBO and SA algorithm, 
called TLBOSA, was suggested in [22]. As a preprocessing step, CFS was used 
to filter the redundant genes from the biological datasets. A wrapper-based gene 
selection with sequential forward selection (SFS) was employed in [43] utiliz-
ing the KNN classifier. Wang et al. [44] proposed integrating the Markov blanket 
(MB) with the wrapper-based SFS method to select informative genes using 1NN, 
NB, and C4.5 classifiers. Lu et  al. [45] developed a hybrid of MIM and AGA 
for gene selection and cancer classification using an Extreme learning machine 
(ELM). A variable-length PSO with Local Search (VLPSO-LS) was proposed in 
[46]. A distributed ranking filter (DRF) approach removing the features with IG 
zero from the ranking (DRF0) was introduced in [47]. The DRF0 model employed 
the CFS and INTERACT algorithm which is based on symmetrical uncertainty 
(SU) to discriminate informative genes. Recently, Zhou et  al. [48] introduced a 
problem-specific non-dominated sorting genetic algorithm (PS-NSGA) to find the 
optimal gene subset. Mollaee and Moattar [49] developed a three-stage ensemble 
schema for cancer diagnosis and classification. At first, an Ensemble filter-based 
gene selection method (EF) is used, which includes modified Bayesian logistic 
regression (BLogReg), T-test, and Fisher score ratio. In the second stage, the 
PSO-dICA method, which is a modification of dICA (discriminant independent 
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component analysis), is used to choose the most informative genes. Finally, the 
SVM classifier [50] is used to classify selected genes. Medjahed et al. [51] uti-
lized SVM Recursive Feature Elimination (SVM-RFE) to pre-filter the genes 
and used BDF to find important biomarkers. A hybrid of mRMR and Bat algo-
rithm (BA) was proposed in [52], and a hybrid approach that embeds the MB 
filter approach into the HAS was introduced in [53] for gene selection problems. 
In another method, MB was embedded into the genetic algorithm (MBEGA)  to 
identify the smallest possible set of genes that can achieve good predictive accu-
racy [54]. A wrapper GS method based on a Binary Differential Evolution (BDE) 
algorithm with a rank-based filtering method was developed in [55].

Table  1 shows a comparison of the studied GS approaches in terms of tech-
nique used, classifier, datasets, and validation method. In general, many NIOAs-
based methods have been developed to solve the GS problem, and they have 
shown good performance compared to traditional methods. Most of the above-
mentioned approaches, however, have limited accuracy in one or more of the 
datasets studied and suffer from stagnation because of the intricate interplay 
between genes and large-scale search space, and frequently dip in local optima [1, 
5–8]. Therefore, there is still room for improvement, and better search algorithms 
are required to identify biomarkers with the highest classification accuracy.

3 � Methods

3.1 � Arithmetic optimization algorithm

AOA [9] is a new stochastic population-based NIOA that is inspired by arithme-
tic, a fundamental aspect of number theory. The behavior of classic arithmetic 
operators, such as division (D), multiplication (M), addition (A), and subtraction 
(S), in solving arithmetic problems, are used in AOA. Originally, the approach 
was suggested to handle numerical optimization problems as well as real-world 
engineering design optimization challenges.

The algorithm consists of two search phases: the exploration phase, which 
uses D and M operators to conduct a global search, and the exploitation phase 
in which A and S operators are utilized to carry out a local search. After random 
initialization, a function called Math Optimizer Accelerated (MOA) is used to 
choose between those two search phrases. The MOA’s value at the t  th iteration is 
obtained using Eq. (1):

where t and T  denote the current and the maximum number of iterations, and Min 
and Max denote the minimum and maximum values of the accelerated function, 
respectively.

The following subsections detail each search phase:

(1)MOA(t) = Min + t ∗
(
Max −Min

T

)
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3.1.1 � Exploration phase

The D and M mathematical operators are used to provide AOA’s exploratory behav-
ior since D and M operators have higher dispersed values than S and A. Their high 
dispersion ensures that the algorithm reaches various promising regions in the 
search space. The exploration phase is conditioned by MOA’s value. If MOA < r1 
( r1 is a random number), then the exploration phase is carried out using D and M 
operators. The D and M operators also are conditioned by a random number. If r2 is 
greater than 0.5 , the D operator will be engaged to perform; otherwise, the M opera-
tor will be executed. The algorithm’s solution update rules in the exploration phase 
are expressed in Eq. (2)

where X(t) denotes the current solution, X∗ is the best solution that has been found 
so far. � represents a small integer number, and � is a constant parameter ( 0.5 ) to 
adjust the exploration search. lb and ub represent the lower and upper bounds of the 
current solution, and the coefficient Math Optimizer Probability (MOP) at iteration 
t is defined as:

where � is symbolized as a control value of the exploitation accuracy over the itera-
tion and set to 5.

3.1.2 � Exploitation phase

The S and A mathematical operators are employed to offer AOA’s exploita-
tion search behavior as these operators provide high-dense results. They can eas-
ily approach the target and detect the near-optimal solution in a given region due 
to their low dispersion, unlike the D and M operators. The exploitation phase, like 
the exploration phase, is conditioned by the value of MOA. If MOA ≥ r1 , then the 
exploitation phase is carried out using S and A operators. A random number also 
influences the S and A operators. If r3 is greater than 0.5 , the S operator will be 
called to action; otherwise, the A operator will be used. In the exploitation phase, 
the algorithm’s solution updating rules are written as:

The pseudocode of the algorithm is presented in Fig. 1. The AOA is a relatively 
new approach, and this study is one of the first to put it to the test in terms of GS.

(2)X⃗(t + 1) =

{
���⃗X∗(t) ÷ (MOP + 𝜀) × ((ub − lb) × 𝜇 + lb) r2 > 0.5

���⃗X∗(t) ×MOP × ((ub − lb) × 𝜇 + lb) r2 ≤ 0.5

(3)MOP(t) = 1 −

(
t
1

�

T
1

�

)

(4)X⃗(t + 1) =

{
���⃗X∗(t) −MOP × ((ub − lb) × 𝜇 + lb) r3 > 0.5

���⃗X∗(t) +MOP × ((ub − lb) × 𝜇 + lb) r3 ≤ 0.5
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3.2 � Simulated annealing algorithm

One of the most used heuristic methods for tackling optimization problems is the SA 
algorithm [56]. It is a local search algorithm based on a single solution. The algo-
rithm has been inspired by the physical phenomenon that occurs during the solidi-
fication of fluids. In general, the SA algorithm simulates the annealing process of 
metals, in which an atomic configuration for a solid (optimal solution of the prob-
lem) that minimizes internal energy (objective function) must be discovered. Dur-
ing the annealing process, heat and cooling rates are controlled. To achieve the best 
atomic configuration throughout the annealing process, the temperature T  or heat 
must be gradually decreased according to some cooling schedule.

In the SA-based feature selection approach, the initial solution is chosen ran-
domly and assumed as the best solution. The energy of the initial solution (cost) 
is then calculated using the previously established objective function. When 
temperature T  fails to meet the termination condition, a neighboring solution of 
the current optimal solution is chosen by modifying an element of the current 

Fig. 1   Pseudocode of AOA
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solution and its cost is calculated. The current optimal solution is replaced with 
a newly selected adjacent solution if the cost of the newly selected neighboring 
solution is better than or equal to the current solution. If the cost of the nearby 
solution is worse than the current optimal solution, a random number r in the 
range of (0, 1) is generated. The current optimal solution can only be replaced if 
the generated random number r is less than an acceptance probability p , which is 
mathematically formulated by Eq. (5). The temperature T  is then decreased using 
Eq. (6).

where c is the temperature’s reduction rate (cooling rate), and the objective function 
includes the computation of the coefficient of determination ( R2 ) to determine the 
cost of solutions. The coefficient of determination is similar to the correlation coeffi-
cient ( R ), which is used to determine how strong a linear relationship exists between 
two variables. The abovementioned steps are repeated until T  meets the termination 
criterion. Figure 2 shows the pseudocode of the SA for feature selection.

(5)� = cos t(neighbor solution) − cos t(optimal solution), p = e
−

�

T

(6)T ← c × T

Fig. 2   Pseudocode of SA for feature selection
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3.3 � Crossover scheme

Crossover, also known as recombination, is one of the main genetic operators in GA 
that allows two parent chromosomes to combine their genetic information in order 
to produce new offspring. Crossover is based on the premise that if the new chromo-
some inherits the finest traits from both parents, it may be superior to both. In binary 
NIOAs, the crossover operator is accomplished by cutting a portion of each parent 
solution and inserting it into the other. This paper uses the single-point crossover, 
in which both parental solutions are split at a single randomly determined crosso-
ver point. The first portions of the parent solutions are then swapped between two 
parents. Figure 3 shows the single-point crossover process. As seen in Fig. 3, binary 
bits are exchanged between two solutions, causing both solutions to change abruptly. 
This property of crossover can change the global optimal solution and keep the algo-
rithm from getting stuck in local optima.

It is also worth noting that a hybrid of AOA with GA operators, i.e. crossover 
and mutation, called AOAGA, has been considered in the literature as a technique 
to increase the AOA’s global search capabilities for solving feature selection prob-
lems [14]. The position of the solutions in AOAGA is updated using GA or AOA 
operators that are reliant on a transition mechanism, but in our suggested method, a 
crossover operator is utilized after performing AOA operators without considering 
any conditions or transition mechanism.

4 � The proposed algorithm for GS

GS is a challenging task due to some properties of gene expression microarray 
datasets. Microarray data contains a huge number of genes but only a few samples. 
Moreover, a vast majority of those genes are noisy and irrelevant. Subsequently, 
machine learning classifiers perform poorly on data with respect to predictive 

Fig. 3   Single point crossover
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accuracy and run time [6, 57]. The goal of GS is to maximize the accuracy of the 
classifier with the fewest number of biologically important genes.

This section introduces a novel two-stage gene selection strategy, which is based 
on the mRMR filtering and the BAOAC-SA wrapper method. First, the mRMR fil-
tering approach is used to prune the least important genes from the dataset. Then, 
the suggested BAOAC-SA approach is utilized to determine the best gene subset 
from the current set of genes. The framework of the developed GS technique is 
depicted in Fig. 4.

After the original dataset is loaded and the training and testing samples are sepa-
rated, the top M genes, which were selected using the mRMR filtering approach, 
are used to build new training data with a smaller gene set, as shown in Fig. 4. The 
training sub-data is only utilized to build a classifier and evaluate candidate solu-
tions during the wrapper process, whereas the test sub-data is used to evaluate the 
final solution. Subsequently, the proposed wrapper BAOAC-SA approach starts by 
creating a population of candidate solutions (i.e. subsets of genes) using the new 
reduced training dataset. The population is evaluated using a fitness function that 
employs a classifier. After assigning fitness, the best candidate solution X∗ is deter-
mined. The main loop in AOA is iterated several times and in each iteration, the 
solutions are updated using the operators of AOA. The solutions then are passed 
through a V-shaped hyperbolic tangent transfer function and accordingly the binary 
solution vectors are created. Each solution in the population is combined with the 
best global solution X∗ using a single-point crossover operator. Between obtained 
solutions, the fittest solution is maintained. Then, if necessary, the global best solu-
tion X∗ is updated. After implementing the crossover operator, SA is used to improve 
the quality of the current and best solutions at the end of each BAOA iteration. This 

Fig. 4   Flowchart of suggested mRMR-BAOAC-SA approach for gene selection and cancer classification
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process is repeated until satisfying the stopping criteria, which is usually the maxi-
mum number of iterations. Once the process was completed, the best subset of can-
didate genes is obtained and evaluated using the test sub-data and a classifier. One 
consideration is that the quality of the best solution should be measured over the 
testing samples or using leave-one-out-cross-validation (LOOCV) [4] as exhibited 
in Fig. 4.

The following subsections provide a detailed description of both stages of the 
suggested method.

4.1 � Stage I: gene filtering using mRMR

As the number of genes expands, the number of all possible subsets of genes in the 
search space grows exponentially. For N genes, the total number of possible gene 
subsets is 2N [58]. Instead of doing an exhaustive search through feature subsets, 
a filter approach is utilized in the GS problem at the first stage of hybrid methods 
to decrease the original dataset’s high dimensionality [40, 59]. The filter approach 
calculates a score for each gene, ranks them, and chooses the top M genes. To put it 
another way, the filter method prunes the search space and prepares it for the wrap-
per method. Then, the wrapper approach is utilized to choose the smallest number of 
highly discriminative genes among n top genes selected by the filter approach. As a 
result, the computational cost of the GS process is reduced and classification accu-
racy is improved [60].

In this paper, the mRMR filter approach was utilized as a strong initial stage to 
filter away noisy genes from high-dimensional microarray data. As a useful algo-
rithm, mRMR has been widely used in GS and cancer classification problems [2, 
60]. The mRMR uses mutual information (MI), a measure of relevance/redundancy, 
to provide gene scores. The relevance is determined by the MI of genes with targeted 
classes, and the correlation, or redundancy, is decided by the level of MI between 
genes. The objective of the mRMR approach is to select genes with the highest rel-
evance and the least redundancy. After assigning a score to each gene, the gene with 
the highest score is included in the optimal subset iteratively in a greedy forward 
manner [61]. The MI between two variables X and Y  is calculated using Eq. (7):

where H(.) and p represent entropy and probability mass function, respectively.
The score of each gene Xk(k = 1,… ,m) in a dataset with n sample, m genes and a 

target class Y  is determined as:

(7)I(Y;X) = H(Y) − H(Y|X)

(8)H(Y) = −
∑

y

p(y) log2 (p(y))

(9)H(Y|X) =
∑

x

p(y)(−
∑

y

p(y|x) log2(p(y|x))
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Let S denote a subset of genes we’re looking for. I
(
Y;Xk

)
 quantifies the relevance 

of Xk for the classification task. The value of S is initially set to S =
{
Xk

}
 with 

I
(
Y;Xk

)
=

max

j ∈ {1,… ,m}
I
(
Y;Xj

)
 . The term 1

�S�
∑

Xj∈S
I
�
Xk;Xj

�
 assesses the mean 

information that the Xk gene shares with selected genes in S to determine its redun-
dancy. The gene that achieves the highest possible score is added to S at each 
iteration.

4.2 � Stage II: BAOAC‑SA wrapper approach

In this stage, the wrapper gene selection method based on the hybrid BAOA with SA 
and crossover operator uses the M top-ranked gene subset given by mRMR to find 
the optimal subset of genes. BAOA is hybridized with the SA algorithm and crosso-
ver operator to promote the searching process and effectively explore the interaction 
among the genes. Figure  5 depicts the pseudocode for the proposed BAOAC-SA 
algorithm.

4.2.1 � Solution representation

GS is a binary optimization problem. However, AOA works in a continuous solution 
space. The continuous version must be converted to binary form before AOA can 
be applied to the GS problem. The search space in a wrapper-based strategy should 
be expressed in binary format. Each candidate solution X (or gene subset) is repre-
sented as a one-dimensional binary vector of size Z , X = (G1,G2,… ,GZ) , where 
Z indicates the problem dimension ( i.e. the number of genes in the dataset). In the 
solution vector X , each bit Gj has a value of “1” or “0”. The value 1 implies that the 
associated gene will be kept, whilst the value 0 indicates that it will be removed. So, 
the evaluation process only takes into account genes that are coded in one.

4.2.2 � Fitness function

The wrapper feature selection techniques begin with a set of randomly generated 
binary solutions. During the search process, the techniques use a fitness (objective) 
function to give each solution a fitness score. Selecting a proper fitness function is 
critical for the efficiency of wrapper approaches since the fitness function guides 
model to find the best solutions within the large search space. RF classifier [24, 
62] is utilized in this study to determine the fitness value of each solution. In other 
words, the fitness function is defined as RF’s classification accuracy on the given 
solution using tenfold cross-validation (CV) [63]. A solution with higher classifica-
tion accuracy is a better solution. It is worth reminding that the major purpose of the 
model is to enhance classification accuracy with fewer genes. So, in the evaluation 
process, if two subset genes have the same classification accuracy, the subset with 
the fewer genes is picked.

(10)JMRMR

(
XK

)
= I

(
Y;Xk

)
−

1

|S|
∑

Xj∈S

I
(
Xk;Xj

)
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4.2.3 � Binay AOA

In AOA each gene subset can be seen as a candidate solution. Each subset may con-
tain Z genes, where Z is the number of genes discovered in the preceding filter-
ing stage. The algorithm begins with a population of randomly generated binary 
solutions. The fitness function is then used to evaluate each solution in the popu-
lation. After assigning fitness values, the population’s best solution is determined. 

Fig. 5   Pseudocode of BAOA with SA and crossover schema
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AOA’s core loop is repeated several times. The algorithm updates the main coef-
ficients (MOP and MOA) at each iteration. MOA which contains values > r1 or < r1 
(a random value in [0,1]) is used to choose between the exploration and exploitation 
phases. Accordingly, the solutions (positions) are updated with the rules in Eq. (2) 
and Eq. (4). The algorithm repeats the steps until it reaches the value of the maxi-
mum iteration.

The main challenge in the design of binary AOA is how the algorithm’s updating 
equations (i.e. Equation (2) and Eq. (4)) in real space can be interpreted in discrete 
domains. The most straightforward technique to convert a continuous search space 
to a binary one is to use a transfer function (TF). The first binary version of AOA 
was proposed by Bansal et al. in [10] and they have utilized S-shaped (sigmoid) and 
V-shaped TFs to perform feature selection. The high performance of the V-shaped 
family of TFs has already been proven in the literature for binary algorithms [64, 
65]. So a V-shaped hyperbolic tangent TS is utilized in this study to binarize AOA, 
which is defined as follows:

where Xiz(t + 1) represents the bit value of Z th dimension of i th solution in the 
next iteration ( t + 1 ). The tangent function determines the probability of updating a 
solution element to 0 (not selected) or 1 (selected), and TF

(
Xiz(t + 1)

)
 represents the 

probability value. The value of the Z th element in the i th solution vector is set to 0 
or 1 by Eq. (12), depending on the probability value obtained from Eq. (11).

4.2.4 � BAOA with SA and crossover operator

The BAOA produces good results on a variety of microarray datasets. However, 
it fails to come up with satisfactory performance on some benchmark datasets. To 
overcome this and boost BAOA’s performance, two improvements are introduced 
to the original BAOA framework. The first improvement includes the use of the 
crossover operator. In the proposed method, a crossover step is added to the BAOA 
(BAOAC) to allow for the effective exploration of promising regions of the search 
space. The suggested approach performs the crossover operator just after converting 
the solution vector to binary form. The crossover operation is taken between the best 
solution X∗ and the current solution Xi as shown in Eq. (13).

After the crossover, the fitness of the best solution is compared with that of the 
two offspring, and the best one is taken as the new best solution (i.e. Lines 32 to 37 
in Algorithm 3 (Fig. 5)).

The second improvement is to embed the SA in the BAOA to enhance its exploi-
tation capability and avoid being stuck in local optima. The standard AOA has flaws 

(11)TF
(
Xiz(t + 1)

)
= abs

(
tanh(Xiz(t + 1))

)

(12)Xiz(t + 1) =

{
1, TF

(
Xiz(t + 1)

)
> 0.6

0, otherwise

(13)
[
p1, p2

]
= Crossover

(
X∗,Xi(t)

)
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in terms of exploitation capability (local search) and the trade-off between exploi-
tation and exploration search strategies. The poor exploitation in NIOAs may lead 
to skipping the most optimal solution even present in the vicinities of the current 
solution which results in a poor local convergence rate that ultimately degrades the 
solution quality. To address this issue, SA is incorporated into the BAOA solution 
updating stage in order to develop a powerful gene selection algorithm with a better 
balance between exploration and exploitation capabilities and a better convergence 
rate.

After implementing the crossover operator and achieving the best solution, SA is 
used at the end of each BAOA iteration to enhance the current solution (i.e. Xi ). The 
new solution Xnew obtained by SA is accepted if it has a higher fitness value than the 
current solution. As a result, Xnew is included in the population. Furthermore, the 
best solution X∗ is updated when the fitness value of Xnew is better than the global 
best solution (i.e. Lines 38 to 42 in Algorithm 3).

4.3 � Time complexity analysis

The time complexity of BAOAC-SA depends on the complexity of the BAOAC and 
SA algorithm. The time complexity of wrapper BAOAC depends on initialization, 
fitness evaluation, and updating of candidate solution processes. The time complex-
ity of the initialization process is O(N) where N represents the number of all candi-
date solutions (population size). The computational complexity of updating process 
is O(T ∗ N) + O(T ∗ N ∗ Z) , which consists of finding the best solution and updat-
ing all solutions. T  represents the maximum number of iterations and Z indicates the 
dimension of the search space. The fitness evaluation process helps the process of 
updating to find the best solution. On the other hand, the time complexity of the SA 
algorithm is O(T ∗ I ∗ S) , where I and S are symbolized by the number of iterations 
and search strategy in the SA, respectively. Consequently, the time complexity of 
BAOAC-SA is O(N ∗ (T + TZ + 1) + T ∗ I ∗ S).

5 � Experimental setup and results

The suggested method is a two-phase iterative procedure. In the first phase, the 
Min–Max normalization and mRMR techniques are used as a preprocessing step 
to standardize and remove redundant and irrelevant genes from the microarray 
expression data. Then, in the second phase, the suggested BAOAC-SA technique 
is employed to obtain an optimum gene subset. The suggested mRMR-BAOAC-SA 
gene selection technique was applied for the classification of ten binary and multi-
class high-dimensional microarray cancer datasets. The RF classifier with 500 trees 
is used as the fitness evaluator. The tenfold CV method was performed over each 
dataset to validate and assess each candidate gene subset (fitness value). The final 
model evaluation with obtained features is then given by the LOOCV procedure. 
Since NIOAs are stochastic models, proposed algorithms were performed indepen-
dently several times for each dataset and the average LOOCV results were reported.
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Note that in many earlier works, researchers typically split the original microar-
ray datasets into training and testing sets randomly. Gene selection is then conducted 
on the training set and the unseen test set is used to evaluate the quality of selected 
genes. However, due to the small number of samples, such an approach is now rec-
ognized by the community as unreliable [54]. Instead, Ambroise and McLachlan 
[66] suggested splitting the data using external CV (tenfold) or 0.632 + bootstrap. 
Considering recent studies [4, 7, 60], LOOCV is utilized to evaluate obtained results 
after each run of algorithms to confirm that the whole dataset is used in the training 
and testing phases.

The algorithms used in our studies were written in the R programming language. 
The ‘praznik’ package was used to implement mRMR, the ‘randomForest’ package 
was employed to construct the RF classifier, and the ‘FSinR’package was utilized to 
implement SA, WOA, and GA. All of the experiments were done on a 2.2 GHz Core 
i5 CPU with 8 GB of RAM.

5.1 � Dataset used

This study has utilized two types of microarray datasets: binary class and multi-
class datasets. In total, ten (10) gene expression datasets from various diseases were 
used. These datasets are frequently used in many studies and include small, medium, 
and large dimensional datasets. CNS, Colon, ALL-AML, Breast, and Ovarian are 
binary-class microarray datasets, while lymphoma, MLL, SRBCT, Brain_Tumors1, 
and 11_Tumors and multi-class microarray datasets. Table 2 summarizes the charac-
teristic of the selected datasets in detail.

5.2 � Parameter settings

For all algorithms, the number of populations and the maximum number of itera-
tions were set to 50. The number of genes selected after the pre-filter operation was 

Table 2   Summary of gene expression datasets

Dataset name No. of samples No. of features No. of classes Distribution of class label

SRBCT 83 2308 4 (Multi-class) 29, 25, 18, 11
MLL 72 12,582 3 (Multi-class) 28, 24, 20
Lymphoma 62 4026 3 (Multi-class) 46, 11, 9
Brain Tumor_1 90 5920 5 (Multi-class) 60, 10, 10, 4, 6
11_Tumors 174 12,533 11 (Multi-class) 26, 8, 26, 23, 12, 11, 7, 27, 6, 

14, 14
Ovarian 253 15,154 2 (Binary-class) 162, 91
CNS 60 7129 2 (Binary-class) 39, 21
ALL-AML 72 7129 2 (Binary-class) 47, 25
Colon Cancer 62 2000 2 (Binary-class) 40, 22
Breast Cancer 97 24,481 2 (Binary-class) 51, 46
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set to 100 except for CNS (125). Furthermore, after using mRMR in the Breast data-
set, a multivariate step (correlation matrix) was used to remove the redundancy among 
highly-correlated genes (correlation coefficient >= 0.85 ). In this study, we ran each 
dataset ten times in order to conduct our experiments. MOP Max, MOP Min, Alpha, 
and Mu are the parameters utilized in the BAOA wrapper method. These parameters 
sequentially have 1, 0.2, 5, and 0.499 values, which were chosen based on the study 
in [9]. Determination Coefficient was used as a filter evaluator for SA. SA parameters 
including temperature, reduction, and innerIter are set to 100, 0.8, and 35, respectively. 
The classification accuracy and number of selected features were chosen as measure-
ment metrics for evaluating the performance of the optimization algorithms. For both 
WOA and GA, the default parameter settings of the ’FSinR’ package were used.

5.3 � Comparison of BAOA, BAOAC, and BAOAC‑SA

Initially, we used the mRMR filtering approach to find the most significant genes 
to eliminate noisy genes from high dimensional microarray data using an RF 

Table 3   The LOOCV classification accuracy performance of the mRMR method with an RF classifier 
for all microarray datasets

Class Dataset Number of selected genes

10 25 50 75 100 125 150

Binary class Ovarian 96.83 98.02 99.20 99.60 99.60 99.20 99.20
CNS 81.66 81.66 83.33 78.33 75 73.33 71.66
ALL-AML 97.22 97.22 97.22 98.61 98.61 98.61 98.61
Colon 85.48 88.70 87.09 87.09 87.09 85.48 85.48
Breast 82.47 82.47 83.50 83.50 82.47 86.59 83.50

Multi-class SRBCT 98.79 97.59 97.59 98.79 100 100 100
MLL 93.05 94.44 97.22 97.22 97.22 95.83 97.22
Lymphoma 92.42 98.48 98.48 98.48 98.48 98.48 98.48
Brain Tumor_1 90 90 88.88 90 88.88 88.88 90
11_Tumors 76.43 86.20 91.37 90.22 91.95 91.37 89.08

Fig. 6   The classification accuracy performance of the mRMR method with RF classifier for all datasets
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classifier. Table  3 and Fig.  6 exhibit the classification accuracy performance of 
the mRMR approach utilizing an RF classifier for binary class and multiclass 
microarray datasets. It can be seen from Table 3 and Fig. 6 that the top 100 genes 
give good results for all microarray datasets.

Tables  4, 5, and 6 demonstrate the experimental results of three versions of 
BAOA based GS methods (i.e. BAOA, BAOAC, and BAOAC-SA) in terms of 
the best, worst, average, and standard deviation (S.D.) of the number of selected 
genes and classification accuracy. All three techniques were tested in ten sepa-
rate runs. From Tables 4, 5, and 6, it is evident that the BAOAC-SA outperforms 
BAOA and BAOAC in all datasets.

Table 4   Experimental results by mRMR-BAOA on all datasets

Class Dataset Accuracy #Genes

Best Worst Avg S.D Best Worst Avg S.D

Binary class Ovarian 100 100 100 0.0 3 4 3.04 0.8
CNS 93.33 86.9 90.37 2.155 2 11 3.833 1.169
ALL-AML 100 100 100 0.0 2 5 4.34 1.2
Colon 95.13 92.18 93.36 1.20 3 19 8.4 6.22
Breast 94.84 87.63 90.88 2.67 7 19 12.71 4.34

Multi-class SRBCT 100 100 100 0.0 4 7 6 1.2
MLL 100 98.67 99.42 0.8 3 5 4.1 0.5
Lymphoma 100 100 100 0.0 2 3 2.3 0.7
Brain Tumor_1 95.67 92.46 94.41 1.178 6 14 9.4 3.78
11_Tumors 94.88 93.78 94.49 0.467 24 41 28.8 6.94

Table 5   Experimental results by mRMR-BAOAC on all datasets

Class Dataset Accuracy #Genes

Best Worst Avg S.D Best Worst Avg S.D

Binary class Ovarian 100 100 100 0.0 2 4 2.9 0.57
CNS 96.92 91.77 94.44 2.32 3 15 6.37 3.77
ALL-AML 100 100 100 0.0 2 5 4.22 1.1
Colon 95.38 92.18 94.79 1.18 4 13 8.57 3.82
Breast 97 93.89 95.89 1.51 8 17 12.62 3.5

Multi-class SRBCT 100 100 100 0.0 4 7 6 1.2
MLL 100 100 100 0.0 3 6 3.9 0.6
Lymphoma 100 100 100 0.0 2 3 2.3 0.7
Brain Tumor_1 95.79 94.62 95.88 0.488 6 13 8.87 2.47
11_Tumors 96.58 94.98 95.99 0.656 23 40 27 6.67
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To benchmark the performance of the proposed BAOAC-SA approach, a com-
parison between BAOAC-SA against BAOA, BAOAC, and two other optimizers 
(WOA and GA) is conducted. These results are presented in Table 7 where.

the experimental outcomes are reported in terms of average classification accu-
racy ( ACC ), the average number of chosen genes (|#G| ), and the average execu-
tion time (minutes). The best results of ACC and |#G| are highlighted in bold font. 
In terms of classification accuracy, BAOAC-SA outperformed WOA, GA, BAOA, 
and BAOAC across five datasets, as shown in Table, 7. Table 7 shows that in the 
remaining five datasets, all techniques obtained flawless classification accuracy 
(100%) (i.e. MLL, Ovarian, SRBCT, Lymphoma, and ALL-AML). Overall, On 
nine datasets (Ovarian, ALL-AML, Colon, Breast, SRBCT, MLL, Lymphoma, 
Brain Tumor_1, and 11_Tumors), BAOAC-SA yields higher classification accu-
racy and a lower number of selected genes. However, in the CNS dataset, BAOA 
shows better performance than BAOAC and BAOAC-SA in terms of the average 
number of selected genes.

Although execution time is not a prominent factor in the gene selection domain 
because it is not real-time, the average execution times of 10 independent runs 
for GA, WOA, BAOA, BAOAC, and BAOAC-SA are outlined in Table  7. The 
mRMR filtering approach is extremely fast and takes only a few seconds to com-
plete and remove irrelevant features.

Considering Table 7, it is apparent that BAOA has the lowest time compared 
to all approaches, with an average time of 22.2 min across all datasets. BAOAC 
has a second lower time, with an average of 62  min across all datasets, while 
BAOAC-SA has the highest time value with an average of 208.2 min across all 
datasets since it is a hybrid version and hence requires more execution time. It’s 
worth noting that the time values obtained by BAOA, BAOAC, and BAOAC-SA 
are all reasonably acceptable. It can be seen that BAOA, BAOAC, WOA, and GA 
are 9.37, 3.35, 1.4, and 2 times faster than BAOAC-SA, respectively. Although 
BAOAC-SA takes longer to run than other methods, it can produce a smaller 

Table 6   Experimental results by mRMR-BAOAC-SA on all datasets

Class Dataset Accuracy #Genes

Best Worst Avg S.D Best Worst Avg S.D

Binary class Ovarian 100 100 100 0.0 2 4 2.6 0.57
CNS 97.14 92.14 94.60 2.06 3 8 5.2 1.97
ALL-AML 100 100 100 0.0 3 4 3.3 1
Colon 98.57 93.81 95.68 1.61 5 11 7.66 2.65
Breast 97.5 95.78 96.188 0.48 8 14 10.8 3.11

Multi-class SRBCT 100 100 100 0.0 4 7 5.8 1.1
MLL 100 100 100 0.0 3 5 3.6 0.5
Lymphoma 100 100 100 0.0 2 2 2 0.0
Brain Tumor_1 97.1 94.89 96.021 0.687 6 10 7.5 1.414
11_Tumors 97.84 96.32 96.946 0.601 19 39 24 8.48
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set of reliable genes with higher/equivalent classification accuracy on almost all 
datasets.

The boxplot, in conjunction with statistical analysis and p-values, was utilized as 
a graphical representation to offer a better understanding of the diverse behaviors of 
the suggested procedures and to statistically assess the effectiveness of the proposed 
method (see Fig. 7).

The boxplot with statistical analysis was created in R using the " ggpubr " pack-
age. The boxplot in Fig. 7 shows that the proposed BAOAC-SA may retain variety 
during the search while delivering highly accurate results. The means of the five 

Fig. 7   Boxplots with P-values and significance levels to demonstrate the diversity behavior and statistical 
significance of the proposed method in comparison to other techniques
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techniques were also compared, and the boxplots were enriched with p-values and 
significance levels. To compare the means of techniques, the Wilcoxon test was 
utilized. P-value ≤ 0.05 indicates that the BAOAC-SA methodology delivers con-
siderably better outcomes than other techniques, whilst P-value > 0.05 indicates 
that the BAOAC-SA technique produces results that are not significantly better 
than the other approaches. Both fitness values and the number of selected genes 
were statistically computed using the Wilcoxon signed-rank statistical test for five 
datasets (i.e. Breast, Brain Tumor 1, 11 Tumors, CNS, and Colon). Significant 
differences in favor of BAOAC-SA can be determined for these datasets. For the 
remaining datasets with perfect classification accuracy, the average number of 
chosen genes by BAOAC-SA is slightly better than other techniques.

Furthermore, the BAOAC-SA is compared to the BAOA and BAOAC to 
explore the impact of SA and crossover operator on the convergence behavior of 
BAOA. The convergence behaviors of the three methods on all datasets are shown 
in Figs.  8 and 9. In terms of classification accuracy, the convergence behavior 
trend of BAOAC-SA is significantly better than BAOA and BAOAC on six data-
sets (i.e. CNS, Colon, Breast, MLL, Brain Tumor_1, and 11_Tumors). Figure 9 
shows that for the remaining datasets with the perfect classification accuracy 

Fig. 8   The convergence behavior of BAOA, BAOAC, and BAOAC-SA for 6 datasets
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(100%), BAOAC-SA can converge better than BAOA and BAOAC in terms of the 
number of selected genes.

In brief, the experimental results revealed that BAOAC-SA achieved the best bal-
ance between the number of selected genes and the classification accuracy on all 
datasets. The experimental results confirm that using the crossover operator and SA 
can help BAOA in further exploring the interactions between the genes, leading to 
the most intriguing part of the search space, which is comprised of a limited set of 
informative genes.

5.4 � Comparison with other GS techniques

The efficacy of the suggested approach is further evaluated in this section by com-
paring mRMR-BAOAC-SA to current state-of-the-art methods. Table 8 displays the 
outcomes based on the average classification accuracy (ACC) using LOOCV and 
the number of selected genes. The BAOAC-SA was performed independently sev-
eral times for each dataset, because it is not a filter approach, and a different subset 
of genes with various performances can be obtained over independent runs. After 
each run, the generated results were assessed using LOOCV, which is the most 
promising evaluation criterion and is not prone to change [4]. Table  8 shows the 
average LOOCV results, which are compared to numerous well-known state-of-the-
art approaches in the terms of classification accuracy and the number of selected 
genes. The comparing results are either LOOCV or tenfold CV. For more detailed 
information, see Table 1. İt is worth mentioning that the purpose of gene selection 
is to make the classifier as accurate as possible while using the fewest number of 
biologically significant genes. This allows for straightforward model interpretation.

Fig. 9   The convergence behavior of BAOA, BAOAC, and BAOAC-SA for 4 datasets with perfect accu-
racy (100%)



15628	 E. Pashaei, E. Pashaei 

1 3

Ta
bl

e 
8  

C
om

pa
rin

g 
th

e 
pe

rfo
rm

an
ce

 o
f t

he
 p

ro
po

se
d 

m
R

M
R-

BA
O

A
C

-S
A

 w
ith

 th
e 

lit
er

at
ur

e 
m

et
ho

ds
 o

ve
r 1

0 
pu

bl
ic

 c
an

ce
r d

at
as

et
s u

si
ng

 a
 ra

nd
om

 fo
re

st 
cl

as
si

fie
r

D
at

as
et

M
et

ho
d

A
cc

ur
ac

y
Re

fe
re

nc
e

D
at

as
et

M
et

ho
d

A
cc

ur
ac

y
Re

fe
re

nc
e

Br
ai

n 
Tu

m
or

1
M

IM
-M

FO
A

-S
V

M
83

.1
5 

(1
2)

[7
]

C
ol

on
 C

an
ce

r
TO

PS
IS

-J
ay

a-
N

B
97

.7
6 

(1
8.

90
)

[1
]

C
FS

-T
LB

O
-S

A
-S

V
M

96
.9

8 
(1

2)
[2

2]
B

D
E-
S
V
M

R
a
n
k
f

75
.0

 (4
)

[5
5]

V
LP

SO
-L

S-
K

N
N

75
.5

4 
(1

02
.1

)
[4

6]
D

R
F0

-C
FS

-K
N

N
90

 (1
0)

[4
7]

B
CO

-K
N

N
96

.3
0 

(2
0.

5)
[4

1]
SF

S-
M

B
-K

N
N

82
.4

0 
(3

.7
)

[4
4]

PS
-N

SG
A

-K
N

N
73

.8
1 

(5
7.

8)
[4

8]
R

FR
-I

D
G

A
-R

F
93

.3
9 

(4
.7

)
[2

4]
BA

O
A

C
-S

A
96

.2
1 

(7
.5

)
EF

-P
SO

 d
IC

A
-S

V
M

94
.7

3 
(1

5)
[4

9]
C

FS
-T

LB
O

-S
A

-S
V

M
99

.0
1 

(1
1)

[2
2]

R
FR

-B
B

H
A

-B
ag

gi
ng

93
.3

3 
(4

.5
)

[3
8]

M
R

M
R-

B
D

F-
B

B
H

A
-S

V
M

97
.0

2 
(1

4.
4)

[2
]

BA
O

A
C

-S
A

95
.6

8 
(7

.6
6)

11
_T

um
or

s
M

IM
-M

FO
A

-S
V

M
79

.4
8(

33
)

[7
]

Br
ea

st
 c

an
ce

r
R

FE
-B

D
F-

SV
M

86
.2

2 
(7

23
7)

[5
1]

C
FS

-T
LB

O
-S

A
-S

V
M

92
.2

3(
13

)
[2

2]
D

R
F0

-I
N

T-
SV

M
84

.2
1 

(9
7)

[4
7]

V
LP

SO
-L

S-
K

N
N

82
.8

1(
36

7.
4)

[4
6]

M
IM

-A
G

A
-E

LM
82

.4
7(

6)
[4

5]
B

CO
-K

N
N

89
.6

2(
24

.1
)

[4
1]

C
hi

-s
qu

ar
ed

 -B
B

H
A

-R
F

87
.7

7 
(6

.2
)

[3
9]

PS
-N

SG
A

-K
N

N
83

.9
4(

33
8.

3)
[4

8]
EG

S-
A

G
A

-S
V

M
88

.6
4 

(1
7)

[4
2]

BA
O

A
C

-S
A

96
.9

46
 (2

4)
M

R
M

R-
BA

-S
V

M
88

.8
 (1

8.
3)

[5
2]

R
FE

- P
SO

-B
B

H
A

/S
PL

SD
A

97
.7

2 
(1

2.
9)

[4
0]

M
R

M
R-

B
D

F-
B

B
H

A
-S

V
M

90
.2

1(
12

)
[2

]
BA

O
A

C
-S

A
96

.1
88

 (1
0.

8)



15629

1 3

Hybrid binary arithmetic optimization algorithm with simulated…

Ta
bl

e 
8  

(c
on

tin
ue

d)

D
at

as
et

M
et

ho
d

A
cc

ur
ac

y
Re

fe
re

nc
e

D
at

as
et

M
et

ho
d

A
cc

ur
ac

y
Re

fe
re

nc
e

M
LL

R
M

R
M

R-
H

BA
-S

V
M

10
0 

(8
)

[5
]

O
va

ri
an

 C
an

ce
r

R
M

R
M

R-
H

BA
-S

V
M

10
0 

(3
.0

7)
[5

]

H
A

S-
M

B
-N

B
99

.5
5 

(6
.6

)
[5

3]
H

A
S-

M
B

-N
B

99
.8

1 
(5

.7
3)

[5
3]

M
R

M
R-

BA
-S

V
M

79
.8

6 
(1

9.
03

)
[5

2]
M

R
M

R-
BA

-S
V

M
10

0 
(3

.8
3)

[5
2]

M
B

EG
A

94
.3

3 
(3

2.
1)

[5
4]

M
B

EG
A

99
.7

1 
(9

)
[5

4]

C
FS

-iB
PS

O
10

0 
(3

0.
8)

[3
7]

C
FS

-iB
PS

O
10

0 
(3

.3
)

[3
7]

TO
PS

IS
-J

ay
a-

N
B

99
.6

2 
(1

2.
90

)
[1

]
TO

PS
IS

-J
ay

a-
N

B
99

.5
2 

(1
8.

50
)

[1
]

M
R

M
R-

B
D

F-
B

B
H

A
-S

V
M

10
0 

(5
.2

5)
[2

]
M

R
M

R-
B

D
F-

B
B

H
A

-S
V

M
10

0 
(2

.6
6)

[2
]

BA
O

A
C

-S
A

10
0 

(3
.6

)
BA

O
A

C
-S

A
10

0 
(2

.6
)

AL
L-

AM
L

R
M

R
M

R-
H

BA
-S

V
M

10
0 

(4
.0

7)
[5

]
C

N
S

R
M

R
M

R-
H

BA
-S

V
M

10
0 

(1
1.

2)
[5

]
H

A
S-

M
B

-N
B

99
.3

4 
(5

)
[5

3]
H

A
S-

M
B

-N
B

84
.1

7 
(7

.4
3)

[5
3]

M
R

M
R-

BA
-S

V
M

10
0 

(5
.2

3)
[5

2]
M

R
M

R-
BA

-S
V

M
94

.2
2 

(1
9.

2)
[5

2]
M

B
EG

A
95

.8
9 

(1
2.

8)
[5

4]
M

B
EG

A
72

.2
1 

(2
.5

)
[5

4]
C

FS
-iB

PS
O

-N
B

10
0 

(4
.3

)
[3

7]
C

FS
-iB

PS
O

-N
B

95
.8

4 
(1

0.
5)

[3
7]

TO
PS

IS
-J

ay
a-

N
B

10
0 

(1
6.

10
)

[1
]

TO
PS

IS
-J

ay
a-

N
B

96
.2

2 
(8

.7
)

[1
]

R
FR

- I
D

G
A

-R
F

98
.0

6 
(7

.4
)

[2
4]

R
FR

-B
B

H
A

-B
ag

gi
ng

90
 (3

.3
3)

[3
8]

M
R

M
R-

B
D

F-
B

B
H

A
-S

V
M

10
0 

(4
)

[2
]

R
FE

-P
SO

-B
B

H
A

/S
PL

SD
A

99
.1

6 
(1

0.
5)

[4
0]

BA
O

A
C

-S
A

10
0 

(3
.3

)
M

R
M

R-
B

D
F-

B
B

H
A

-S
V

M
97

.1
9 

(3
9.

7)
[2

]
BA

O
A

C
-S

A
94

.6
0 

(5
.2

)



15630	 E. Pashaei, E. Pashaei 

1 3

Ta
bl

e 
8  

(c
on

tin
ue

d)

D
at

as
et

M
et

ho
d

A
cc

ur
ac

y
Re

fe
re

nc
e

D
at

as
et

M
et

ho
d

A
cc

ur
ac

y
Re

fe
re

nc
e

SR
BC

T
IG

-M
B

K
H

10
0 

(6
.3

0)
[3

]
Ly

m
ph

om
a

R
M

R
M

R-
H

BA
-S

V
M

10
0 

(8
.1

3)
[5

]

R
M

R
M

R-
M

G
W

O
10

0 
(3

7.
5)

[6
]

H
A

S-
M

B
-N

B
99

.9
9 

(3
.7

5)
[5

3]

SF
S-

M
B

-K
N

N
89

.4
0 

(5
.7

)
[4

4]
M

R
M

R-
BA

-S
V

M
86

.3
6 

(3
7.

73
)

[5
2]

C
FS

-T
LB

O
-S

A
-S

V
M

99
.9

1 
(1

1)
[2

2]
M

B
EG

A
97

.6
8 

(3
4.

3)
[5

4]

F-
ID

G
A

-S
V

M
10

0 
(1

8)
[4

]
C

FS
-iB

PS
O

-N
B

10
0 

(2
4)

[3
7]

TO
PS

IS
-J

ay
a-

N
B

10
0 

(1
5.

80
)

[1
]

TO
PS

IS
-J

ay
a-

N
B

98
.3

3 
(1

5.
20

)
[1

]

V
LP

SO
-L

S-
K

N
N

99
.7

 (7
1.

4)
[4

6]
BA

O
A

C
-S

A
10

0 
(2

)

B
CO

-K
N

N
10

0 
(7

.4
)

[4
1]

PS
-N

SG
A

-K
N

N
96

.3
5 

(1
8.

6)
[4

8]

BA
O

A
C

-S
A

10
0 

(5
.8

)

Th
e 

nu
m

be
r i

n 
th

e 
pa

re
nt

he
se

s d
en

ot
es

 th
e 

nu
m

be
r o

f g
en

es



15631

1 3

Hybrid binary arithmetic optimization algorithm with simulated…

According to Table  8, BAOAC-SA achieved higher or equivalent classification 
accuracy with a lower number of selected genes than other comparative approaches, 
on seven out of ten datasets (i.e. Brain Tumor_1, 11_Tumors, MLL, ALL_AML, 
SRBCT, Ovarian, Lymphoma). The proposed method is ranked second in the Breast 
cancer dataset in the terms of classification accuracy and ranked third in terms of the 
number of selected genes. Considering the Colon datasets, the proposed approach 
rated fourth in terms of classification accuracy and fifth in terms of the number of 
selected genes when compared with nine state-of-the-art techniques. Moreover, 
MRMR-BAOAC-SA is rated sixth in the CNS dataset in terms of classification 
accuracy, but ranked third in terms of the number of selected genes. To sum up, the 
proposed method performs better than existing methods on seven out of ten datasets 
and has a comparable performance with other methods on the rest of the datasets. 
Therefore, the BAOAC-SA can be considered an efficient and effective optimization 
algorithm for solving the GS problem.

5.5 � Biological interpretation

From a biological standpoint, only a few genes (biomarkers) are significant for can-
cer diagnosis in microarray datasets [42]. As a result, identifying such biomarkers 
using an NIOA based GS method will be beneficial to medical experts for proper 
disease diagnosis. The suggested strategy tries to find a significant subset of tiny 
genes with the highest classification accuracy. The stability of the wrapper-based 
gene selection methods is typically determined by comparing the overlap of selected 
genes across successive runs. The Index and genes names of the most frequently 
repeated genes (> 7 out of 10 runs) derived from the suggested BAOAC-SA 
approach are presented in Table 9. We can observe that the proposed BAOAC-SA 

Table 9   The most frequently repeated genes selected by the proposed BAOAC-SA approach for each 
dataset

Dataset Index of Genes Gene names

CNS 2426, 2474, 5637 D43682_s_at, S71824_at, M98539_at
Colon 765, 1671, 1473,1562, 1954, 1644 M76378, M26383, R54097, R49459, 

M35531, R80427
Breast 1409, 3232, 18,761, 20,342, 24,107 NM_001756, NM_020123, Contig55662_

RC, Contig55574_RC, Contig49670_
RC

Ovarian 182, 1683 MZ2.8234234, MZ246.12233
ALL-AML 1882, 2354 M27891_at, M92287_at
MLL 8212, 11,297 35307_at, 1389_at
Lymphoma 1622, 3739 GENE2668X, GENE1602X
SRBCT 1003, 509, 255, 1955, 335, 188, 2046, 

1319
–

11_Tumors 5860, 3917, 3334, 10,162, 7185, 10,509, 
11,348, 3929, 4336, 7978, 3406

–

Brain Tumor_1 4801, 2116, 1563, 2330, 3113, 5175 –
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behaves consistently and ensures adequate stability in selecting discriminative 
genes.

Heatmaps are commonly used in biology to show the expression levels of numer-
ous genes in different samples. Moreover, the unique patterns between different 

Fig. 10   Clustering and heatmap for representing expression level of all selected genes
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groups such as disease groups and control groups can be viewed through cluster-
ing. Heatmap can help identify genes that are frequently regulated or find biologi-
cal signatures associated with a specific disease. Figure 10 depicts the heatmaps of 
discriminating genes of each dataset obtained from the proposed model (Table 9), to 
investigate differentially-expressed genes. In heatmaps, each column demonstrates 
a sample and each row demonstrates a gene. Changes in gene expression are rep-
resented by the color and intensity of the boxes. Red denotes up-regulated genes, 
blue denotes down-regulated genes, and white represents unchanged expression in 
the heatmaps.

To do gene expression profiling, more people are turning to RNA-Seq rather than 
Microarray. Our proposed algorithm can also be utilized to analyze RNAseq data. 
Identifying differentially expressed genes between different sample groups is funda-
mental research in many RNAseq studies. The capacity of ML-based algorithms to 
identify differentially expressed genes (DEGs) from RNAseq data has been demon-
strated in previous research [2, 67, 68] confirming the applicability of our proposed 
technique in discovering DEGs.

6 � Conclusion

For cancer diagnosis and treatment, a precise classification of cancer into their types 
is a critical issue. Due to the large number of genes involved and the small number 
of associated tissues, selecting meaningful genes from high-dimensional biomedical 
data is one of the most difficult problems in cancer classification. This study intro-
duced an efficient wrapper gene selection technique based on an improved binary 
AOA to find the biologically significant genes that collaborate for cancer detection. 
The suggested method employs mRMR as a filter, hybrid BAOAC-SA as a wrap-
per, and the RF classifier as an evaluator to predict cancerous genes. The mRMR 
filter technique is used to fine-tune the search space initially. Next, the SA algo-
rithm and crossover operator are combined with BAOA to design the hybrid algo-
rithm BAOAC-SA in order to find the best gene subset. AOA is a recently suggested 
NIOA whose capability for gene selection problems has not yet been properly inves-
tigated. The wrapper BAOA technique is hybridized with SA to improve BAOA’s 
exploitation capabilities, which leads to an increase in the stability of chosen genes. 
The suggested algorithm also includes a crossover schema to boost the exploratory 
behavior of BAOA. Ten benchmark microarray datasets were used to test the per-
formance of the suggested approach. Experimental results indicated that in terms of 
the number of selected genes and classification accuracy, the proposed approach can 
produce better results than the other current state-of-the-art methods on most of the 
datasets. The finding proves that mRMR-BAOAC-SA is a promising approach for 
solving the GS problem in biomedical data analysis.

The proposed approach can be used to solve other complex high-dimensional 
problems such as text mining and image data in future studies. The combination of 
BAOA with other NIOAs, filters, and classifiers can also be investigated in order to 
increase model accuracy in solving various optimization issues. Furthermore, the 
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performance of the algorithm for gene selection in clustering of single-cell RNA-seq 
data can be investigated.
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