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Abstract
Agriculture, which serves as a lifeline for us, is unequivocally vital for an agriculture-dependent economy like Bangladesh, 
not only for its food supply but also because of its significant contribution towards achieving Sustainable Development 
Goals (SDGs) 1 and 2. However, in a third-world nation like Bangladesh, where farming practices largely circumvent the 
environmental consequences, raised our concern. In this milieu, this study is a novel attempt to explore the association 
between agricultural ecosystem and environmental degradation in Bangladesh using a long time spanning from 1972 to 
2018. We observed a long-run association between the agroecosystem and CO2 emission. Further, findings from the dynamic 
autoregressive distributed lag (DARDL) simulation model revealed that the environmental quality of Bangladesh is heavily 
distorted by total cereal production, total livestock head, enteric methane emissions, N2O emissions from manure applica-
tion, and CO2 equivalent N2O emissions from synthetic fertilizers in the short and long run, whereas agricultural technology, 
pesticide use in agriculture, and burned biomass crop residue deteriorated the environmental quality only in the long run. 
The counterfactual diagram entailed from the DARDL model projected the trend of CO2 emission in response to positive 
and negative changes in the analyzed variables. Lastly, this study established a causal relationship between the agroecosys-
tem and environmental degradation using frequency domain causality. Indeed, our study will aid in reshaping agricultural 
practices in an eco-friendly manner to mitigate environmental degradation and help formulate pragmatic policy actions so 
that agro-lead nations can thrive in the race of achieving SDGs 1, 2, and 13.
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Introduction

The global average  temperature is rising unprecedent-
edly  in the twenty-first century as a result of climate 
change and global warming (Tollefson, 2021). Climate 
change, induced by increasing greenhouse gases (GHGs) 
emissions from different sources, would negatively impact 
the environment and the Earth’s geology (Singh and Singh, 
2012). Because of the industrial revolution and changes 
in land use patterns, emissions began to upsurge signifi-
cantly in the 1800s. Many GHG-emitting practices are now 
an integral part of the global economy and modern life. 
Therefore, the transition to a low-carbon economy is a key 
goal of the United Nations-proposed Sustainable Develop-
ment Goals (UN SDGs) (Bekun et al., 2021; Bekun 2022). 
The main GHGs in the atmosphere are carbon dioxide 
(CO2), water vapor (H2O), methane (CH4), nitrous oxide 
(N2O), and ozone (O3) (Nanthakumar et al., 2018). Indeed, 
CO2 (76%) is the most common greenhouse gas, followed 
by CH4 (16%), N2O (6%), and F gases (2%) (Abas et al., 
2017). Carbon dioxide from the combustion of fossil fuels 
is the largest source of emission from human activities, 
while deforestation comes next (Matthew et al., 2018). In 
addition, rice production, as well as the storage and treat-
ment of garbage and human wastes, emits methane (Yusuf 
et al., 2012). Interestingly, nitrous oxide emissions rise as 
a consequence of fertilizer use in the paddy field (Song 
et al., 2018).

Undeniably, the agricultural ecosystem and the natural 
environment are inextricably associated. Often, unreason-
able agricultural practices such as indiscriminate land use, 
widespread pesticide, and chemical fertilizer use all con-
tribute to CO2 emissions and have a negative influence 
on the environment (Hongdou et al., 2018). Commonly, 
livestock, fertilizer treatments, land management, rice cul-
tivations, and the burning of biomass crop residues are the 
main sources of agricultural GHG emissions (Ullah et al., 
2018). Figure 1 depicts the share of CO2 emissions from 
the different sources. Grain production solely accounts for 
the maximum share of GHG emissions associated with 
crop and soil management. Increasing agricultural produc-
tion to meet current and future food demands, while main-
taining environmental quality is unquestionably a big issue 
for modern agriculture (Singh and Strong, 2016). The cur-
rent sustainable agriculture idea entails harnessing local 
microorganisms to cultivate in an environmentally benign 
and low-cost manner (Singh et al., 2016). Several Asian 
countries, including Bangladesh, are battling to meet the 
SDGs 1 and 2, which aim to reduce poverty and hunger. 
Over 700 million people, or 11% of the global population, 
continue to live in extreme poverty. Furthermore, extreme 
hunger and malnutrition continue to impede long-term 
growth, trapping people into an inescapable cycle (United 
Nations, 2020). However, in light of the need for action 
in response to climate change (SDGs 13), a sustainable 
production system accompanied by low carbon emissions 
must be implemented.

Fig. 1   Emissions by different 
sub-sectors of agriculture (CO2 
equivalent). Source: FAO, 2021
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It should be noted that agriculture is the backbone and 
main driver of Bangladesh’s local economy, as it is in many 
developing countries. Although agriculture’s contribution 
to GDP has dropped in recent years, it still accounts for 
13.02% of total gross domestic product (GDP) (BBS, 2019). 
Furthermore, it employs more than 40% of the workforce, 
making it the largest sector in terms of jobs and income 
(BBS, 2019). Bangladesh, notably in rice production, is 
on the verge of reaching food self-sufficiency (Kabir et al., 
2020). As a result, self-sufficiency in rice production has 
become synonymous with food security. Bangladesh has 
also achieved notable progress in other cereal production, 
such as wheat, potatoes, and vegetables (Nazu et al., 2021). 
However, agricultural practices, poultry rearing, deforesta-
tion, and fossil fuel consumption are among Bangladesh’s 
significant sources of GHG emissions. Agricultural practice 
consumes a considerable amount of non-renewable energy 
in the form of oil to operate agricultural machinery, which 
exacerbates GHG emissions like N2O (Sinha and Sengupta, 
2019). Between 2000 and 2030, total GHG emissions are 
expected to increase by around 50%, with further implica-
tions on weather and climate. Furthermore, agriculture will 
continue to be Asia’s largest source of greenhouse gas emis-
sions (nearly half of overall emissions) (Verge et al., 2007). 
Despite the fact that agriculture is the primary source of 
human food and industrial raw materials, the link between 
agriculture’s ecosystem and environmental degradation 
must not be overlooked. Thus, it is the high time to focus 
on adopting adaptation and mitigation strategies in order 
to ensure the agriculture sector’s long-term sustainability.

Several studies have investigated the relationship between 
the agricultural ecosystem and environmental quality in 
developing countries (Ali et al., 2021; Hongdou et al., 2018; 
Ullah et al., 2018; Sarkodie and Owusu, 2017), came up with 
some mixed findings. Furthermore, numerous studies have 
been undertaken to examine the relationship of macroeco-
nomic variables, energy consumption, and technology with 
carbon dioxide emissions. However, given the agricultural 
ecosystem’s substantial contribution to GHG emissions, 
the linkage between the agricultural ecosystem and carbon 
emission is still unexplored in Bangladesh. To fill this gap, 
this relationship needs to be further investigated under the 
banner of an agro-lead economy in order to attract policy-
makers’ attention. Against this backdrop, the main objective 
of this study is to address the association between the agri-
cultural ecosystem and CO2 emission in Bangladesh using 
long time-series data from 1972 to 2018.

This research contributed to the extant knowledge in a 
number of ways. To begin with, this research is distinctive 
in that it uses a novel dynamic autoregressive distributed 
lag (DARDL) simulation model to investigate the short- and 
long-term effects of the agricultural ecosystem on environ-
mental deterioration. This method also uses a counterfactual 

shock of a certain percentage change in the explanatory vari-
ables over 30 years from 2018 to 2048 to explore the changes 
in environmental degradation. As a result, policymakers will 
be able to recognize the current state of the country’s envi-
ronmental quality and agriculture ecosystem, as well as its 
future prospects. It will also aid in the adoption of policies 
and the resilience to future shocks that may prevent Bangla-
desh from reaching the SDGs by 2030. This study’s findings 
could aid climate-sensitive countries in improving agricul-
ture and implementing ecologically friendly techniques for 
long-term agricultural development. Second, the study can 
be used by the Bangladeshi government as a reference tool 
for incorporating climate change measures into national 
policies, strategies, and planning. Particularly, this study 
can be a guidebook for the recently adopted Delta Plan-
2100 to address its climatic and geographic vulnerabilities 
and achieve a safe, prosperous, and resilient Bangladesh. 
Third, this study may work as a springboard for Bangla-
desh to achieve sustainability while buoyant agriculture 
sector. Alongside, the empirical outcomes can be attributed 
to achieving sustainable intensification and may help in 
understanding the position of Bangladesh in promoting so. 
Last but not least, despite the fact that Bangladesh is consid-
ered as a case study, the findings can be generalized to other 
agricultural-led economies in South Asia and other parts of 
the globe that are particularly vulnerable to climate change.

The remainder of this paper is organized as follows: the 
next section deals with a brief discussion on the relevant 
literature. “Data and econometric methodology” highlights 
the data used and the empirical method employed to sat-
isfy the study’s objectives. “Results and discussion” pre-
sents the empirical results and discussion of findings with 
proper literature support. Finally, “Concluding remarks 
and policy insights” concludes the study with some policy 
recommendations.

Literature review

Agriculture that provides us with food and sometimes shel-
ters is considered to be one of our lifesaving companions. 
However, over time and with the overwhelming human 
activity, the scars on the environment caused by the agro-
ecosystem have drawn scholars’ attention. Reportedly, there 
have been a growing number of studies in recent ages claim-
ing that agricultural practices induce GHG emissions, par-
ticularly CO2 emissions, which in turn pose a significant 
threat to the environment. Thus, we accentuated the litera-
ture incorporating the effects of the agricultural ecosystem 
and agricultural practices on the emission of CO2. Table 1 
summarizes the relevant literature to this study.

Sarkodie and Owusu (2017), in their study for Ghana, 
investigated the impact of the agricultural ecosystem on 
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CO2 emission by adopting a vector error correction model 
(VECM) and Granger causality. Results obtained from the 
VECM depicted that the rice paddy harvested area, biomass 
burned crop residue, and cereal production tend to hamper 
the environment by increasing CO2 emissions. On the flip 
side, the use of agricultural machinery seems to reduce CO2 
emissions. Appended to that, the Granger causality result 
illustrated an interrelationship between climate change 
vulnerability and the agroecosystem. Ullah et al. (2018) 
applied the ARDL model and Granger causality to explore 
the association between agricultural ecosystem and envi-
ronmental pollution for Pakistan. In their study, a causal 
connection was revealed between agricultural ecosystems 
and CO2 emissions. The Granger causality test demonstrated 
unidirectional causality between CO2 emissions with each 
of biomass burned crop residue, agricultural value-added, 
CO2 equivalent from synthetic fertilizers, livestock, and farm 
machinery. Furthermore, bidirectional causalities unveiled 
between CO2 emissions and harvested rice paddy, cereal 
production, and other plant production. In the example of 
Nepal, Deshar (2013) evaluated the relationship between 
agricultural degradation and its influence on the environ-
ment and economy. The author stated that changes in agri-
cultural activities have a significant impact on the natural 
environment.

Hongdou et al. (2018), adopting the Johansen cointegra-
tion approach, Granger causality test, and VECM, revealed 
that the cumulative effects of share of agricultural GDP, 
area of rice paddy harvested, agricultural machinery, cereal 
production, enteric emissions of methane, emissions of 
N2O from manure application, stock of livestock, and emis-
sions of carbon dioxide equivalent to nitrous oxide from 
synthetic fertilizers propelled the long-term discharge of 
CO2. Bi-directional causal associations to CO2 emissions 
were identified for biomass residue and cereal production 
by the Granger causality test. Also, unidirectional associa-
tion unleashed between CO2 and share of agricultural GDP. 
Leitão (2018), in the same manner, reported that agricultural 
value-added as a proxy for Agricultural contribution to GDP 
seems to intensify CO2 discharge in Portugal. Recently, Ali 
et al. (2020) investigated the relationship between India’s 
agricultural ecosystem and carbon dioxide emissions. Car-
bon dioxide emissions and agricultural ecosystems were 
found co-integrated. As per the ARDL model, increasing 
biomass burned crop residues, total pesticides, and livestock 
stock would result in a rise in CO2 emissions. And according 
to Granger causality findings, full livestock heads, as well 
as all animal manure, have a unidirectional causal link with 
CO2 emission. According to Hou et al. (2015), the use of 
animal manure in agricultural fields significantly contributes 

Table 1   Summary of relevant literature on the agricultural ecosystem and GHG emissions

Author and year Country Method Key findings

Sarkodie and Owusu (2017) Ghana VECM and Granger causality Rice harvested area, burned crop residue, and 
cereal production promotes CO2 emission. Agri-
cultural machinery decreases CO2 emissions

Hongdou et al. (2018) China Johansen cointegration test, VECM, and Granger 
causality

Area of rice paddy harvested, agricultural GDP, 
agricultural machinery, cereal production, 
emissions of N2O from manure application, 
emissions of carbon dioxide equivalent to 
nitrous oxide from synthetic fertilizers, enteric 
emissions of methane, and livestock drive CO2 
emission

Ullah et al. (2018) Pakistan ARDL model, and Granger causality Agricultural value-added, burned crop residue, 
CO2 equivalent from synthetic fertilizers, 
livestock, and farm machinery seem to increase 
CO2 emission

Leitão (2018) Portugal VAR model, Granger causality Agricultural contribution to the economy induces 
CO2 emission

Edoja et al. (2016) Nigeria Vector autoregressive model, and Granger 
causality

Agricultural productivity reduces CO2 emissions. 
Unidirectional causality runs from CO2 emis-
sion to agricultural productivity

Ali et al. (2020) India ARDL model, Johansen cointegration test, 
Granger causality

Biomass-burned crop residues, livestock stock, 
and total pesticides stimulate CO2 emissions

Bhatia et al. (2013) India IPCC method Rice paddy, burned crop residue, and soil quality 
provoke CH4 and N2O emissions

Huang et al. (2004) China Original model Increasing rice cultivation provokes CH4 emission
Li et al. (2004) China, 

Thailand, 
USA

DeNitrification-DeComposition (DNDC) model Variability in the rice production system causes a 
spike in CH4 emission

53771Environmental Science and Pollution Research  (2022) 29:53768–53784

1 3



to the emissions of ammonia and other GHGs such as meth-
ane and nitrous oxide.

Exceptions to the aforementioned discussions, accord-
ing to the empirical findings of Edoja et al. (2016), there 
is a negative short-run association between carbon dioxide 
emission and agricultural productivity in Nigeria. Addition-
ally, there is a unidirectional causal relationship between 
them, with causality flowing from carbon dioxide emission 
to agricultural productivity. Onder et al. (2011) inferred 
that agriculture has both positive and negative environ-
mental impacts; the positive impacts include the provision 
of natural life, increasing the production of oxygen in the 
atmosphere through photosynthesis, and so on, whereas the 
negative impacts involve pesticide use, chemical fertilizer 
use, soil tillage, plant hormone use, and stubble use. How-
ever, Chandio et al. (2022) used the ARDL model to unveil 
that climatic parameters like CO2 emissions and temperature 
have a negative impact on agricultural output, whereas rain-
fall has a beneficial impact.

Data and econometric methodology

Data description

In this study, time-series data was collected spanning from 
1972 to 2018 in order to investigate the causal relationship 
between the agricultural ecosystem and environmental dete-
rioration in Bangladesh. The annual data used in this study 
was acquired from the Food and Agricultural Organiza-
tion (FAO, 2021) and World Bank databases (WDI, 2021), 
depending on the availability of the data set of all variables. 
The variables were selected following the previous research 
(Sarkodie and Owusu, 2017; Hongdou et al., 2018; Ullah 
et al., 2018). Table 2 summarizes the variables that were 
used in this research. In this analysis, we used ten varia-
bles with CO2 emissions measured in kilotons (kt) as the 

dependent variables. It should be noted that CO2 emissions 
is employed as a proxy for environmental deterioration and 
the others for the agricultural ecosystem. Through a review 
of previous relevant literature, ten independent variables 
were considered according to their relevance to the agricul-
tural ecosystem. The contribution of the agriculture sector 
to the national economy was expressed as a proportion of 
GDP. The total cereal production was measured as tonnes 
of production per year. The livestock head number is used to 
count the total number of livestock. Agricultural machinery 
reflected by tractors in use was measured in number. A hec-
tare is the unit of measurement for harvested rice paddy area. 
The total pesticide used in agricultural fields and burned bio-
mass crop residues were quantified in tonnes, while enteric 
emissions of methane, CO2 equivalent N2O emissions from 
synthetic fertilizers, and N2O emissions from manure appli-
cation were quantified in gigagrams. To avoid the heterosce-
dasticity problem and satisfy the linearity assumption, all of 
the variables’ data were converted into a natural logarithm 
form. Figure 2 shows the methodological flow of this study.

Econometric methodology

This study used dynamic ARDL simulation approach to esti-
mate the effects of agricultural ecosystems on CO2 emis-
sions; this method was developed by Jordan and Philips 
(2018). Before going to estimate the dynamic ARDL model, 
we need the check the stationarity and cointegration of the 
data series. For this purpose, the stationarity property of 
the data series was checked using the Augmented Dickey-
Fuller (ADF) (1979), Phillips–Perron (PP) (1988), and 
Kwiatkowskie-Phillipse-Schmidte-Shin (KPSS) (1992) tests. 
After determining the stationarity properties of all variables, 
we proceeded on to linear cointegration and long-run esti-
mation. The ARDL F-bounds test was performed to see if 
there was a long-term association between the variables. The 

Table 2   Variable and data 
description

Variables Description Source

lnCO2 Logarithm of carbon dioxide emissions in Bangladesh (kt) WDI (2021)
lnAVA Logarithm of agriculture contribution to GDP (% of GDP) WDI (2021)
lnTCP Logarithm of total cereal production (tonnes) WDI (2021)
lnLSTOCK Logarithm of total livestock (head) FAO (2021)
lnATM Logarithm of agricultural technology (no. of tractors) WDI (2021)
lnPUA Logarithm of total pesticides use in agriculture (tonnes) FAO (2021)
lnECH4 Logarithm of enteric emissions of methane (Gg) FAO (2021)
lnEN2O Logarithm of emission of N2O from manure application (Gg) FAO (2021)
lnCO2EqN2O Logarithm of emissions of CO2 equivalent of N2O from synthetic 

fertilizers (Gg)
FAO (2021)

lnBCR Logarithm of burned biomass crop residue (dry matter, tonnes) FAO (2021)
lnAREA Logarithm of rice, paddy harvested area (ha) FAO (2021)
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following unrestricted error correction model can be used to 
obtain the bound test statistics.

≠ α7 ≠ α8 ≠ α9 ≠ α10 ≠ α11 ≠ 0. The estimated value of the F 
statistic is used to verify the hypothesis. The presence of 

Fig. 2   Methodological flow 
diagram
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cointegration is confirmed if the null hypothesis is rejected, 
implying the F statistic exceeds the upper bound. There 
is no cointegration if the estimated value of the F statistic 
falls below the lower bound. If the F statistic lies between 
the upper and lower boundaries, the result is out of con-
clusion (Islam et al., 2021; Abbasi and Adedoyin, 2021). 
The ARDL estimator can therefore be used to estimate both 
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where p means the lag length, t − i denotes the optimal lags 
obtained using the Akaike information criteria (AIC), ut rep-
resents the error term, Δ signifies the first difference opera-
tor, and � indicates the long-term relationship. Following are 
the null (H0) and alternative (H1) hypotheses for assessing 
variables co-integration: H0: α1 = α2 = α3 = α4 = α5 = α6 = α7 
= α8 = α9 = α10 = α11 = 0 and H1: α1 ≠ α2 ≠ α3 ≠ α4 ≠ α5 ≠ α6 

53773Environmental Science and Pollution Research  (2022) 29:53768–53784

1 3



the short-run and long-run coefficients at the same time. 
However, the estimation is complicated due to mixed lag 
durations and discrepancies in the ARDL approach. The 
dynamic ARDL technique avoids this complexity and gives 
a graphical representation of the effect of shock in an inde-
pendent variable on the dependent variable by keeping other 
variables constant (Jordan and Philips, 2018). The dynamic 
ARDL, like the ARDL approach, allows for the analysis of 
variables with distinct stationary properties, such as I(0), 
I(1), or both (Pata and Balsalobre-Lorente, 2021; Khan 
et al., 2021). The following is the error correction model 
used in the dynamic ARDL application:

time intervals (Abbasi et al., 2021). This technique can 
also assist in reducing seasonal shifts in small samples 
by uncovering nonlinear effects and causality anomalies 
(Abbasi et al., 2021). However, the FDC method is time-
limited and cannot be used to replicate simulations that 
last an unlimited amount of time (Breitung and Candelon, 
2006). We used the time–frequency of ωi = 0.05, ωi = 1.5, 
and ωi = 2.5 for long-, medium-, and short-run causality, 
respectively, based on previous researches (Abbasi et al., 
2021; Islam et al., 2021). To compute FDC, Breitung and 
Candelon (2006) suggested an equation that can be writ-
ten as follows:

Table 3   Descriptive statistics and correlation matrix

Variables CO2 AVA TCP LSTOCK ATM PUA ECH4 EN2O CO2EqN2O BCR AREA

Mean 29,909.450 28.926 3.39e + 07 5.61e + 07 5388.191 5209.319 957.248 3.892 4836.653 6,168,072 1.05e + 07
Std. Dev 25,663.900 13.719 1.34e + 07 1.75e + 07 1455.980 5541.741 114.681 0.955 2590.595 411,769.1 558,135.8
Maximum 85,720.02 61.954 6.08e + 07 8.79e + 07 8971 15,857 1169.442 5.807 8588.419 7,150,269 1.16e + 07
Minimum 3509.319 13.074 1.53e + 07 3.18e + 07 2470 854 772.902 2.676 534.515 5,441,317 9,629,708
Median 21,129.25 26.725 2.85e + 07 5.63e + 07 5300 1702 939.070 3.703 5658.140 6,099,578 1.04e + 07
Skewness 0.921 0.427 0.509 0.338 0.165 0.503 0.246 0.543 -0.238 0.462 0.524
Kurtosis 2.554 2.050 1.914 1.817 2.132 2.063 1.934 2.049 1.603 2.502 2.191
Pearson’s correlation coefficients
CO2 1.000
AVA  − 0.770 1.000
TCP 0.778  − 0.639 1.000
LSTOCK 0.761  − 0.782 0.768 1.000
ATM 0.722  − 0.805 0.738 0.794 1.000
PUA 0.763  − 0.695 0.749 0.727 0.752 1.000
ECH4 0.787  − 0.588 0.768 0.739 0.779 0.772 1.000
EN2O 0.775  − 0.755 0.668 0.791 0.797 0.745 0.557 1.000
CO2EqN2O 0.766  − 0.808 0.623 0.730 0.801 0.796 0.696 0.796 1.000
BCR 0.713  − 0.710 0.541 0.761 0.727 0.773 0.752 0.769 0.739 1.000
AREA 0.775  − 0.709 0.803 0.720 0.745 0.778 0.737 0.731 0.761 0.773 1.000
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where Δ is the difference operator, �
0
 is the intercept, �

0
 to 

�
10

 is the long-run coefficient, and �
1
 to �

10
 is the short-run 

coefficient, ECT represents the error correction term, and ut 
is the white noise error term.

This study also applied the frequency domain causal-
ity (FDC) (Breitung and Candelon, 2006) test to deter-
mine the causal association among studied variables. 
Unlike the traditional Granger causality test, this method 
allows the dependent variable to be computed at specific 

The linear restriction of Eq. (3) is following the null 
hypothesis of My → x (ω) = 0. However, α and β are the 
parameters to be determined, p is lag, t denotes time, and 
εt indicates an error term. Finally, our study applies a vari-
ety of model diagnostic tests to ensure that our findings are 
reliable and may be applied to policy direction.

(3)Xt = �
1
� t−1

+ +�p� t−p
+�

1
Yt−1+

+�pYt−p+ �1t

53774 Environmental Science and Pollution Research  (2022) 29:53768–53784

1 3



Results and discussion

The descriptive statistical analysis of the study shows 
that all the variables but the emission of carbon dioxide 
equivalent of nitrous oxide from synthetic fertilizers are 
positively skewed (Table 3). Even the emission of carbon 
dioxide has the longest right tail among all the variables, 
while emission of nitrous oxide from manure application 
has the longest among the regressors. Besides, all the vari-
ables included in the model show a leptokurtic distribution 
to the normal characteristics. However, with the exception 
of agriculture contribution to GDP in the Pearson’s cor-
relation matrix, all the variables have shown a positive 
monotonical relationship with carbon dioxide emission. 
In order for the ARDL regression model to be appro-
priate, we must ensure that there is no multicollinearity 
among the independent variables. Overviewing the results 
obtained from Table 3, we thus deduce that our model 
is free of multicollinearity since none of the correlation 
coefficients between the independent variables exceed 0.80 
(Farrar and Glauber, 1967).

Unit root test is a necessary condition for performing 
dynamic ARDL simulations (Abbasi et al., 2021). Table 4 
shows that at the second difference, none of the series are 

stationary. To put it another way, at the first difference, all 
the variables are stationary. This result not only allows us 
to use the dynamic ARDL model but also allows us to use 
the impulse response. As a result, we moved on to the next 
step in the process.

After confirming the stationarity of data series, the pres-
ence of long-run association among variables needs to be 
explored using the F bound test. At a 1% level of signifi-
cance, the F-statistics obtained from the ARDL bounds 
test embeds well above the margin of the critical value of 
upper bound I(1) and lower bound I(0) (Table 5). This find-
ing clearly suggests that the variables under investigation 
interact together in the long run (see Narayan, 2005). To put 
it simply, our studied variables all have a long-term impact 
on environmental quality. Consequently, we forwarded to 
run the dynamic ARDL model.

After confirming the long-run association among the vari-
ables under investigation, this research employs dynamic 
ARDL simulation to find out the elasticity estimation of 
variables. The coefficients of TCP in both the long-run and 
short-run are positive, symbolizing that TCP exerts a posi-
tive impact on CO2 emission (Table 6). With a unit increase 
in total cereal production, environmental degradation gets 
intensified throughout the long- and short-run periods by 
0.596% and 0.517%, respectively. These findings are in 

Table 4   Results of unit root test

***, **, and * indicate significance level of 1%, 5%, and 10%, respectively. The critical values and prob-
ability of KPSS test are based on Kwiatkowskie-Phillipse-Schmidte-Shin (1992). All the selected variables 
are trended

Variable ADF test PP test KPSS test

Level Difference Level Difference Level Difference

CO2  − 4.924***  − 9.247***  − 4.954***  − 16.493*** 0.703*** 0.1365*
AVA  − 3.120  − 3.660**  − 3.120 7.549*** 0.908*** 0.075
TCP  − 3.749**  − 9.863***  − 3.937**  − 9.7546*** 0.913*** 0.049
LSTOCK  − 2.737  − 3.961**  − 2.662  − 6.558*** 0.809*** 0.059
ATM  − 3.260*  − 2.285  − 3.898**  − 1.871 0.136* 0.234**
PUA  − 3.083  − 8.057***  − 1.779  − 4.988*** 0.179** 0.130
ECH4  − 3.042  − 6.958***  − 3.067  − 8.721*** 0.846*** 0.139*
EN2O  − 2.968  − 7.060***  − 2.915  − 10.158*** 0.811*** 0.198**
CO2EqN2O  − 1.593  − 9.052***  − 1.138  − 24.630*** 0.229** 0.500***
BCR  − 1.593  − 9.052***  − 3.224*  − 9.484*** 0.435*** 0.109
AREA  − 3.417  − 9.093***  − 3.460*  − 9.694*** 0.514*** 0.083

Table 5   Results of ARDL 
bounds test

F-statistics Level of sig-
nificance

Lower bound I(0) Upper bound I(1) Long-run relationship

5.842 10% 2.082 3.031 Present
5% 2.391 3.382
2.5% 2.702 3.733
1% 3.061 4.154
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line with those reported by Sarkodie and Owusu (2017), 
Hongdou et al. (2018), and Ullah et al. (2018) for the long 
term. That is, total cereal production stimulates CO2 emis-
sion and leaves scars on the environment. Overemphasis 
on increasing the volume of production by adopting high 
yielding varieties (HYV), higher irrigation, and fertilization 
technologies might act as the key reason for this relationship 
in Bangladesh. According to Sarkodie and Owusu (2017), 
poor agricultural practices might be responsible for this 
relationship. Reynolds et al. (2015) also found a positive 
link between agricultural crop production and environmen-
tal pollution. However, the findings of this study contradict 
those of Dogan (2016) and Edoja et al. (2016), who identi-
fied a negative relationship between agricultural production 
and CO2 emission. Dogan (2016) argued that the negative 
relationship was arisen due to the better management and 
adaptation strategies, variations in the cereal production 
system and cropping pattern, and lower usage of chemical 
fertilizers, pesticides, and agricultural machinery inputs.

Total livestock heads seem to have a deteriorating long- 
and short-run impact on the environment. In the short run, 

as the total livestock increases by 1%, CO2 emission rises 
by 0.25%, and this finding is in line with that of Ali et al. 
(2021), whereas in the long run, CO2 emission gets ele-
vated by 0.069% to every 1% increase in the total livestock 
heads. Additional food and fodder production requirement 
for the increasing number of livestock might influence the 
adoption of some agricultural practices responsible for 
environmental degradation. Besides, pasture grazing might 
have also contributed to the environmental degradations 
by negatively impacting the agricultural production effi-
ciencies. In addition, dropping animal waste could also be 
responsible for the emission of environmental degradation. 
Nevertheless, animal wastes, as well as livestock produc-
tion, are the main contributors of atmospheric N2O emis-
sions (Hongdou et al., 2018); eventually, it is converted 
into carbon dioxide through the atmospheric chemical 
reaction. It is also evident that number of livestock and 
animal manure applied to soil enhanced the emission of 
CO2 in India (Ali et al., 2021). Negative externalities of 
livestock to the environment were also explored by Dikshit 
and Birthal (2013). Ullah et al. (2018) identified a similar 
event in Pakistan while studying the impact of the agricul-
tural ecosystem on the environment. However, in a similar 
study in Ghana, Sarkodie and Owusu (2017) identified an 
insignificant relationship between these two variables.

With the advent of agricultural technology, environ-
mental quality seems to degrade in the long run. Energy 
consumption for operating agricultural machinery might 
be responsible for long-run environmental degradation. 
Some agricultural machinery like tractor, power tiller, and 
power pump consumes huge amounts of energy, usually 
non-renewable and not replenished over time, which emit 
smoke to the environment. This smoke contains carbon 
dioxide, carbon monoxide, and some other particles. After 
a chemical reaction, carbon monoxide is also converted 
to carbon dioxide. Thus, the emission of carbon dioxide 
increases manifold through using agricultural machinery 
with less care. Sometimes, leakage of oil/fuel from these 
machineries also negatively impacts agricultural activi-
ties as well as the environment. Innovation and adoption 
of energy-efficient and environment-friendly agricultural 
machinery would reverse the existing impacts. Zero-tillage 
agricultural practices can be a mitigating strategy for this 
problem (Ali et al., 2021). However, as time passes, the 
damage caused to the environment becomes more intensi-
fied since no short-run environmental impact of the agri-
cultural technology is revealed. This result is similar to 
those of Sarkodie and Owusu (2017), who identified the 
long-term negative influence of agricultural machinery on 
the environment. Besides, Ullah et al. (2018) also found a 
long-term positive relationship between agricultural tech-
nology adoption and CO2 emission in Pakistan and sug-
gested avoiding extensive use of these machinery.

Table 6   Findings of dynamic ARDL simulations

***, **, and * denote significance at 1%, 5%, and 10% level, respec-
tively

Variables Coefficient Standard error T-stat

Cons  − 10.153*** 2.326 4.365
D_AVA 0.027 0.175 0.16
L1_AVA 0.128 0.188 0.68
D_TCP 0.596*** 0.193 3.08
L1_TCP 0.517** 0.236 2.19
D_LSTOCK 0.069** 0.032 2.14
L1_LSTOCK 0.257*** 0.102 2.85
D_ATM 0.183** 0.071 2.55
L1_ATM 0.006 0.173 0.04
D_PUA 0.134** 0.063 2.12
L1_PUA 0.011 0.093 0.12
D_ECH4 2.036** 0.786 2.59
L1_ ECH4 3.507*** 0.933 3.76
D_EN2O 1.846* 1.069 1.73
L1_ EN2O 3.062**** 0.963 3.18
D_CO2EqN2O 0.188*** 0.054 3.48
L1_ CO2EqN2O 0.279*** 0.068 4.06
D_BCR 1.641** 0.812 2.02
L1_ BCR 0.049 1.341 0.04
D_AREA 1.143* 0.605 1.89
L1_ AREA 0.063 1.569 0.04
ECT(-1)  − 0.649*** 0.139  − 4.68
R2 0.796 Prob > F 0.000***
Adjusted R2 0.618 N 46
Simulation 5000
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Although the short-run impact is not valid, total pesticide 
use is intimately linked with environmental degradation in 
the long run. The long-term reaction of pesticides might be 
responsible for environmental degradation. Not only that the 
multi-dimensional negative impact of pesticide use begins 
with its application. A significant part of pesticides leach 
into the soil degenerate the soil properties and ultimately 
impact agricultural productivity. Some parts run off to water, 
which makes that toxic and impacts the fishes and aquatic 
lives. Another significant portion goes to air through evap-
oration and causes global warming. Even pesticides may 
kill some beneficial insects, including pollinators. All these 
transformations of pesticides and their consequences have 
a serious connection to environmental degradation. Pesti-
cides used in agriculture also contribute to atmospheric N2O 
emissions (Parton et al., 2015). This N2O is 300 times more 
powerful than CO2 to do global warming. Increased global 
temperature enhances the activities of many unwanted fac-
tors which ultimately related to environmental degradation. 
Earlier, Ali et al. (2021) also identified a positive association 
between pesticide use and CO2 emission in India for both 
the short- and long-run periods. Surprisingly, Sarkodie and 
Owusu (2017) have explored an insignificant relationship 
between pesticide use and CO2 emission. To overcome the 
negative impact of pesticide use, the adoption of integrated 
pest management (IPM) techniques and genetically modified 
(GM) crops can be treated as handy tools.

The enteric release of methane has also been linked to 
environmental degradation in the long and short terms. As 
like some other GHGs, methane is also emitted during agri-
cultural practices. This methane emits heat in the atmos-
phere 25 times more than CO2. The escalation of tempera-
ture hampers different normal agricultural activities like 
production, grow-up, nourishment, metabolism, and even 
reactions. Thus, the enteric emission of methane fosters the 
use of different chemical inputs to attain efficiency in pro-
duction, consequently enlarging its contribution to the emis-
sion of CO2. Reportedly, the damage is more intense in the 
short run because the environment mitigates some effects in 
the long run through the biological and ecological process 
and does care itself. However, an insignificant relationship 
between these two was also found by Sarkodie and Owusu 
(2017) in Ghana.

The short- and long-run coefficients of LNEN2O were 
both positive and significant, implying that N2O emis-
sions from manure application promote environmental 
degradation. Applying bulky amounts of animal manure 
with improper care may enhance the emission of N2O as 
well as CO2. Inappropriate methods of manure application 
might also contribute to the emissions. It can also harm the 
growth of agricultural produces, consequently hampering 
the absorption of CO2. However, Hongdou et al. (2018) 
found a long-term influence of N2O on CO2 emission in 

China, while Sarkodie and Owusu (2017) found no signifi-
cant impact in Ghana. Anyway, Cambareri et al. (2017) sug-
gested the incorporation of manure as the best practice to 
mitigate nitrous oxide emission.

The LNCO2EqN2O coefficients were both positive and 
significant in the short and long run, suggesting that emis-
sion of CO2 equivalent of N2O from synthetic fertilizers 
induces a rise in environmental degradation in Bangladesh. 
Nitrous oxide from synthetic fertilizer is mainly produced 
through microbial nitrification and denitrification in soil. 
The emission of N2O also happens due to NH3 volatiliza-
tion or nitrate leaching. All these processes of N2O emission 
get facilitation by the inappropriate application of chemical 
fertilizer. Besides improper fertilization methods, overdose 
application may enhance the emission of N2O and GHGs in 
multi-dimensional ways. Thus, Parton et al. (2015) rightly 
opined that fertilizer application in the agricultural produc-
tion process is the main contributor to N2O emission, which 
causes global warming. Hongdou et al. (2018) also found 
both short- and long-term positive associations between 
these two factors for China. However, this impact was not 
significant in the Ghanaian agricultural ecosystem (Sarkodie 
and Owusu, 2017).

Furthermore, the coefficients of BCR and AREA reveal 
that both burned biomass crop residue and paddy harvested 
area have a long-term degrading impact on environmental 
quality. On the flipside, no short-term evidence of the influ-
ence of BCR and AREA were found (Table 6). However, 
BCR and AREA contribute to CO2 emission in several ways. 
In the time of burning crop residues or biomasses, lots of 
smoke is emitted, which contains CO2. Burning also kills all 
the beneficial organisms living with the crop residues, soil 
surface, and topsoil layers, which degenerate the soil quality. 
Long-term degradation of soil quality and, thus, reduction of 
agricultural productivity due to burned biomass crop residue 
may lessen biomass production, which in turn contributes to 
decreasing the CO2 absorption. In the short-run period, these 
degradations of soil productivity are trying to cover up by 
the use of additional manure, chemical fertilizer, pesticides, 
etc., which further contribute to environmental degrada-
tion. The heat generated during the time of burning is also 
contributing to environmental pollution. However, a simi-
lar influence of burned biomass crop residue on CO2 emis-
sion was also identified by Ali et al. (2021) and Ullah et al. 
(2018). On the other hand, as paddy is intensively cultivated 
in Bangladesh, farmers adopt different technologies like irri-
gation, fertilization, insecticide, and pesticide applications 
to enhance their productions. All the activities have a strong 
connection with environmental degradation. However, for 
both the long- and short-run cases, a similar impact of rice 
paddy harvested area on the CO2 emission was also reported 
by Sarkodie and Owusu (2017) in Ghana and Hongdou et al. 
(2018) in China.
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The error correction term (ECT) is negative and signifi-
cant, depicting converge of the model at a speed of approxi-
mately 65% on an annual basis. Impulse response functions 
are used in the dynamic ARDL model to predict the future 
value of a regressed variable in response to an independ-
ent variable. The dots reflect the expected value, while the 
deep blue to light blue lines denote the 75%, 90%, and 95% 
confidence intervals. Figure 3 forecasts the relationship 
between agricultural contribution to GDP and CO2 emission. 
As agriculture’s contribution to the economy expands 10%, 
CO2 emission elevates continuously in the short run. Also, 

response in CO2 emission from any 10% decrease in agri-
culture contribution follows a similar track. However, in the 
long run, CO2 emission intensifies with a sustained increase 
in agriculture contribution. On the other side, any decrease 
in agriculture contribution seems to lessen its deteriorating 
impact on the environment in the long run.

Figure 4 reveals the impulse response functions for a 10% 
increase and decrease in total cereal production. Both 10% 
increase and decrease in total cereal production cause equal 
damage to the environment. However, as time advances, CO2 
emission rises in the long run with an increase in total cereal 

Fig. 3   Contribution of agricul-
ture to GDP and environmental 
degradation. The above figure 
denotes ± 10% in agricultural 
contribution to GDP and its 
effect on carbon dioxide emis-
sion. The dots show the fore-
casted value, whereas the deep 
blue to light blue lines depict 
the 75%, 90%, and 95% confi-
dence intervals, respectively

  

Fig. 4   Total cereal production 
and environmental degradation. 
The above figure denotes ± 10% 
in total cereal production and 
its effect on carbon dioxide 
emission. The dots show the 
predicted value, whereas the 
deep blue to light blue lines 
depict the 75%, 90%, and 95% 
confidence intervals, respec-
tively

Fig. 5   Total livestock head and 
environmental degradation. The 
above figure denotes ± 10% in 
total livestock and its effect on 
carbon dioxide emission. The 
dots show the forecasted value, 
whereas the deep blue to light 
blue lines depict the 75%, 90%, 
and 95% confidence intervals, 
respectively
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production, whereas any 10% decrease in total cereal pro-
duction leads to a flat reduction in CO2 emission. Yet, this 
reduction in total cereal production cannot heal the environ-
ment since CO2 emission remains positive.

As discerned in Fig. 5, any 10% increase or decrease in 
livestock production makes a minuscule difference in envi-
ronmental quality. CO2 is projected to rise to either increase 
or decrease in livestock production. And what is more, the 

Fig. 6   Agricultural technology 
and environmental degradation. 
The above figure denotes ± 10% 
in agricultural technology and 
its effect on carbon dioxide 
emission. The dots presents the 
forecasted value, whereas the 
deep blue to light blue lines 
depict the 75%, 90%, and 95% 
confidence intervals, respec-
tively

  

Fig. 7   Total pesticide use in 
agriculture and environmental 
degradation. The above figure 
denotes ± 10% in total pesticide 
use in agriculture and its effect 
on carbon dioxide emission. 
The dots show the forecasted 
value, whereas the deep blue 
to light blue lines depict the 
75%, 90%, and 95% confidence 
intervals, respectively

  

Fig. 8   Enteric emission of 
methene and environmental 
degradation. The above figure 
denotes ± 10% in enteric emis-
sion of methene and its effect on 
carbon dioxide emission. The 
dots show the forecasted value, 
whereas the deep blue to light 
blue lines depict the 75%, 90%, 
and 95% confidence intervals, 
respectively

  

Fig. 9   N2O emission from 
manure application and envi-
ronmental degradation. The 
above figure denotes ± 10% in 
N2O emission from manure 
application and its effect on 
carbon dioxide emission. The 
dots show the predicted value, 
whereas the deep blue to light 
blue lines depict the 75%, 90%, 
and 95% confidence intervals, 
respectively
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environment experiences damage in both the long run and 
short run.

Figure 6 projects the impact of agricultural technology on 
the environment. Changes in agricultural technology do not 
form any notable difference in environmental quality. Both 
10% increase and decrease in agricultural technology exert 
more or less equal and positive effects on CO2 emission.

Figure 7 predicts the association between total pesticide 
use in agriculture and CO2 emission. Environment experi-
ences deteriorating effect in the short run to any increase or 
decrease in pesticide use. However, in the long run, envi-
ronmental quality exacerbates in response to any further 
increase in pesticide use in agriculture, whereas a decline in 

pesticide use, in the long run, helps mitigate environmental 
degradation. Yet, the damage that the environment faces can-
not be healed.

As demonstrated in Fig. 8, a sustained increase in enteric 
emission of methane throughout the short-run and long-
run periods induces CO2 emission. Contrarily, the decline 
in enteric emission of methane undeviatingly improves the 
environmental quality in the long run.

Figure 9 forecasts that N2O emission from manure appli-
cation carries no significant short-run impact on the envi-
ronment. Further, as time forwards, every 10% rise in N2O 
emission from manure application continues to deteriorate 
the environment quality. On the flip side, any decrease in 

Fig. 10   Use of synthetic 
fertilizer and environmental 
degradation. The above figure 
denotes ± 10% in CO2 equiva-
lent to N2O emission from 
synthetic fertilizer application 
and its effect on carbon dioxide 
emission. The dots represent 
the forecasted value, whereas 
the deep blue to light blue lines 
depict the 75%, 90%, and 95% 
confidence intervals, respec-
tively

  

Fig. 11   Biomass cropped resi-
dues burned and environmental 
degradation. The above figure 
denotes ± 10% in biomass crop 
residues burned and its effect 
on carbon dioxide emission. 
The dots signify the forecasted 
value, whereas the deep blue 
to light blue lines depict the 
75%, 90%, and 95% confidence 
intervals, respectively

  

Fig. 12   Areas of paddy 
harvested and environmen-
tal degradation. The above 
figure denotes ± 10% in paddy 
harvested areas and its effect 
on carbon dioxide emission. 
The dots signify the forecasted 
value, whereas the deep blue 
to light blue lines depict the 
75%, 90%, and 95% confidence 
intervals, respectively
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N2O emission from manure application leads to a decline 
in CO2 emissio.

The trend of CO2 emission in response to changes in CO2 
emission equivalent to N2O emission from synthetic ferti-
lizer is projected in Fig. 10. The environment continues to 
deteriorate from a 10% increase and decrease in CO2 emis-
sion equivalent to N2O emission from synthetic fertilizer use 
in the short-run and long run. However, the long-run positive 
change is more intense.

No significant short-run impact of burned biomass resi-
due on CO2 emission was observed (Fig. 11). However, in 
the long run, CO2 emission gets elevated in response to a 
10% increase in burned biomass in upcoming periods. How-
ever, any reduction in burned biomass crop residue helps 
subdue CO2 emission and improves the environmental qual-
ity. Still, CO2 emission prevails on the positive side to a 10% 
decline in burned biomass.

Figure 12 forecasts that a 10% increase or decrease in 
paddy harvested area yields an insignificant short-run impact 
on CO2 emission. Also, both 10% expansion and 10% reduc-
tion in paddy harvested area lead to equal destruction to the 
environment since CO2 goes up steadily.

Finally, we incorporate the FDC test introduced by 
Breitung and Candelon (2006) to investigate the causal 
effect of AVA, TCP, LSTOCK, ATM, PUA, ECH4, EN2O, 
CO2EqN2O, BCR, and AREA on CO2 for ωi = 0.05, 

ωi = 1:50, and ωi = 2:50 frequencies. Table 7 manifests that 
LSTOCK, EN2O, CO2EqN2O, and BCR Granger cause CO2 
in the short run, mid run, and long run. Appending to this, 
TCP resembles to be a key long-term and medium-term 
determinant of CO2, whereas evidence depicts that AVA and 
PUA only have long-term causal impacts on CO2. However, 
the AREA exerts no short-run, mid-run, and long-run cau-
sality with CO2. These findings align with Hongdou et al. 
(2018) and Ali et al. (2021), stating unidirectional causality 
of livestock, agricultural technology, manure application, 
and pesticide used in agriculture towards CO2 emissions. 
In the case of BCR, Awasthi et al. (2010) and Vasilica et al. 
(2014) also found a similar causality and reported that 
burned biomass crop residues brought up harmful effects 
to the environment as well as a repercussion on agricultural 
productivity and human health. So, it is evident that soil 
deforming due to BCR, CO2 emissions from manure, syn-
thetic fertilizer, pesticides used in agriculture, and energy 
used in agricultural machinery are the major contributors to 
environmental degradation (Hongdou et al., 2018).

The model diagnostics results are reported in Table 8. The 
Breusch-Pagan-Godfrey test and ARCH test show that the 
model is devoid of the heteroscedasticity problem. Breusch-
Pagan-Godfrey LM test indicates that there is no serial cor-
relation issue in the residuals. In addition, the residuals are 
normally distributed, and the model is accurately defined. 

Table 7   Granger causality test 
in the frequency domain

***, **, and * denote significance at 1%, 5%, and 10% level, respectively. Figures in parentheses are p-val-
ues

Causality direction Long-term Medium-term Short-term
ωi = 0.05 ωi = 1.50 ωi = 2.50

AVA =  > CO2 5.594* (0.061) 2.477 (0.253) 1.267 (0.597)
TCP =  > CO2 6.267** (0.048) 5.033* (0.078) 1.571 (0.479)
LSTOCK =  > CO2 9.354*** (0.005) 6.678** (0.035) 7.324** (0.032)
ATM =  > CO2 11.751*** (0.002) 10.225*** (0.006) 3.779 (0.154)
PUA =  > CO2 7.716*** (0.022) 3.867 (0.153) 2.845 (0.223)
ECH4 =  > CO2 6.322** (0.043) 3.324 (0.197) 2.875 (0.240)
EN2O =  > CO2 22.045*** (0.000) 7.576** (0.022) 7.779** (0.021)
CO2EqN2O =  > CO2 6.272** (0.047) 9.353*** (0.006) 6.167** (0.045)
BCR =  > CO2 17.524*** (0.000) 11.523*** (0.003) 8.731** (0.013)
AREA =  > CO2 2.899 (0.245) 2.554 (0.294) 0.635 (0.727)

Table 8   Residuals diagnostics Diagnostic test Chi-square 
(p-value)

Findings

Breusch-Godfrey Serial Correlation LM 0.234 No problem of serial correlations
Breusch-Pagan-Godfrey 0.255 No evidence of heteroscedasticity
ARCH test 0.416 No problem of heteroscedasticity
Jarque–Bera test for normality 0.180 Residuals are normally distributed
Ramsey RESET test 0.438 Model specified correctly
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The graphs of CUSUM and CUSUM of squares in Fig. 13 
demonstrate that the estimated parameters are within the 
critical margin, indicating that the model is stable.

Concluding remarks and policy insights

The importance of agriculture in a country’s economy 
cannot be overstated. Agriculture, as the primary source 
of calories, is undoubtedly at the top of the food chain in 
such a densely populated country as Bangladesh. Thus, 
farmers utilize extensive resources and inputs to increase 
production. This would result in resource overexploitation 
and environmental damage. In this context, an attempt was 
made to investigate the relationship between Bangladesh’s 
agricultural ecosystem and environmental degradation. This 
research employed annual time series data from 1972 to 
2018 to accomplish its objectives. Modern methodologies 
such as dynamic ARDL simulations and frequency domain 
causality were employed to generate robust findings and 
enhance policy implications.

The results of the ARDL bound tests indicated that CO2 
emissions and the agricultural ecosystem are intertwined, 
and it is evident that the agricultural ecosystem has a long-
term impact on carbon dioxide emissions, which leads to 
environmental degradation. The results of dynamic ARDL 
simulations demonstrated that total cereal production, total 
livestock head, enteric methane emissions, N2O emissions 
from manure application, and CO2 equivalent N2O emissions 
from synthetic fertilizers all deteriorate environmental qual-
ity in the short and long run. On the other hand, agricultural 
technology, pesticide use in agriculture, and burned biomass 
crop residue deteriorated the environmental quality only in 

the long run. The impulse response graphs predict the fluc-
tuation in the carbon dioxide emission for a 10% positive 
and negative change in each explanatory variable. Results 
of causality findings revealed that livestock head, N2O emis-
sion from manure application, CO2 equivalent N2O emis-
sions from synthetic fertilizers, and total burned biomass 
crop residue Granger cause environmental degradation in 
the short run, mid run, and long run. Appending to this, 
total cereal production appears to be a crucial long-term and 
medium-term determinant of environmental quality, whereas 
agricultural value-added and pesticide use in agriculture has 
only long-term causal effects on environmental deteriora-
tion. Contrarily, there is no short-, mid-, or long-run causa-
tion between rice paddy harvested area and carbon dioxide 
emission. The residual diagnostics tests indicate that the 
current version of the ARDL model is stable and reliable.

Some crucial policy implications can be developed based 
on the findings of this research. In order to reduce the impact 
of the agricultural ecosystem on environmental degradation, 
mitigation strategies such as improved manure management, 
greater N use efficiency, limiting the use of synthetic ferti-
lizer and pesticides, better water, and waste management in 
the rice paddy field must be considered. Precisely, the agri-
cultural ecosystem necessitates the usages of organic farm-
ing methods for sustainable production in an environment-
friendly manner. Since biomass and crop residue burning has 
such a severe influence on the environment, better biomass 
residue management is required to avert burning. If biomass 
residues could be recycled in diverse manners for future pro-
duction, it would be extremely useful. Less inorganic ferti-
lizer and pesticide application, and more organic fertilizer 
application, should be practiced more widely. The country 
would benefit greatly from the creation of a zero-tillage or 
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Fig. 13   CUSUM and CUSUM square test
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zero-environmental-degradation tillage technique. The live-
stock manure and residues should be properly processed so 
that power can be generated from the residues of livestock, 
which has twofold benefits: it meets the renewable energy 
demand while also enhancing Bangladesh’s environmental 
quality.

Finally, this finding opens up new avenues for academics 
to analyze the agricultural ecosystem-environment nexus. 
In a developed country, this nexus may be different than 
in a developing country. In this perspective, the impact of 
agricultural ecosystems on the environment in developed 
and developing countries can be compared. This could aid 
in the development of a more comprehensive guide on envi-
ronmental rules and regulations.
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