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This study is one of the first attempts on the nonlinear forced vibration behaviors of nonhomogeneous
orthotropic (NHO) structural members with linear viscous damping at primary resonance within the shear
deformation theory (SDT). First, mechanical properties of double curved systems consisting of NHO materials
are mathematically modeled and nonlinear basic relations are established. Using these relations, nonlinear

:/[ng;rlzziales method basic partial differential equations are derived and reduced to ordinary differential equations with second and
Excitation third order nonlinearities by Galerkin procedure. Multiple-scales method is used to obtain the nonlinear forced
Damping vibration frequency-amplitude dependence of double curved NHO structural members with damping. After
SDT testing the correctness of the proposed methodology, the influences of non-homogeneity, damping, transverse

shear deformations and anisotropy on nonlinear forced vibration frequencies for various structural members
at the primary resonance are investigated and interpreted in detail.

1. Introduction

At the present stage of the development of science and technol-
ogy, scientific and technological progress is impossible without the
production of new non-standard materials with high technological and
operational properties alongside traditional materials, and most impor-
tantly, without anticipating their application possibilities. Currently,
the heterogeneous anisotropic materials play a leading role in the con-
struction of new products that are used in many developed industries.
In modern technology, plates, panels and shells made of homogeneous
anisotropic materials as well as heterogeneous anisotropic materials
are widely used as main structural elements, especially in aviation
and spacecraft, rocket and shipbuilding, mechanical engineering and
construction.

The fact that the new generation heterogeneous composite mate-
rials created by technological methods have predetermined properties
increases the reliability of the structures, as well as decreasing the
material consumption and the cost of the products. The inhomogeneity
of elastic properties can occur both due to the technological processes
in obtaining the structural elements and in the formation process of
the body itself. Studying the mechanical behavior of inhomogeneous
anisotropic structural elements reveals many important practical prob-
lems for researchers in which the true properties of materials are
taken into account. Although it is quite complicated to mathemati-
cally model the heterogeneity and anisotropy of materials in various

problems of solid mechanics, it also creates new physical, qualita-
tive and quantitative effects. The direction of research on vibration
and stability problems of inhomogeneous anisotropic structural ele-
ments is determined by the current demands of engineering practice,
the need to develop solid mechanics theories, including mathematical
models of constructions, and the development of analytical and numer-
ical methods to solve specific problems. It should be especially noted
some fundamental studies, which occupy an important place in the
development of the mechanics of inhomogeneous bodies [1-4].

In the framework of the theories developed in the above-mentioned
monographs, the properties of inhomogeneous anisotropic materials
were modeled mathematically and the effects of inhomogeneity and
anisotropy on the strength calculations of structural elements were
presented in the studies of [5-9]. Advanced shell theories are used
to obtain realistic results in the strength calculations of shell-type
elements made of composite anisotropic materials. After the devoted
efforts of scientists, various advanced shear deformation theories have
been formed. The development of shear deformation theories has led
to more realistic results on the nonlinear response of shallow shells
composed of advanced materials [10-13].

Since structural elements consisting of homogeneous and inhomoge-
neous composites are applied in various advanced industries, including
spacecraft, rockets, aviation technology and other areas of technol-
ogy, they inevitably experience nonlinear oscillations. Among types of
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vibrations that can cause the most damage to structural elements is
forced vibrations caused by periodic external excitation depending on
the time. When shell-type structural members have significant dynamic
displacements (due to non-linear deformations), this relationship can
reveal a “resonant” phenomenon. This circumstance, which occurs in
structural elements, has become the cause of many accidents, and
sometimes serious disasters. Modeling and solving problems of forced
vibration in a resonance not only solves the problems of forecasting, but
also maximally prevents their detrimental effect on structural elements.
A systematic presentation of various problems of nonlinear dynamics,
including nonlinear forced vibrations of homogeneous plates, panels
and shallow shells, was given in the monographs of Volmir [14] and
Amabili [15]. These books present solutions to various problems of
nonlinear vibrations (natural, forced, parametric) described by the
Fopp-Karman equations for plates and the Marger equations for shal-
low shells. An invaluable resource for solving nonlinear problems of
forced vibration, especially in resonance cases, is work of Nayfeh and
Mook [16].

Due to the complication of the modeling of forced vibration prob-
lems for inhomogeneous structural elements, the number of works
is very limited compared to other vibration types. In recent years,
the number of studies on the solution of nonlinear forced vibration
problems of functionally graded structural elements has been increas-
ing. Du et al. [17] studied the nonlinear forced vibration of infinitely
long functionally graded cylindrical shells using the Lagrangian theory
and multiple scale method. In the studies of Sheng and Wang [18]
and [19] were investigated primary resonance responses of function-
ally graded rotating cylindrical shells in thermal medium including
nonlinear dynamics, quasi-periodic and chaotic responses based on
Hamilton principle using von Karmén nonlinear theory and first-order
shear deformation theory. Ave et al. [20] studied primary resonance
of double-curved nanocomposite systems using improved nonlinear
theory and multi-scales method. In the study of Amabili and Balasub-
ramanian [21] were investigated the nonlinear forced vibrations of
laminated composite conical shells using a high-order shear deforma-
tion theory that include rotary inertia and geometric nonlinearity at all
kinematic parameters and trigonometric extensions. Sofiyev et al. [22,
23] presented the nonlinear forced vibration behaviors of functionally
graded and nano-composites structural systems based on the classical
shell theory (CST). In the study of Zhu et al. [24], the nonlinear free
and forced vibrations of porous piezoelectric doubly curved shells rest-
ing on visco-elastic foundation is performed within nonuniform electric
field model, harmonic balance and Runge-Kutta methods. Ye and Wang
[25] analyzed the nonlinear forced vibration of thin-walled metal
foam cylindrical shells reinforced with functionally graded graphene
platelets, noting 1:1:1:2 internal resonances using the pseudo-arclength
continuation technique. In a study by Liu et al. [26] used Donnell’s
nonlinear theory of shallow shells, Hamilton’s principle, energy ap-
proximation, Galerkin scheme, and arc length continuation method for
nonlinear forced vibrations of multilayer cylindrical shells made of
porous functionally graded material (FGM) on an elastic substrate. In
the study of Gao et al. [27], the symplectic wave-based method has
been extended to free and forced vibration analysis of thin orthotropic
circular cylindrical shells with arbitrary boundary conditions. Ahmadi
et al. [28] investigated the non-linear forced vibrations of stiffened
imperfect functionally graded double curved shallow shells, as rested
on nonlinear elastic foundations using the CST.

The majority of aforementioned studies are devoted to the forced
vibration of structural elements made of nonhomogeneous isotropic
materials. Solutions of the forced vibration problems of the structural
elements made of NHO materials are presented only within CST. The
main purpose of this study is to solve this problem using the Galerkin
procedure and the multiple scales method after mathematically model-
ing of this problem in the framework of SDT, considering the viscous
damping effect, in order to obtain a damped nonlinear forced vibration
frequency—-amplitude dependence and an expression for the ratio of
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vibrations. This research is one of the first attempts to investigate the
nonlinear forced vibration for NHO structural elements with viscous
damping in the framework of SDT at primary resonance. Since the spe-
cial cases of shells with double curvature are structural elements, such
as spherical and hypar shells, rectangular plates and panels, obtained
expressions can be used for their forced vibration analysis. In addition,
it aims to analyze and interpret the quantitative and qualitative changes
caused by the influences of non-homogeneity, nonlinearity, orthotropy,
external excitation and viscous damping on the frequency-amplitude
dependence.

2. Formulation of the problem

Let us consider the nonhomogeneous orthotropic double curved
shallow shell with thickness &, side lengths /; and /,, curvature radii
R, and R,, subjected to the harmonic external excitation g(x, y, 7) (see,
Fig. 1). The orthogonal coordinate system is placed on the mid-surface
of the double curved shell, its origin being situated at the upper left
corner and the direction of the axes is shown in Fig. 1. We will denote
the displacements in the direction of the x,y and z coordinate axes
with symbols u, v and w, respectively. The shallow shell with double
curvature is transformed into (a) spherical shell as R, = R,, (b)
hyperbolic-paraboloid shell or hypar shell as R; = —R,, and (c) panel
as R —» o, and (d) plate, as R; — o0, R, — oo (Fig. 2).

The elastic properties of shell-type structural elements made of NHO
materials can be modeled as a continuous function of the z coordinate
in the following form [5-9]:

Ej =n(E]. G =m@G,

0 P =m@p%, (i =1,2,j=2,3Z=z/h

@

where Ef’i(i = 1,2) are the elasticity moduli of raw materials in x and y
directions, respectively, Gg(i = 1,2,j = 2,3) are the shear moduli and
p° is the density of raw materials.

2.1. Governing relations

The relationship between stress (o;,0,,0,,03,0653) and strain
(€1, €2, 712,713, 723) tensors of shell-type structural elements made of
NHO materials in the framework of SDT are formed as follows [14]:

01 z z €1 ]

Yo Y, 0 0 0
) Yy, Y, 0 0 0 |2
onl=l0 0 ¥YZi 0o 0 ||lm 2

z

o3 0 0 0 Yss 07 713
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023 hasd FZ50

where
z z z
Y7 = L(i:l 2), YZ = by | veln e
1=y 2 T=vpvwy IT=vpyy 2 3

Y =05 Y55 =G Y =Gpy

in which v, .j=12) denote the Poisson ratios for NHO materials and
they are assumed to be constant and satisfies the condition v,, Ef| =
Vi E3,.

On the basis of the assumptions of the SDT, the 6;5(i = 1,2) can be
expressed by the rotation angles of the normal to the reference surface
x:(i =1,2) and the shear stress functions 711 as follows [10]:

o5 =1 (i =12) )

where 7; = %(i =1,2).
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Fig. 2. (a) Spherical, (b) hyperbolic-paraboloid shells, (c) panel, (d) plate under an external excitation ¢(r) and coordinate system.

The mathematical model of the stress functions corresponding to the
distribution of transverse shear stresses in the thickness direction is as

follows [10,11]:
7 ()

Two- and three-dimensional distributions of shear stress functions
of structural elements are presented in Fig. 3.

The strains (¢}, €,,7,,) for any point of shells made from NHO ma-
terials can be expressed by stresses (e}, e;, y?z) at the reference surface,
curvatures and rotation angles y;,(i = 1,2), in the context of nonlinear

()

Donnell-type shell theory and taking into account expression (4), as

follows [14,15]:

e
! 0*w ey
e Z_axz 1 E
0w 9
(223 =\|¢ — —ayz Izza_y (6)
2w a9y ox
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0xdy dy 0x
712



A.H. Sofiyev, F. Turan and N. Kuruoglu

0,9 4

¥

in which
S R T (2o
ox Ry 2 \ox
2
e = _w 1 ow (7a)
dy R, 2\ dy
Jv | du , dw dw
0 ox dy  0x dy
LY 12
z de z de
If:/ -l 1;:/ - —ld 7b)
0 023 z 0 G13 z
If (6) is introduced in (2), it will be:
oy 1
z = 0*w 9y
lel YIZZ 0 el_zﬁ +Ilz0—x
= = 0*w L0
oy | = YZZI YZZZ 0 ey — Za—y2 + IZ W (8)
= 0*w o1 ¢
0 0 YI|[y0 -2 + [P = 4 [F2=
664|712 zt)x@y Loy 2 ox
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The forces (T\,T5, T}y),(Q,,Q,) and moments (M, M,, M,) of
NHO structural elements are defined by the following integrals [15,16]:

h/2 h/2
(T, M;) =/ (L,2)oidz, (Q1, Qy) = /;,/2 (01> 001 ) dz,

n/2

(Typ M) = /h

—h

2 (C))
(1,2)o1,dz, (i = 1,2,k = 2,3)
2

By introducing the Airy stress function, ¢, the forces can be ex-
pressed as [15]:

e e g
T, 1,0, T),) =h| —, —,— 10
(T1. 1, 1) <ay2 ox2"  oxdy 10)
The dynamic stability and deformation compatibility equations of
double curved structures subjected to external excitation gq(x, y,7) and
considering viscous damping effect based on the Hamilton principle are
as follows [15]:

oM, . oM, PBw 0

— +p — — =0
ox dy Qitn 0x072 72 o072
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(b)

Fig. 3. (a) Two- and (b) three-dimensional distributions of transverse shear stress functions.
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where p, and p;(i = 1,2,3) denote coefficients of normal and rotary
inertia and are expressed as:

h/2 h/2

o =0 / m(@dz, py = p° / 22, (2)dz,
—h/2 —h/2 13)
h/2 h/2

pr=0" / zZIfny(2)dz, py = p° / zIiny(2)dz
—h/2 —h/2

We now substitute (8) and (10) into Eq. (9) and perform the
integration over the thickness of the shell with a double curvature. The
results of these mathematical operations are obtained the expressions
for the strains on the mid-surface, forces and moments as the functions
of the @, w, x, x,. The expressions for moments, forces and strains on
the mid-surface are substituted into Eqgs. (11) and (12) by considering
the relation (10), the following set of equations for the dynamic stabil-
ity and deformation compatibility equations for double curved shells
made of NHO materials with viscous damping under external excitation
q(x, y, ) are obtained:

Ly(@)+ Lip(w) + Li3(xy) + Lig(r2) =0

Ly (@) + Lyp(w) + Loz (1) + Lyy(x2) =0 a4
62
L3 (p) + L3p(w) + Laz(x1) + L3y(r2) + L3s(e, w) + q(x, y,7) = p, ﬁ
0w
2, -
+2&p, 97
L1 (@) + Lyp(w) + Laz(xy) + Laa(xn) + Lys(w, w) =0 (15)

where LG =12,...4j=12..5) denote nonlinear differential
operators and are given in Appendix A.
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3. Methods of solution

The NHO shell-type structural elements with a double curvature
under simply supported boundary conditions:
w=0, M{=0, =0, asx=0and x =1,
16)
w=0, My=0, yy =0, asy=0and y=1,
Thus, the functions w, y, and y, are sought in the following
form [10,23]:

w = w(r) sin(mx) sin(ny), x, = x,(z) cos(mx) sin(ny),

—_ a7
X2 = X»(7) sin(mx) cos(ny)
where w(r), 7;(z)(i = 1,2) are the time dependent functions, m = '7—1”
and n = %, in which (m, n) is a vibration mode.
The expressions (17) are substituted in the partial differential Eq.
(15) and the following expression for the ¢ is obtained depending on
the deflection and rotation angles functions:

@ = A cos(2mx) + A, cos(2ny) + Az sin(mx) sin(ny) (18)

where

—2 —\ 2 —2 —_N\ 2
A= (L), A= (2) .,
32Bph \m 32B, h \m

) — — 19)
A= 511»0 +52/}’1+53)(2
3=
BB+ (Byy + Byy + By)WR + Byt |
in which
. =2 2
01 = Bysm + (Byy + Bz — B32)m n? + BMn + R_ + R_
! (20)

—3 —D 2 -3
0y = —Bysm™ — (B5 + Bys)mn~, 63 = —(B,g + B33)m n— Bign.

Suppose that the excitation is unevenly distributed over the surface
of the shell as follows:
q(x,y, ) = gy sin(mx) sin(ny) cos (£27) 2D

where Q is the frequency and ¢ is the amplitude of excitation.
Taking into account (17), (18) and (21) and using the Galerkin
method to the system of Egs. (14), one gets,

kilil;} kfzdd}(zl + k0 + k7Y LW’ + k%) +kinZs =0,
7,
k§]d2+k;d2 +k21w+k1 w + ko +kix, =0, (22)
d2—
d - +2.*§p,—+k31w+k31 w +k32w + ka3 xy +kaaxo
—qocos (R271) =

where kij(i=1,2,3,j=1,2,3,4) are defined in Appendix B.

Analyzes show that inertia terms with the upper index r have very
little effect on the nonlinear vibration frequency values, so these terms
(22) are ignored from the set of equations. Then, », and ¥, functions
in the first and second equations of the system are expressed with the
w function and taken into account in the third equation of the Eq. (22),
the following nonlinear ordinary differential equation is obtained:

‘jibz” 25— + (k" V% + 0,70 + 0,00 — 030 c0s (Q7) = 0 (23)
T
where wé’lgT denotes the undamped linear frequency for NHO double

curved structures in the framework of SDT and is defined by:

ko1 k ko k ki1kyy — ko1 k
olin = [ 21 34 <k33 0k34 > 11ko3 — Ky 13] 24)
kys ) kpkyiz —kpkis

NL
0, = k§1 0, = k3y 0. = 1
1= s p=—, U3 = —,
Pt Py Pt
NL NL NL 25)
KNL — G NL _ ksakyy + <k34k22 _ k33> ki ko3 = kizky)
3 3l ka3 ka3 : kiakoz — kyzkoy
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The following initial conditions are used to solve the Eq. (23) [15,
16,19,23,29]:

w=w, and d—'::o when 7=0 (26)
where w is the initial deflection amplitude.

Nonlinearity causes the formation of a term containing cos(a)§i[’;TT)
for O(e?), which describes the small disturbance parameter. So, to
ensure that all terms of (23) are of the same order, we express 25‘;—?,
as the 251%, and 6;q,cos(27), as the &£2g,cos(2r), which can be
transformed to the following form:

((jj l;) +(w {;’ST)zw = -26%, ((11_1: - 55152 - 52§2E3 +€2gycos(Q7)  (27)

_0 o 6 64

=2, 5= 28)

2
&

For the solution of Eq. (27), the w is expanded into the series with
a small parameter using the new time scales as follows [16,29]:

5
w(r,e)= Y £w,(z, 7, 7) (29)

i=0
Here, 7; = ¢€'z(i = 0,1,2,...) denote new independent variables,
which 7, = 7 is a fast time characterizing the movements of linear
vibrations with natural frequency, 7, = er and 7, = &7 are slow
scales characterizing the amplitude and phase modulation in nonlinear
vibration.

The integer expansions of derivatives, which are used in the method
of multiple time scales, generally are written as [19,29]:
o

d _ i
a—%DI-S
i=

i D} +2eDyD; + (D} + 2Dy Dy) + -+
where
) 0 )
Dy=-—, Dj=— and D, = — 31
0% 9ry T ory 17 or, (81)

Lin

<pr 1S assumed to be O(¢?) and defined by:

For consistency the 2 — w

Q= a)L'"T + €29 (32)

where 9 is a detuning parameter that characterizes a small inconsis-
tency between the frequency values.

After substituting expressions (29) and (30) into Eq. (27), coeffi-
cients with same powers of ¢ are set equal to zero, and the following
equations are obtained for different orders:

€02 D2y + (ki) Wy = 0 (33)

2 _ _
: Dy + (wgipr) @) = —2Do Dy 1wy — /ﬁow(z) (€D)]

€2 DA, + Q31, = —2Dy D, W, — 2Dy Dy, — D?i, — 2&, Dyt =5
—20,wow; — 52@3) + G cos(w5 7o + 97))

Solving Egs. (33) and (34), yields the following expressions for w, and
w;:

W = A(rl,q)e"’”%rm + A(r), 1))e” 0§70 (36)
_ 0 — - Lin o Lin
W = —t <—2A(12)A(72) + L2 epediosirro 4 L g2 (o e 2’”’§Dr’0)
(wLin )2 3 3
SDT
(37)

where A(t,7,) and A(z;, 7,) indicate unknown complex and conjugate
functions. It should be emphasized that while w, is being found, it is
taken into account that W =0.
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Substituting the expressions (36) and (37) for w, and w; in Eq. (35),
the secular terms are set to zero:

—2
L 0A(1y) - — 106 —
2iorgpr L&A ) +(36, - —|2 A2 (1) A(ry)
07y 3 (a)Lm
SDT
—0.5gye"2 =0 (38)

The solution of Eq. (38) is sought in polar coordinates as follows:
A(1y) = 0.5r(1y)e!™) (39)

where r(r,) and ¢(r,) denote amplitude and phase of vibration.
By replacing (39) into (38), the following equations are obtained
when the real and imaginary parts are set to zero separately:

or - .
— ==¢r+ — siny 40)
9% 1 Zwé’[’;T

99, (wkin )? = 108, r
v _ 9 2 Psor L2 0 cosy (41)
I 24 (a’éigr ) ’ 2rw§'ll'_")T

where y = 97, — ¢ denotes the new phase angle.

From the conditions a_:; =0 and ;T’Z =0, in the presence of steady-
state motions, the following expression for the detuning parameter is
obtained:

5 05
q =2
'91,2=Uf21 %—é (42)
4(a)SIDnT) f?
where
2 106° 2
h - 1 -2 _ 9 r
v= - 30, — L,y =—, f=— (43)
L : 2 01 2
8w spr 3 (wgipy) h h

Substituting expression (42) into (32), the damped nonlinear forced
vibration frequency-amplitude dependence for NHO shell-type struc-
tural elements with a double curvature at primary resonance in the
framework of SDT, we obtain:

> 0.5
NLfore; _ Li 2}, 42 4o1 22 C_
Qe =ogppte qof £ Tzz—fl ,i=1,2) (449
4 (wSDT) f

Here, the plus sign corresponds to the non-linear forced-1 (abbreviated
forcy) frequency component, and the negative sign corresponds to the
non-linear forced-2 (abbreviated forc,) frequency component.

From the expression (44), the ratio of the nonlinear forced fre-
quency to the linear frequency with damping is easily found as:

QNLforc‘- 2 52 ) 0.5
S =1+ o | —— o — g | ti=12) (45
@spr @spr 4 (ki )" 12

The dependences (44) and (45) can be used for NHO shell-type
structural elements such as spherical and hypar shells, panels and plates
with viscous damping in the framework of SDT, as R; = R,, R, = —R|,
R, - o and R| - o, R, — oo, respectively (see, Fig. 2a-2d).

In a particular case, the frequency of nonlinear forced vibrations
and the ratio of nonlinear forced vibrations to the linear frequency for
NHO structures without damping in the scope of SDT can be found from
dependences (44) and (45), at £ =0

In a particular case, the backbone curve associated with undamped
free vibrations (_QéV g#b) for NHO shell-type structural elements with a
double curvature within SDT can be found from expression (44), when
go=0and £=0.

Dependences (44) and (45) can be used in the framework of CST,
as the influences of transverse shear deformations are not considered
into account in basic relationships. In this case, the symbols use CST
instead of SDT.
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Table 1
Comparison the QNI /wki — ratio for HO cylindrical shell within GST with the
Ref. [19].

f Sheng and Wang [19] Present study

0.5 1.0017 1.00185

1.0 1.0066 1.0741

1.5 1.0149 1.0166

2.0 1.0265 1.0296

2.5 1.0414 1.0463
Table 2

Comparison the linear vibration frequencies of homogeneous plates with various
orthotropy ratios in the framework of SDT with the results of Thai and Kim [30].

I/ E% JEY, — 1,/h Thai and Kim [30]

Present study

10 20 10 20
5pr
10 8.5241 11.0551 8.5282 10.9871
0.5 20 9.1141 12.4009 9.1168 12.3802
10 9.5628 11.9334 9.5668 11.7472
1.0 20 10.2349 13.2676 10.2379 13.2029
10 14.9934 16.4739 15.1724 16.4735
2.0 20 16.5030 18.4742 16.5746 18.4795

4. Numerical applications

Firstly, the accuracy of present formulas is confirmed by compar-

isons and then numerical analyzes on the Q% =/ and QN7 jgLin

SDT SDT SDT
(i = 1,2) for NHO shell-type structural members are presented in
comparison with the appropriate results obtained in the framework of
classical shell theory.

In order to verify the present results, QN2 /wli ~for HO cylin-
drical shell within CST are compared with Ref. [19] and presented
in Table 1. The nonlinear backbone frequency QNP is obtained by
writing ¢ =0, gy = 0 and #; = 1(/ = 1,2) in (42), when the influences
of transverse shear deformations are not considered. The following
parameters are used for the comparison: /; = 0.4,/, = 1.5748R,,R; —
o, Ry = 100 h, E?l =2x 10" Pa, EY, = GV, = EY /20, vi; = 02,
and p, = 7800 kg/m". It should be emphasized that at R,/h = 100, the
QNL /g5Lin ratios within the CST and SDT are approximately the same.
The comparison of the magnitudes for QNP /ol ratio, which are
presented in Ref. [19], with the magnitudes obtained for a particular
case in our study, shows that the results are in good agreement (see,
Table 1).

In the second comparison, the results obtained in the study of Thai
and Kim [30] for linear vibration frequencies of HO plates with various
orthotropy ratios in the framework of SDT are compared with our
results. Considering 4, = 0,R;, — oo, R, — oo in the expression
(24) in our study, the expression for linear vibration frequencies of
HO plates is obtained in the framework of SDT. In the comparison,
the E?l / EO2 ratio changes and the other HO material properties are as
follows: G, /ES, = G),/EY, =05, G3,/EJ, =0.2,v;, =0.25,° = 1. The
variation of geometric parameters is shown in Table 2. The following
formula is used for the nondimensional frequency in a comparison:

~Lin  _ 1_1
Dgpr = @

confirms the acctzlzracy of the expression obtained for the frequency in
the framework of SDT in our study (see, Table 2).

In numerical analysis, various shell-type structural elements made
of graphite/epoxy with the following material properties are used
(except for Figs. 5 and 6) [11]:

0 .
£-. The very good agreement of the obtained results
E

0 _ 0 _ 0 _ 0 _
E), =137.9 GPa, EJ, =8.96 GPa, GY, =G, =7.1 GPa,
GY, =621 GPa, vj, =03, vy = v, E0, /E),,
¥ =1.45x%10% (kg/m?)

The non-homogeneity functions vary exponentially as follows: #;(z)
= eti@*1/2(j = 1,2), where y;(i = 1,2) are the coefficients of variation
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Fig. 4. (a) Two- and (b) three-dimensional distributions of Young’s modulus (Elfl).

of elasticity moduli and density, those vary in the range of 0 < y; < 1,
while the case of y; = 0 corresponds to HO material. By using Maple 14,
(a)two- and (b) three-dimensional distributions of the Young’s modulus
(Elfl) are illustrated in Fig. 4. Here X = x/I/; is the dimensionless
longitudinal coordinate. Variations of other mechanical properties with
respect to the thickness coordinate can be plotted similarly

The nonhomogeneity types of material properties of shell-type struc-
tural elements are designated by symbols as follows: (u;, ;) = (1,0)
or NHO-1 and (y;, 4p) = (+1,+1)or NHO-2. The damping coefficient
is taken into account as & = & " [19,31]. In all calculations and
analyzes performed below, the main vibrational mode (m,n) = (1,1)
has been considered.

The variations of damped and undamped nonlinear forced vibration
frequencies and undamped backbone frequency of HO and NH or-
thotropic (NHO-1) spherical shell and hypar shell against the f within
(a) shear and (b) classical theories are illustrated in Figs. 5 and 6 for
different orthotropy ratios E?, / E2, = 10,15,20. The other parameters
are taken into account: GY,/E), = GY%,/EJ, = 0.5, G3,/EJ, = 02,
vip = 025, 0% =1, Ry/l; = 3, I1/l, = 1, I;/h = 10, q; = 1.388 x 107
(Pa/m), ¢ = 0 and & = 0.05. As shown in Figs. 5 and 6, due to
the rise of f, QNLfore2 and QNI of shallow shells with and without
damping increment, while QVE/o¢1 first reduces and then increment.
The damped and undamped nonlinear forced vibration frequencies and
backbone frequency of shallow shells reduce due to E?l / Egz increment
from 10 to 20. The undamped nonlinear forced vibration frequencies
and backbone frequency of spherical shells are more significant than
those of hypar shells at f > 0.8. The nonlinear forced vibration and
backbone frequencies of hypar shells are less than those of spherical
shells when the viscous damping is taken into account. Due to the
increase of f, the effect of shear deformations on the QVNL/o¢> and
QNL for shallow shells without damping decreases, while it first raises
to its maximum value and then diminishes for the forc, frequency.
For example, due to the rise of f from 0.16 to 1.60 at EY /EJ, =
20, the influence of shear deformations on the QNLforez and QNLbb
for spherical shells originating from NHO-1 decreases (12.36%) and
(5.98%), respectively. At the same time, it first increases by (2.29%)
and then diminishes by (3.97%) for the QNL/o<1, The effect of shear
deformations on QNL/o¢2 and QNLb for the hypar shell originating
from NHO-1 diminishes (18.32%) and (10.57%), respectively, while it

first rises by (2.2%) and then reduces by (7.69%) for the QNL/ort for
hypar shells. The influence of shear deformations on damped and un-
damped nonlinear forced vibration frequencies and backbone frequency
of shallow shells originating from NHO-1 rises due to the orthotropy
ratio increment. For example, due to the rise of E?l / Egz from 10 to 20
at f = 0.16, the effect of transverse shear deformations on QNL/orei,
QNLforey and QNLP for NHO-1 originating spherical and hypar shells
with and without damping increase (3.5%), (9.8%), (6%) and (3.4%),
(10.2%), (6.1%), respectively.

Due to the increase of the EY, / EJ, ratio, the effect of the NHO-1
profile on the @NL/or¢1 for shallow shells with and without viscous
damping decreases, whereas it rises for QVL/o¢2, The effect of the
NHO-1 profile on the backbone frequency of shallow shells remains
constant. For example, due to the rise of E?l/ Egz from 10 to 20 at
f = 0.16, the influence of the NHO-1 profile on the @QNL/o¢ for
spherical and hypar shells under SDT diminishes by (3.2%) and (2.8%),
whereas raises by (13.9%) and (15.5%) for QN /o2 respectively.

The viscous damping effect on forced vibration frequencies for shal-
low shells decreases as the orthotropy ratio increment. For example,
as E?l/ Egz increment from 10 to 20, the influence of damping on
nonlinear forced vibration frequencies for the spherical shell consisting
of raw material diminishes (1%) and (1.8%) at f = 0.8, while it
for NHO-1 profiles reduce (1%) and (1.1%) within SDT and CST,
respectively at f = 0.48. Similarly, the damping influence on forced
vibration frequencies of hyperbolic-paraboloid shells originating from
raw material and NHO-1 material diminishes (0.6%) in the framework
SDT and CST, at f =0.8.

Figs. 7 and 8 show the variation of nonlinear forced vibration and
backbone frequencies four different structural elements such as HO
and NHO-1 spherical and hypar shells, cylindrical panels and plates
depending on the increase of f for various damping coefficient ¢,
within (a) SDT and (b) CST. The numerical data used in the drawing
of Figs. 7 and 8 are as follows: R,/l, = 1,1,/l, = 1,1;/h = 20,q, =
1.0476 x 107, & = 0,0.06,0.07,0.08. While the QNL/oc1 and QNL% for
spherical shell decrease, the QNL/o first increases and then reduces
with the increasing of f, as the damping coefficient is zero. While
the QNLSorer and QNLb for the spherical shell with damping decrease
depending on the increase of f, the QNL/o¢2 increases. Due to the
increase of f from 0.07 to 0.75, QNL/ore2 and QNI increase for the
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Fig. 5. Variation of nonlinear forced vibration frequencies of HO and NHO-1 spherical shells with and without damping against the f within (a) shear and (b) classical theories.

hypar shell, cylindrical panel and plate, in contrast, QV¥L/?1 reduces
to its minimum value and then raises, when damping is not taken into
account. In the presence of damping, QNL/¢2 and QN increase,
while the @NLfore decreases, depending on the rise of f. For the

all-structural elements, the undamped QNL/o¢1 are larger than the

undamped QN L/o1 | and vice versa for QNL/or¢2 Backbone frequencies
in undamped and damped cases are equal to each other.

The forced vibration and backbone frequencies of the spherical shell
and the cylindrical panel are higher than the frequency of the plate,
whereas those of hypar shell are less than the frequencies of the plate.
Depending on the increase of damping parameter ¢, the difference
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Fig. 6. Change of nonlinear forced vibration frequencies of HO and NHO-1 hyperbolic-paraboloid shells with and without damping against the f within (a) shear and (b) classical

theories.

between QNL/oci decreases, while between QVNL/or¢ increase in the

spherical shell and cylindrical panel, while it remains constant in the

hypar shell.

The influence of damping on nonlinear forced vibration frequencies

of four structures increases with the increase of f. For example, due to
the rise of f from 0.07 to 0.27 at & = 0.06, the damping effect on
the forced vibration frequencies of the HO- spherical shell increases
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Fig. 7. Variation of nonlinear forced vibration frequencies of HO structures versus the f for various damping coefficient & within (a) shear and (b) classical theories.

(2.8%) and (3.5%), while it increases (0.8%) and (1%) for the HO-
hypar shell and HO-plate, (1.2%) and (1.4%) for the HO-cylindrical
panel within shear and classical theories, respectively. The effect of
damping on frequencies of structural elements increases depending on
the rise of ¢,. For instance, due to the increase of &, from 0.06 to 0.08 at
f =0.11, the influence of damping on the QN L/7¢1 and QN L/ for the

10

spherical shell consisting of the NHO-1 profile within SDT raises (1.8%)
and (2.19%), respectively. It rises (0.5%) and (0.8%) for QNL/ora
and QNL/oe2 for the hyperbolic-paraboloid shell and plate, and it
raises (0.7%) and (1.1%) for QNL/ore1 and QNLfore for the cylindrical

panel, respectively. The damping influence for CST is more pronounced
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Fig. 8. Distribution of nonlinear forced vibration frequencies of NHO-1 structural members versus the f for various damping coefficient ¢ within (a) SDT and (b) CST.

by (0.4%) for the spherical shell and by (0.15%) for the hyperbolic-
paraboloid shell, cylindrical panel, and plate than the damping effect
in the SDT.

While the effect of the transverse shear deformations on the non-
linear forced vibration frequencies of structural elements decreases for
QNLforet it raises for QNVL/o2due to the increase of &;. For example,
as ¢, increment from O to 0.08, the change of the transverse shear
deformations effect on forced frequencies for the NHO-1 structural
elements such as for spherical shell is (0.6%) at f = 0.11, for the hypar

shell and plate is (2.6%) at f = 0.27 and for the cylindrical panel is
1%) at f = 0.19.

11

While the effect of NHO-1 profile on the QNL/o1 for structural
elements decreases, it increases for 2L/ due to the rise of &,. For
instance, due to the increase of & from O to 0.08, the change of the
NHO-1 profile effect on the QNL/oret and QNLfore2 for the spherical
shell is (2.8%) and (3.3%) at f = 0.11, for the hypar shell and plate
it is (5.3%) and (6.1%) at f = 0.27 and for the cylindrical panel it is
(3.1%) and (3.6%) at f = 0.19, respectively within CST. The effect of
the NHO-1 profile on the forced frequencies in the SDT is lower than
in the CST by (0.6%) for a spherical shell and (0.2%) for a hypar shell,
cylindrical panel and plate.
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Fig. 9. Variation of undamped/damped nonlinear forced vibration frequencies of HO and NHO-1 spherical shells versus f for different g, within (a) shear and (b) classical theories.

Figs. 9 and 10 show the change of the undamped/damped non-
linear forced vibration and backbone frequencies of HO and NHO-1
orthotropic spherical and hyperbolic-paraboloid shells depending on
the amplitude of f for various g, within (a) SDT and (b) CST. The
following loading, damping and geometric parameters are used: ¢, =
3x108,3.3x108,3.6 x 108, Ry /I, = 1,1/l = 3,1;/h = 10, &, = 0 and

12

& = 0.08. As shown in Figs. 9 and 10, depending on the increase of
f, the undamped and damped QVNL/o¢1 and QN for shallow shells
raise, while the undamped and damped QNL/o< it first reduces to
its minimum value and then raises. As the undamped and damped
QNLJorer of the shells increase due to increment of g, whereas the
QNLforey diminish. The undamped forced vibration frequencies of the
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Fig. 10. Variation of undamped/damped nonlinear forced vibration frequencies of HO and NHO-1 hyperbolic-paraboloid shells versus f for different g, within (a) shear and (b)

classical theories.

hyperbolic-paraboloid shell are more pronounced than the undamped
forced vibration frequencies for the spherical shell, at f > 1.12, vice

versa in the damped case.

Due to the increase of f from 0.32 to 3.2, the effect of shear

deformations on the undamped QVNL/o¢1 and QN for the spherical
shell raises, while it first reduces to its minimum value and then raises
for the undamped Q7772 While the influence of shear deformations

13

on the undamped Q¥Lfo¢2 and QN1 for hyperbolic-paraboloid shell
diminishes, it first increases to its maximum value and then reduces for
undamped QN Lfore1, The influence of shear deformations on QNLforal
for shallow shells in the undamped and damped cases diminish, at the
same time, it raises for QL2 when ¢, increases for fixed f. As the
qo increases from 3 x 108 to 3.6 x 108, the effect of shear deformations
on the undamped and damped QNL/o¢ for HO-spherical and HO-
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Fig. 11. Distribution of undamped/damped nonlinear forced vibration frequencies to linear frequency ratios of NHO-2 spherical shells versus f for different R,/!/, within (a) SDT

and (b) CST.

hyperbolic-paraboloid shells increases (1.8%) and (2.8%), respectively,
whereas, it for QVL/o¢1 js less than (0.5%) at f = 0.32.

Due to the increase of g, from 3 x 10% to 3.6 x 10%, the effect of
NHO-1 profile on the @NL/o¢ for spherical and hypar shells in the
undamped and damped cases within CST diminishes by (1.8%) and
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(1.9%), respectively, whereas it raises by (%7.5) and (%10) for the
QNLforer frequencies, at f = 0.32.

The damping effect on nonlinear forced vibration frequencies of
shallow shells diminishes due to the rise of g, from 3 x 10® to 3.6 x 108.
For instance, due to the increase of g, from 3 x 10% to 3.6 x 10® at f =
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Fig. 12. Distribution of undamped/damped nonlinear forced vibration frequencies to linear frequency ratios of NHO-2 hypar shells versus f for different R,//, within (a) shear

and (b) classical theories.

1.12, the damping effect on the nonlinear forced vibration frequencies
of the spherical shell consisting of the HO profile decreases (0.85%)
and (1.2%), while this influence for the HO- hyperbolic-paraboloid
shell diminishes (0.6%) and (1.7%) within shear and classical theories,

respectively.
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In Figs. 11 and 12 are presented the variation of nonlinear forced
vibration frequency to linear frequency ratios of the NHO-2 spherical
and hypar shells with and without damping within two shell theories
versus f for different R,/I, ratio. The following data is used for the
calculations: R,/l; = 1,1.5,2,1;/l, = 1,I;/h = 10,qy = 3.2 x 107,
& 0 and ¢ 0.03. Due to the increase of f, the undamped
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and damped QNL/ore jplin and QNI /@l ratios rise, whereas the
QNLfore jyLin ratio first reduces to its minimum value and then raises
for the hypar shell. Undamped QN E/or¢1 /oLin and QN /yLin ratios for
spherical shell diminish, whereas QN L/o<2 /pli" ratio first increases to
its maximum value and then decreases, as f increment at R, /I, = 1,.
Due to the increase of f, as R,/I; > 1, the undamped and damped
QNLforey jyLin and QNI JpLin ratios of the spherical shell rise, while
the @NLforer /lin frequency ratio first diminishes and then incre-
ment. Due to the rise of the R,/I, ratio from 1 to 2, the undamped
and damped QNL/o¢t Jolin and QNI /@l ratios of spherical shells
decrease, while QNLfore2 /plin ratio first diminishes to its minimum
value and then increases. The undamped and damped forced vibra-
tion and backbone frequency ratios of the hyperbolic-paraboloid shell
raise.

Depending on the increase of f, the effect of shear deformations
on the undamped and damped forced vibration frequency ratios for
shallow shells first diminishes to its minimum value and then increases,
at the same time, this effect on the backbone frequency ratios rises
for fixed R,/I,. For example, due to the increase of f from 0.12
to 2.36 at R,/l;, = 1, the influence of shear deformations on the
undamped QNL/orer jplin and QNLfore jplin ratios of the spherical
shell firstly diminishes by (1.64%) and (1.95%) then rise by (11.94%)
and (11.79%), respectively. Also, the shear deformations effect on the
undamped backbone frequency ratio raises by (12.3%). The shear defor-
mation influence on the undamped QNL/o¢1 Jolin and QNLSorex Jglin
ratios of the hypar shell firstly decrease by (6.56%) and (20.2%)
then increase by (6.68%) and (5%), respectively. Besides, the shear
deformation effect on the backbone frequency ratio rises by (7.2%).
When R,/I; = 1.5 and f = 1.4, the influence of shear deformations on
the undamped and damped QN L/l /ol ratios of the spherical shell
is (2.5%) and (2.1%), respectively. At the same time, this effect on the
undamped and damped QNL/o¢2 /plin ratios are (3.4%) and (3.8%),
respectively.

Due to the increase of R,//, from 1 to 2, the shear deformations
effect on undamped and damped forced vibration frequency ratios of
the spherical shell raises in the range of 0.12 < f < 0.68, while
it decreases at f > 0.76. The influence of shear deformations on
the undamped and damped QNL/o¢1 /ol ratios of the hyperbolic-
paraboloid shell rise, while it diminishes for the undamped and damped
QNLfore, jolin ratios. Due to the rise of R,/I; from 1 to 2, the vari-
ation of the shear deformation effect on the undamped and damped
backbone frequency ratios of shallow shells is insignificant. For in-
stance, depending on the rise of R,/I, ratio from 1 to 2 at f =
0.12, the effect of shear deformations on the undamped and damped
QNLforey jplin and QNLforex jplin ratios of the spherical shell incre-
ment (2.6%) and (7.8%), respectively. Due to the increase of R,/I,
ratio from 1 to 2 at f = 2.2, the influence of shear deformations
on undamped and damped QN1 /plin ratios for the hypar shell
raises (1.12%) and (2.5%) respectively. At the same time, it diminishes
(0.4%) and (1.6%) for the undamped and damped QN L2 /L ratios,
respectively.

Due to the rise of f from 0.12 to 1.0, when R,/l;, = 1, the
damping effect on QNL/o¢ /@l for the spherical shell raises (1.7%)
and (2.03%), whereas this effect in the hypar shells raises (0.6%) within
shear and classical theories, respectively. The damping influence on
forced frequency ratios for the shallow shell decreases with increasing
of the R,/!/, ratio from 1 to 2. For instance, due to the increase of
the R,/I, ratio from 1 to 2 at f = 1, the effect of damping on
QNLforey jyLin for shallow shells diminishes about (1.1%) and (0.2%),
respectively.

5. Conclusions
The damped nonlinear forced vibration behaviors of NHO structural

elements at primary resonance in the framework of SDT is investigated.
After mathematically modeling the mechanical properties of double
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curved structural systems composed of NHO materials, the nonlinear
basic partial differential equations are derived based on nonlinear fun-
damental relationships. In the next step, these equations were reduced
to ordinary differential equations containing second and third order
nonlinearities with the Galerkin procedure, and the forced vibration
frequency—amplitude dependence in the main resonance is found by
solving them with the multi-scale method. After testing the correctness
of the proposed methodology, the effects of inhomogeneity, transverse
shear deformations, anisotropy and damping on the nonlinear forced
vibration frequencies for various structural elements are investigated
in detail, both qualitatively and quantitatively.
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