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Abstract The free vibration (FV) and dynamic stability (DS) analysis is presented for functionally graded
viscoelastic plates (FGVPs) under compressive load and resting on elastic foundations (EFs). Winkler and
Pasternak elastic foundation models are used as elastic foundations. The basic equations of FGVPs interacting
with EFs are derived using the concepts of Boltzmann and Volterra. An analytical method for studying the
DS and FV of FGVPs interacting with EFs is developed using the integro-differential equations. To solve the
current problem, the Galerkin and the Laplace method are used. A technique for the analysis of DS and FV
of FGVPs on the EFs is developed. To confirm the proposed formulation, the results are compared with other
available solutions. Finally, the influences of EFs, volume fractions and rheological constants on the critical
times and frequencies depending on the geometrical characteristics and loading parameters are examined.

1 Introduction

Recently, problems related to the strength, vibration and dynamic stability of plates from compositematerials of
a new generation, which are themain bearing elements of constructions used in aviation and rocket engineering,
mechanical engineering and ships, have been of great interest. As is known, composite materials generally
have heterogeneous and viscoelastic properties [1]. The use of new composite materials in engineering practice
requires the design and construction of strong, lightweight, reliable structures, the development of mechanical
models and mathematical methods that take into account the actual properties of these materials. The general
problems of the theory of linear viscoelasticity, that is, the problems of constructing linear and nonlinear
hereditary relations between stresses and strains, the reciprocity of such relations, the methods of analytical
creep representation and relaxation kernels, and the methods for solving static and dynamic problems are
considered in [2–4]. The first attempts to solveDS and FV problems of homogeneous viscoelastic structures are
described in refs. [5–8]. These studies and some other works after these publications [9–18] on the viscoelastic
behavior of homogeneous structures were considered as the Voigt differential model or the integro-differential
Boltzmann–Volterra model using various concepts, constitutive laws and different kernels. An overview of the
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solutions of FV and DS problems of homogenous viscoelastic structures (HVSs) in various formulations is
given in ref. [19].

A new class of advanced inhomogeneous composite materials was developed, consisting of two or more
phases with different material properties and a continuously changing composition distribution, called func-
tionally graded materials (FGMs). One of the first studies on the determination of FGM properties was done by
Ostoja-Starzewski et al. [20]. The study [20] presents a method based on micromechanics for treating FGMs
and for calculating effective macroscopic properties, which require processing of several length scales: a thin
interfacialmicrostructure, itsmesocontinuous representation, the fiber size and themacroscale level. Compared
to conventional materials, FGMs have great potential in many areas of technology [21–23]. The mechanical
properties of FGMs are often represented in a power-law form [24–27] and in a exponentially graded form
[28,29]. FGMs may exhibit time-dependent behavior when used under certain operating conditions. To fully
utilize the potential of FGMs, their time-dependent behavior needs to be modeled. A simple model for deter-
mining time-dependent behavior is a viscoelasticity model. Currently, some studies have been made on the
viscoelasticity theory of functionally graded viscoelastic (FGV) structural elements [30–33]. Based on this
fundamental knowledge, some studies have been published on the problems of the static and dynamic behavior
of FGV structural elements. Mao et al. [34] examined creep buckling and post-buckling analysis of laminated
piezoelectric FGVPs. Zenkour [35] presented an analysis of FGVPs using various theories and Illyushin’s
approximation method. Shariyat and Nasab [36] investigated the low-speed influence of FGVPs, using the
Mori-Tanaka micromechanical model. Barretta et al. [37] solved the problem of torsion of FGV nanobeams
using the Laplace method. Yang et al. [38] presented a modified Fourier–Ritz solution for vibration and damp-
ing analysis of FGVPs. Deng et al. [39] studied the stability of FGV tubes using the wave propagation method.
Li et al. [40] presented nonlocal vibration and stability in the parametric resonance of an axially moving vis-
coelastic piezoelectric nanoplate. Sofiyev [41,42] solved the dynamic the stability of viscoelastic cylindrical
shells made of FGMs and heterogenous orthotropic materials with different initial conditions.

In many engineering applications, since the structural members made of conventional and new composite
materials are in contact with various elastic and viscoelastic media, these media may have significant and
inevitable effects on the FV and DS behavior of structural components. The various foundation models and
their effects on the behavior of structural elements are found in the fundamentalworks [43–45]. The viscoelastic
structural elements in contact with various elastic foundations are widely used in modern technologies and
represent serious technical problems in the design. The solution of such problems motivates many researchers
to examine the behavior of FGV structures in contact with various types of EFs. Zenkour et al. [46,47]
presented bending analysis of FGV beams and plates resting on the PEF. Shariyat and Alipour [48] analyzed
FV and damping effect of FGV plates with variable thickness on the PEF. Hosseini et al. [49] studied the
forced response of a viscoelastic piezoelectric beam on the nonlinear EFs under external harmonic excitation.
Sobhy and Zenkour [50] investigated the influence of a magnetic field on the thermomechanical buckling and
vibration of viscoelastic sandwich nanobeams with reinforced CNT face sheets on the viscoelastic substrate.
Liu et al. [51] investigated the vibration of FGV magneto-electro-porous nanobeams on the visco-PEF. Deniz
et al. [52] studied elastic foundation effects on the frequency parameter of FGM shells in the framework
of SDT. Haciyev et al. [53] studied vibration inhomogeneous with spatial coordinate’s elastic plates on the
inhomogeneous viscoelastic foundation.

A wide literature review shows that dynamic stability and vibration of FGVPs on EFs have not been
sufficiently studied so far. The purpose of this study is to build models and conduct studies on dynamic
stability and vibration of FGVPs resting on WEF and PEF. The mechanical behavior of the plate material is
described by the viscoelastic bodymodel, which is based on theBoltzmann–Volterra principle. The relationship
between stress and strain obeys the linear Volterra–Feucht equation. To solve the current problemGalerkin and
Laplace methods are used. The practical value of the study is that the developed models and methods allow
implementing a qualitatively new approach when designing FGVPs interacting with EFs, reducing the time
spent on natural and numerical experiments, and in some cases replacing them with analytical estimates.

2 Modeling of the problem

The schematic diagram of the FGVP subjected to the compressive load P and resting on EFs with mean length
a, width b and thickness h is presented in Fig. 1. The referred coordinate system (Ox1x2x3) is in the reference
surface of the FGVP and its origin is located at the left corner of the rectangular plate. The displacements
U1,U2 and U3 are in the direction of the axes x1, x2 and x3, respectively. Let � be the airy stress function for
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Fig. 1 FGVP on the Pasternak elastic foundation with coordinate convention

the stress resultants defined by (n11, n22, n12) =
(
h ∂2�

∂x22
, −h ∂2�

∂x1∂x2
, h ∂2�

∂x21

)
. It is also assumed that the normal

stresses acting on the reference surface are negligible compared to other force components.
The effective material properties Pf of the FGVPs are defined as [22]

Pf = P0
(
P−1T

−1 + 1 + T P1 + T 2P2 + T 3P3
)
, (1)

where Pi , i = −1, 0, . . . , 3 are the coefficients of temperature T (K).
The effective properties of FGMs based on the Voight model are expressed as follows:

P̄ =
∑
i=1

PiVi , (2)

where P̄ is the generic material property, P1 and P2 are the properties of ceramic and metal, respectively, and
the volume fraction of the ceramic (or metal) phase is defined with the inverse quadratic relation

V (x3) = 1 −
(
1

2
− x3

h

)2

(3)

It should be emphasized that if the volume fraction of the ceramic phase is V (x3), the volume fraction of
the metal phase becomes 1 − V (x3) or vice versa [27].

Based on the aforementioned rule of mixture, the effective material properties of FGMs are written as a
function of the thickness coordinate [22–27]:

(a) If the lower surface is ceramic-rich, the effective material properties of FGMs are expressed as

E f = (E1 − E2)V (x3) + E2, ν f = (ν1 − ν2)V (x3) + ν2, ρ f = (ρ1 − ρ2)V (x3) + ρ2; (4a)

(b) If the lower surface is metal-rich, the effective material properties of FGMs are expressed as

E f = (E2 − E1)V (x3) + E1, ν f = (ν2 − ν1)V (x3) + ν1, ρ f = (ρ2 − ρ1)V (x3) + ρ1, (4b)

where E1, E2, ν1, ν2 and ρ1, ρ2 are elasticity modulus, Poisson’s ratio and density of ceramic and metal
surfaces of FGMs, respectively. Additional information on the FGM profiles is provided [20–29].

Some researchers used an exponential function to describe the effective material properties of FGMs as
follows [28,29]:

(a) If the lower surface is ceramic-rich:

E f = E2e

(
1
2+ x3

h

)
ln

(
E1
E2

)
, ν f = ν2e

(
1
2+ x3

h

)
ln

(
ν1
ν2

)
, ρ f = ρ2e

(
1
2+ x3

h

)
ln

(
ρ1
ρ2

)
.

(5a)

(b) If the lower surface is metal-rich:

E f = E1e

(
1
2+ x3

h

)
ln

(
E2
E1

)
, ν f = ν1e

(
1
2+ x3

h

)
ln

(
ν2
ν1

)
, ρ f = ρ1e

(
1
2+ x3

h

)
ln

(
ρ2
ρ1

)
.

(5b)

In the analysis section, it will be indicated which of the expressions (4a), (4b), (5a) and (5b) is used in
tables or comments in order to understand the type of FGM.
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2.1 The governing equations

The dynamic stability and compatibility equations of FGVPs resting on the PEF are [1,41,53]:

∂2m11

∂x21
+ 2

∂2m12

∂x1∂x2
+ ∂2m22

∂x22
− P

∂2U3

∂x21
+ K (U3) = ρ̄ f

∂2U3

∂τ 2
, (6)

∂2e11
∂x22

+ ∂2e22
∂x21

− ∂2γ12

∂x1∂x2
= 0, (7)

where mi j (i = 1, 2) are the moment components, τ is the time, e11, e22, γ12 are the strains in the reference

surface, and ρ̄ f =
h/2∫

−h/2
ρ f dx3. Here K (U3) is the differential operator that defines the effect of the PEF on

the plates and is given in the following form:

K (U3) = −kwU3 + kp

(
∂2U3

∂x21
+ ∂2U3

∂x22

)
(8)

in which kw (in N/m3) is the modulus of the WEF and kP (in N/m) is the shear modulus of the PEF. When
kP = 0, the PEF is transformed into the WEF [43–45].

In this study, it is assumed that the Kirchhoff–Love hypotheses are valid and the protection of isotropy is
given throughout the deformation process. The relationship between stresses and strains for FGVPs using the
Boltzmann–Volterra principle takes the form [1,42]

σ1 = E f

1 − ν2f
(1 − R∗)

(
ε1 + ν f ε2

)
, σ2 = E f

1 − ν2f
(1 − R∗)

(
ε2 + ν f ε1

)
,

σ12 = E f

2(1 + ν f )
(1 − R∗)γ12, (9)

and R∗ is the integral operator with the relaxation kernel R(τ − t) [1,3,4]:

R∗ [
(τ)] =
τ∫

0

R(τ − t)
(t)dt (10)

At τ → 0, the resistance of the FGVPs tends to that of ideal FG elastic plates.
The force and moment components are found from the following integrals [1,22]:

(
ni j ,mi j

) =
h/2∫

−h/2

σi j [1, x3] dx3, (i, j) = (1, 2). (11)

Substituting Eq. (9) into the integral (11) and resulting relations into Eqs. (6) and (7), and performing some
manipulation, the system of integro-differential equations for the FGVPs resting on the PEF is obtained:

(L11� + L12U3)
(
1 − R∗) + L13U3 = 0,

(L21� + L22U3)
(
1 − R∗) = 0, (12)

where Li j (i, j = 1, 2, 3) are differential operators, which are given in Appendix A.
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3 Solution of governing equations

Let the edges of the FGVP be simply supported; with the use of the Galerkin method, the solution of Eq. (12),
satisfying the boundary conditions of the problem, will be sought in the form [1,53]:

U3 = f1(τ ) sin (λ1x1) cos (λ2x2) , � = �1(τ ) sin (λ1x1) cos (λ2x2) , (13)

where f1(τ ) and �1(τ ) are time dependent unknown functions, λ1 = mπ
a and λ2 = nπ

b in which m and n are
half-wave numbers in the longitudinal and transverse directions.

Substituting (13) into the system of equations (12), performing theGalerkin procedure and removing�1(τ )
from the system, the following integro-differential equation is obtained:

ρ̄ f
d2 f1(τ )

dτ 2
+ [

D
(
1 − R∗) + kw + kp

(
λ21 + λ22

) − Pλ21
]
f1(τ ) = 0, (14)

where

D = u3λ
4
1 + 2 (u4 + u6) λ21λ

2
2 + u3λ

4
2 − u2λ41 + 2 (u1 − u5) λ21λ

2
2 + u2λ42

v1λ
4
1 + (2v2 + v5) λ21λ

2
2 + v1λ

4
2

× [
v4λ

4
1 + (2v3 − v6) λ21λ

2
2 + v4λ

4
2

]
. (15)

To solve Eq. (14), the initial conditions are defined as follows:

f1(0) = f10 , f ′
1(0) �= f11 , f ′′

1 (0) = 0, as τ = 0. (16)

The Laplace transform is a powerful method for solving linear problems inmathematical physics, including
problems of the linear theory of viscoelasticity. To solve Eq. (14), we will use this method. Let’s convert Eq.
(14) with the Laplace transform as follows:

F1(ξ) = (ξ + α) (ξ f10 + f11)

ξ3 + αξ2 + ϑ (1 − υ) ξ − ϑα
(
υ − kwp

) , (17)

where R(τ − t) = αe−α(τ−t)(0 < α < 1), in which α denotes a viscoelasticity parameter, ξ is the variable in
image, F1(ξ) is image of the original function f1(τ ) and the following symbols are used:

F1(ξ) =
∞∫
0

f1(τ )e−ξτdτ,υ = P

Pwp
cr

, kwp = kw + kp
(
λ21 + λ22

)
λ21P

wp
cr

,

ϑ = D + kw + kp
(
λ21 + λ22

)
ρ̄ f

= ω2
wp, (18)

in which ωwp is the frequency for FG elastic plates on the PEF.
To facilitate separation into simple fractions, Eq. (17) is rewritten as

F1(ξ1) =
(1 + ξ1)

(
f̃10ξ1 + f̃11

)
ξ31 + ξ21 + ϑ1(1 − υ)ξ1 − ϑ1(υ − kwp)

, (19)

where

ξ1 = ξ

α
, f̃10 = f10

α
, f̃11 = f11

α2 , ϑ1 = ϑ

α2 . (20)

Due to the fact that υ −kwp > 0 and ϑ1 >> 1 [1,42], one of the positive roots that convert the denominator
of Eq. (19) to zero is η

wp
1 , the other two roots are as follows:

η
wp
2,3 = −1 + η

wp
1

2
± ibwp, (21)
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where

η
wp
1 = ϑ1(υ − kwp)

ϑ1(1 − υ) + η
wp
1 (1 + η

wp
1 )

, bwp =
√

ϑ2wp −
(
1 − η

wp
1

)2
4

, (22)

in which ϑ2wp = (
η

wp
1

)2 + ϑ1(1 − υ) and ϑ2wp −
(
1−η

wp
1

)2
4 > 0. The expression (19) is easily converted to

the following form:

F1(ξ2) = f̃10

[
x(y2 − y1) + x2 − y1y2

x2 + b2wp

1

ξ2 − x
+

+ b2wp − x(y2 − y1) + y1y2

x2 + b2wp

ξ2

ξ22 + b2wp

+ xb2wp + b2wp(y2 − y1) + xy1y2

x2 + b2wp

1

ξ22 + b2wp

]

+ f̃11

[
x + y2

x2 + b2wp
· 1

ξ2 − x
− x + y2

x2 + b2wp
· ξ2

ξ22 + b2wp

+ b2wp − xy2

bwp(x2 + b2wp)
· bwp

ξ22 + b2wp

]
, (23)

where

y1 = 1 + η
wp
1

2
, y2 = 1 − η

wp
1

2
, x = 1 + 3ηwp

1

2
, ξ2 = ξ1 + 1 + η

wp
1

2
. (24)

Equation (23) takes the following form after the inverse Laplace transformation:

f1(τ1) = (C1 + C4)e
η

wp
1 τ1 + [

(C2 + C5) cos
(
bwpτ1

) + (C3 + C6) sin
(
bwpτ1

)]
e− 1+η

wp
1
2 τ1, (25)

where

C1 = x(y2 − y1) + x2 − y1y2
x2 + b2wp

f̃10, C2 = b2wp − x(y2 − y1) + y1y2

x2 + b2wp
f̃10,

C3 = xb2wp + b2wp(y2 − y1) + xy1y2

x2 + b2wp
· f̃10
bwp

, C4 = −C5 = x + y2
x2 + b2wp

f̃11,

C6 = b2wp − xy2

x2 + b2wp

f̃11
bwp

, τ1 = ατ. (26)

For the initial condition A (ICA): f1(0) = f10 , f ′
1(0) = 0, since ϑ2wp >> 1, the inequality C3 << C2 is

satisfied and the expression (25) takes the form:

f11(τ1) = C1e
η

wp
1 τ1 + C2e

− 1+η
wp
1
2 τ1 . (27)

The expression for the critical time is found from the condition f ′
11(τ1) = 0 as

τ cr11wp = 2

1 + 3ηwp
1

ln

(
1 + η

wp
1

2ηwp
1

C2

C1

)
. (28)

For the initial condition B (ICB): f1(0) = 0, f ′
1(0) = f11, since ϑ2wp >> 1, the inequality C5 << C6 is

satisfied and the expression (25) takes the form

f12(τ1) = C4e
η

wp
1 τ1 + C6e

− 1+η
wp
1
2 τ1 . (29)

The critical time is obtained from the following expression:

τ cr12wp = 2

1 + 3ηwp
1

ln

(
1 + η

wp
1

2ηwp
1

C6

C4

)
. (30)
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The magnitudes of CTs for FGVPs resting on the PEF can be found using Eqs. (28) and (30) for ICA and ICB,
respectively.

In particular, for υ − kwp = 0, from Eq. (25), the equation for the FV is obtained as:

f2(τ1) = [
(C2 + C5) cos

(
bwpτ1

) + (C3 + C6) sin
(
bwpτ1

)]
e− 1+η

wp
1
2 τ1 . (31)

We can easily convert the equation of the FV for the FGVPs resting on the PEF into the following form:

f2(τ1) = awpe
− 1+η

wp
1
2 τ1 cos(bwpτ1 − γ ), (32)

where

awp =
√

(C2 + C5)
2 + (C3 + C6)

2, γ = arctan
C3 + C6

C2 + C5
. (33)

From Eqs. (32) or (33), the frequency of the FV for the FGVPs resting on the PEF is obtained as:

ωFGVCS
wp = √

ϑ2wp. (34)

When kw = 0 in Eqs. (27)–(34), the appropriate equations for FGVPs on the WEF are obtained. In the
case of kw = kp = 0, from Eqs. (27)–(34), the appropriate equations for unconstrained FGVPs are obtained.

4 Results and discussion

4.1 Comparative studies

To confirm the validity of the present study, we compared our results with those of Matyash [54], who solved
the free vibration of homogeneous isotropic viscoelastic shells (HIVSs) without EFs, and obtained the formula
for the amplitude with the ICA, i.e., with f1(0) = f10 , f ′

1(0) = 0:

�

f (τ ) = �
a e

−
√

�
D

�
ε

�
A

2 τ cos

[√
�

D

(�
ε

�

B −2

2

)
τ − �

φ

]
, (35)

where the following definitions apply:

�
a = f10

√√√√√√ 4
�
n
2

(
�
ε

�

B −2
)2 �

D

+ 1,
�
n =

�
ε

�

A

√
�

D
2

,
�

φ = arctan
2

�
n(

�
ε

�

B −2
) √

�

D

,

�

A =
√

�

D
�

D +α2
,

�

B = 1
�

D +α2
, (36)

in which
�

D is the parameter for a HIVS, similar to the parameter D in the present study. Here L is the length
and R is the radius of the HIVS.

At C3 = C6 = 0; kw = kp = 0; V2 = 0, τ1 = τα, Eq. (32) in the current study and Eq. (35) obtained by
Matyash [54] are used in the calculations using the following physical and geometrical data:

L = a, b = πR, a/h = 50, a/b = 2, E2 = 2.0104 × 1011 (Pa), ρ2 = 8.166 × 103 kg/m3,

ν2 = 0.3262, f10 = 0.001, α = 0.06,
�
ε = 0.06.

As can be seen from Figs. 2a, b, the amplitude for the free vibration on the unconstrained viscoelastic plate
in our study is consistent with the results of Matyash [54].
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Fig. 2 Comparison of the amplitude of FV for the unconstrained HIVP versus the τ , a in the current study and b in study of
Matyash [54]

Fig. 3 Change of f̃1(τ1) for FG-exponential VPs awith PEF and bwithout PEF against the τ1 for the ICA ( f1(0) = f10 , f ′
1(0) =

0)

4.2 DS and FV analysis of FGVPs with and without EFs

In this subsection, some analyses have been made for time-dependent changes of amplitudes for DS and FV of
FG-exponential and FG-inverse quadratic VPs resting on the PEF, using the formulas (27)–(30). The material
properties of the FGM consist of a mixture of silicon nitrite (Si3N4) and stainless steel (SUS304) obtained
using the expression (1) for T = 300 (K ), as follows [21]:

E1 = 2.07788 × 1011 (Pa), E2 = 3.22271 × 1011 (Pa), ν1 = 0.317756, ν2 = 0.24,

ρ1 = 8166 kg/m3, ρ2 = 2370 kg/m3, (37)



Dynamic behavior of FGM viscoelastic plates resting 9

where K is expressed in Kelvin.
This section discusses the contact of FGVPs with EFs for the case when the ceramic surface of the

FGVPs is in contact with EFs, hence Eqs. (4a) and (5a) are used. The plate parameters are defined as: υ =
0.6, a = 50h, a/b = 2, rheological parameter is α = 0.5 and the initial conditions are f1(0) = f10 or
f ′
1(0) = f11. In this subsection, the coefficients of the Pasternak elastic foundation are kw = 107 (N/m3)

and kp = 3.2 × 105 (N/m). The wave numbers for DS and FV of the FGVPs with and without PEF are
(m, n) = (1, 1).

Figures 3, 4, 5 and 6 indicate the time-dependent change of the amplitude function of FG-exponential and
FG-inverse quadratic VPs with and without PEF under ICA and ICB, respectively. In Figs. 3, 4, 5 and 6 are

Fig. 4 Change of f �
1 (τ1) for FG-exponential VPs awith PEF and bwithout PEF against the τ1 for the ICB ( f1(0) = 0, f ′

1(0) =
f11)

Fig. 5 Change of f̃1(τ1) for FG-inverse quadratic VPs a with PEF and b without PEF against the τ1 for the ICA ( f1(0) =
f10, f ′

1(0) = 0)
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Fig. 6 Change of f̃1(τ1) for FG-inverse quadratic VPs a with PEF and b without PEF against the τ1 for the ICB ( f1(0) =
0, f ′

1(0) = f11)

Fig. 7 Change of f11(τ1) for FG-exponential VPs a with PEF and b without PEF for C3 << C2 against the τ1 with the ICA
( f1(0) = f10, f ′

1(0) = 0)

used: f̃1(τ1) = f1(τ1)
f̃10

and f �
1 (τ1) = f1(τ1)

f̃11
. The wave numbers corresponding to τ1cr for FG-exponential VPs

with and without PEF are (m, n) = (1, 1). As seen in Figs. 3, 4, 5 and 6, the time-dependent variation of the
amplitude function in FG-exponential and FG-inverse quadratic VPs with and without PEF is characterized by
regions having three different characteristics: the region where the amplitude decreases slowly, the transition
zone and the region where the amplitude increases suddenly. The beginning of the last zone may be considered
as the starting point of the loss of stability. In addition, as shown in Figs. 3, 4, 5 and 6, taking into account the
influence of the PEF decreases the rate of increase in the amplitude function of the FGVPs for ICA and ICB.
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By using Eqs. (27) and (29), the change of f11(τ1) and f12(τ1) for FG-exponential VPs with and without
PEF versus the τ1 is indicated in Figs. 7 and 8. The critical time values corresponding to the beginning of the
loss of stability of FG-exponential VPs appear to coincide with the values of CTs in Figs. 3 and 4.

Figures 9 and10 show the changeof the amplitude for free vibrationofFG-exponentialVPswith andwithout
PEF versus τ , by using Eq. (32). Here the following symbols are used: f21(τ ) = f2(τ )

f̃10
and f22(τ ) = f2(τ )

f̃11
. One

can see that the presence of viscous resistance leads to damping of the amplitude of FGVPs with and without
PEF. From Figs. 9 and 10, it follows that the relaxation rate for FGVPs with and without PEF drops sharply
at the beginning of the relaxation processes, and then gradually tends to zero.

Fig. 8 Change of f12(τ1) for FG-exponential VPs a with PEF and b without PEF for C5 << C6 against the τ1 with the ICB
( f1(0) = 0, f ′

1(0) = f11)

Fig. 9 Change of f21(τ1) for the FV of FG-exponential VPs a with PEF and b without PEF against the τ1 for the ICA ( f1(0) =
f10, f ′

1(0) = 0)
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Fig. 10 Change of f22(τ1) × 104 for the FV of FG-exponential VPs a with PEF and b without PEF against the τ1 for the ICB
( f1(0) = 0, f ′

1(0) = f11)

Table 1 Change of CTs for FGVPs, CVP and MVP with and without WEF and PEF versus the loading parameter, υ

τ cr11wp, ICA

SUS304 FG-inv. quad (Eq. 4a) FG-inv. quad (Eq. 4b) FG-exp. (Eq. 5a) FG-exp. (Eq. 5b) Si3N4

υ kw = kp = 0
0.5 8.017 8.459 8.233 8.391 8.391 8.831
0.6 5.454 5.776 5.612 5.727 5.727 6.047
0.7 3.457 3.678 3.565 3.644 3.644 3.864
0.8 1.899 2.035 1.966 2.014 2.014 2.150
υ kw = 3.2 × 107 (N/m3), kp = 0
0.5 8.654 8.978 8.784 8.934 8.934 9.294
0.6 5.847 6.097 5.952 6.062 6.062 6.334
0.7 3.686 3.866 3.764 3.841 3.841 4.033
0.8 2.017 2.133 2.0684 2.116 2.116 2.237
υ kw = 3.2 × 107 (N/m3), kp = 0.1 × 106 (N/m)
0.5 9.065 9.310 9.138 9.281 9.281 9.588
0.6 6.098 6.301 6.168 6.275 6.275 6.515
0.7 3.831 3.890 3.985 3.965 3.965 4.139
0.8 2.091 2.133 2.194 2.180 2.180 2.292

τ cr12wp, ICB
υ kw = kp = 0
0.5 3.835 4.056 3.943 4.022 4.022 4.242
0.6 2.601 2.762 2.680 2.737 2.737 2.897
0.7 1.642 1.752 1.696 1.735 1.735 1.845
0.8 0.896 0.964 0.930 0.954 0.954 1.022
υ kw = 3.2 × 107 (N/m3), kp = 0
0.5 4.142 4.307 4.209 4.284 4.284 4.466
0.6 2.790 2.917 2.844 2.899 2.899 3.036
0.7 1.752 1.843 1.792 1.830 1.830 1.927
0.8 0.953 1.011 0.979 1.002 1.002 1.064
υ kw = 3.2 × 107 (N/m3), kp = 0.1 × 106 (N/m)
0.5 4.341 4.467 4.380 4.452 4.452 4.608
0.6 2.911 3.015 2.948 3.002 3.002 3.123
0.7 1.821 1.900 1.852 1.889 1.889 1.978
0.8 0.988 1.040 1.009 1.033 1.033 1.090



Dynamic behavior of FGM viscoelastic plates resting 13

Table 2 Change of CTs for FGVPs, CVP and MVP with and without EFs versus the viscoelasticity parameter, α

τ cr11wp, ICA

SUS304 FG-inv. quad (Eq. 4a) FG-inv. quad (Eq. 4b) FG-exp. (Eq. 5a) FG-exp. (Eq. 5b) Si3N4

α kw = kp = 0
0.1 4.262 4.483 4.370 4.449 4.449 4.669
0.3 3.712 3.933 3.821 3.900 3.900 4.120
0.5 3.457 3.678 3.565 3.644 3.644 3.864
0.7 3.289 3.510 3.397 3.476 3.476 3.696
α kw = 4.2 × 107 (N/m3), kp = 0
0.1 4.621 4.775 4.681 4.755 4.755 4.930
0.3 4.033 4.196 4.098 4.174 4.174 4.354
0.5 3.759 3.926 3.828 3.903 3.903 4.086
0.7 3.579 3.749 3.649 3.725 3.725 3.910
α kw = 4.2 × 107 (N/m3), kp = 105 (N/m)
0.1 4.795 4.916 4.831 4.902 4.902 5.054
0.3 4.188 4.322 4.232 4.305 4.305 4.466
0.5 3.905 4.045 3.954 4.028 4.028 4.193
0.7 3.719 3.863 3.771 3.845 3.845 4.013

τ cr12wp, ICB
α kw = kp = 0
0.1 2.044 2.155 2.098 2.138 2.138 2.248
0.3 1.770 1.880 1.824 1.863 1.863 1.973
0.5 1.642 1.752 1.696 1.735 1.735 1.845
0.7 1.558 1.668 1.612 1.651 1.651 1.761
α kw = 4.2 × 107 (N/m3), kp = 0
0.1 2.218 2.296 2.249 2.286 2.286 2.374
0.3 1.924 2.006 1.957 1.995 1.995 2.086
0.5 1.787 1.872 1.822 1.860 1.860 1.952
0.7 1.697 1.783 1.733 1.771 1.771 1.864
α kw = 4.2 × 107 (N/m3), kp = 105 (N/m)
0.1 2.302 2.364 2.321 2.357 2.357 2.434
0.3 1.998 2.067 2.022 2.059 2.059 2.140
0.5 1.857 1.929 1.883 1.920 1.920 2.004
0.7 1.764 1.838 1.791 1.828 1.828 1.914

4.3 New numerical examples for the CTs on the FGVPs resting on the EFs

The numerical examples presented in this subsection for CTs are discussed using the formulas (28) and
(30), including various plate characteristics, initial conditions, EF parameters and FGM profiles. The material
properties are used by the data specified in the expression (37), and the volume fraction is expressed by inverse
quadratic and exponential functions [23–26]. In Tables 1 and 2, the wave numbers are (m, n) = (1, 1).

In Tables 1 and 2, the contact of FGVPs with EFs is discussed for two cases. If the ceramic surface of
the FGVPs is in contact with EFs, and Eqs. (4a) and (5a) are used in the calculation, otherwise the metal
surface is in contact with EFs, and Eqs. (4b) and (5b) are used. The following data are used in Table 1;
υ = 0.5, 0.6, 0.7, 0.8, a/h = 50, a/b = 2, α = 0.5, kw = 3.2 × 107 (N/m3) and kp = 105 (N/m). Table 1
shows that the magnitudes of CTs for FGVPs, CVP and MVP with and without EFs decrease with increasing
the loading parameter, υ, whereas, the circumferential wave numbers corresponding to CTs remain constant
for (a) ICA and (b) ICB. The magnitudes of CTs for FGVPs, CVP and MVP with and without EFs for ICB
are notably lower than for the ICA. Comparing the FGVPs on the WEF with the unconstrained FGVPs, the
influences of WEF and PEF on the magnitudes of CTs decrease with increasing loading parameter, υ, while
the influence of the PEF is higher than the WEF effect for ICA and ICB. Comparing the FGVPs with the
MVP (or the CVP), taking into account the effect of WEF and PEF, the effects of FGMs on the CTs increase,
whereas for the case of PEF, the FGM profiles have little effect and it slightly increases with increasing loading
parameter υ. In addition, the influences of FGMs on the CTs for FGVPs with EFS are lower than the effect of
FGMs in unconstrained FGVPs for ICA and ICB. Since CTs for both exponential changes take the same value,
it does not matter which side of the FGVPs is in contact with the EFs. For the FG-inverse quadratic profile,
when the metal surface of the FGVPs is at the top, it is seen that the critical time values are greater than the
case when the metal surface is lower (with or without EFs) and this difference decreases as υ increases.
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Fig. 11 Change of CTs for FGVPs, CVP and MVP with and without EFs for a ICA and b ICB, versus the a/b

The change of CTs for FVFP CVP and MVP with and without EFs depending on the ratio a/b, the plate
parameters and EF coefficients is indicated in Fig. 11 for (a) ICA and (b) ICB. For Fig. 11, the expressions
(4a) and (5a) are used. From Fig. 11, we can conclude that the magnitudes of CTs for FGVPs, CVP and MVP
with and without EFs for (a) ICA and (b) ICB increase as the ratio a/b increases. While the influences of WEF
and PEF on the CTs are significantly reduced, the effects of FGMs on the CTs are slightly reduced with an
increase of a/b for ICA and ICB. In both initial conditions, the PEF effect on the CTs is more pronounced
than the WEF effect, as a/b changes. The effect of the FGM-inverse quadratic profile on the CTs for FGVPs,
CVP and MVP with and without EFs is more pronounced than the effect of the FGM-exponential profile.

The values of τ cr11wp and τ cr12wp for FGVPs, CVP and MVP with and without WEF and PEF depending
on the viscoelasticity parameter α are calculated and tabulated in Table 2. Here, the following data are used:
a/h = 50, a/b = 2, kw = 4.2 × 107 (N/m3), kp = 105 (N/m) and υ = 0.7. As shown in Table 2, the values
of CTs continuously decrease, while the number of circumferential waves remains constant, with increasing
α. While the influences of ground and FGMs are increasing with increasing viscoelastic parameter α, the
influences of FGMs on the CTs of FGVPs resting on the EFs decrease, as compared to unconstrained FGVPs.
Although the values of CTs for the ICA are significantly higher than for the ICB, the influences of FGMs or
EFs are about the same as the percentages. From Table 2, it can be seen that when Eqs. (4a) are used, the
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critical time values are higher than with Eqs. (4b) are used (with or without EFs) for the FG-inverse quadratic
profile, and this difference does not depend on α.

5 Conclusions

The free vibration and dynamic stability analysis of FGVPs on Winkler and Pasternak elastic foundations
under compressive load in the x direction for ICA and ICB are examined. The concepts of Boltzmann and
Volterra are used to derive the basic equations of FGVPs on EFs. The Galerkin and the Laplace method are
used to solve the current problem. The expressions for amplitudes and CTs for FGVPs on EFs are obtained.
The obtained results are proved by comparing them with other existing solutions. Finally, the influences of
EFs, FGMs, loading parameters and viscoelasticity parameter on the CTs have been investigated in detail.

Appendix A
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in which
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1 =
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9. Aköz, A.Y., Kadıoğlu, F., Tekin, G.: Quasi-static and dynamic analysis of viscoelastic plates. Mech. Time Depend. Mater.

19(4), 483–503 (2015). https://doi.org/10.1007/s11043-015-9274-8
10. Alibeigloo, A.: Effect of viscoelastic interface on three-dimensional static and vibration behavior of laminated composite

plate. Compos. Part B Eng. 75, 17–28 (2015). https://doi.org/10.1016/j.compositesb.2015.01.025
11. Arruda, M., Garrido, M., Castro, L., Ferreira, A., Correia, J.: Numerical modelling of the creep behaviour of GFRP sandwich

panels using the CarreraUnified Formulation andComposite CreepModelling. Compos. Struct. 183, 103–113 (2018). https://
doi.org/10.1016/j.compstruct.2017.01.074

12. Ferreira, A., Araújo, A., Neves, A., Rodrigues, J., Carrera, E., Cinefra, M., Soares, C.M.: A finite element model using a
unified formulation for the analysis of viscoelastic sandwich laminates. Compos. Part B Eng. 45(1), 1258–1264 (2013).
https://doi.org/10.1016/j.compositesb.2012.05.012

13. Ilyasov, M.: Dynamic stability of viscoelastic plates. Int. J. Eng. Sci. 45(1), 111–122 (2007). https://doi.org/10.1016/j.
ijengsci.2006.08.016

14. Ilyasov, M., Aköz, A.: The vibration and dynamic stability of viscoelastic plates. Int. J. Eng. Sci. 38(6), 695–714 (2000).
https://doi.org/10.1016/S0020-7225(99)00060-9

15. Luis, N.F., Madeira, J.F.A., Araújo, A., Ferreira, A.: Active vibration attenuation in viscoelastic laminated composite panels
using multiobjective optimization. Compos. Part B Eng. 128, 53–66 (2017). https://doi.org/10.1016/j.compositesb.2017.07.
002

16. Tang, Y.-Q., Chen, L.-Q.: Parametric and internal resonances of in-plane accelerating viscoelastic plates. Acta Mech. 223(2),
415–431 (2012). https://doi.org/10.1007/s00707-011-0567-y
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