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ARTICLE INFO ABSTRACT

Keywords: In this article, the nonlinear vibration of moderately thick multilayer shell-type structural elements with double
CNT curvature consisting of carbon nanotube (CNT) patterned layers is investigated within different shell theories.
Multilayer nanocomposites . The first order shear deformation theory has been generalized on the motion for moderately thick multilayer
Shell-type structural elements with double shell-type structural elements with double curvature consisting of CNT patterned layers for the first time. Then,
cgwature . by applying Galerkin and semi-inverse perturbation methods to motion equations, and the frequency-
Different shell theories . . .. . . . . .
. amplitude relationship is obtained. From these formulas, the expressions for nonlinear frequencies of multi-
Nonlinear frequency . A X o
Finite deflection layer spherical and hyperbolic-paraboloid shells, rectangular plate and cylindrical panels patterned by CNTs
within shear deformation and classical shell theories are obtained in special cases. The reliability of obtained
results is verified by comparison with other results reported in the literature. The effects of transverse shear
strains, volume fraction, sequence and number of nanocomposite layers on nonlinear frequency are discussed

in detail.

1. Introduction

Composite multilayer plates, panels and shells are one of basic
structural components and are often used in a variety of engineering
applications such as defense, aviation, turbo-machinery and shipbuild-
ing industries. The wide range of applications of multilayer shell-type
structural elements has led researchers to examine the performance of
such structural components made of different materials and exposed to
various dynamic loads for many years. In multilayer shell-type struc-
tural elements, the formation of deflections measurable with their
own thickness requires the use of nonlinear shell theories. Studies on
the geometrically nonlinear dynamic behavior of multilayer shells
within shear deformation theory (SDT) began to emerge in the early
1960s [1]. The effect of transverse shear deformations on nonlinear
vibrations of moderately thick multilayer shell-type members and their
response analysis has also been the subject of research in many earlier
studies [2-4]. In the above studies, it was stated that the influence of
transverse shear deformations on nonlinear vibrations of multilayer
shells is significant and needs to be taken into account. A systematic
presentation of various problems of the nonlinear dynamics of multi-
layer plates and shells within different theories was carried out in

the book of Reddy [5]. Later, various studies of the theoretical and
experimental results obtained on the nonlinear vibrations of moder-
ately thick multilayer shells within SDTs have been carried on until
today [6-15].

One of the most important manifestations of the acceleration of sci-
entific and technological progress is associated primarily with the need
to create new progressive composite materials. In most cases, this
improvement is possible by reinforcing structural homogeneous com-
posite materials with nanoscale materials that are much smaller than
their size. In recent years, CNTs have been the most interesting and
thoroughly studied nanoscale materials among new generation com-
posite materials. CNTs were experimentally discovered in 1991 by
the Japanese materials scientist [ijima in the production of fullerene
by evaporation of an arc discharge [16]. The excellent mechanical,
electrical, chemical, magnetic and other properties of CNTs lead to
the use of polymer composites reinforced by them in various fields
of technology [17]. Since research on composites reinforced by CNTs
is very important for modern technology, it has always been the focus
of researchers [18,19].

The increase of vibration amplitude, causing unexpected failures in
nano-composite structural elements motivated mathematics and
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engineers to pay more attention in solving nonlinear vibration prob-
lems of structural elements widely used in new industries. One of
the first attempts at mathematical modeling and solution of nonlinear
vibration of monolayer composite structural elements reinforced by
CNTs is the study of Shen and Xiang [20]. In this study, a model of
single-layer composite cylindrical shells containing CNT is created
and the scientific infrastructure is built to solve various vibration
and stability problems. After this research, some studies were carried
out to solve the vibration problems of single-layer shells reinforced
by CNTs [21-27].

Considering the geometric nonlinearity in the vibration problems
of the multilayer structural elements consisting of CNT patterned lay-
ers creates significant qualitative and quantitative changes in the
dynamic properties, complicates the derivation and solution of the
basic equations as well as makes the analysis and interpretation more
complex. These difficulties have limited the number of scientific stud-
ies on multilayer structural elements consisting of CNT patterned lay-
ers, and therefore very little work has been done on this subject
today. These publications are devoted to the linear behavior of lam-
inated composite plates consisting of CNT patterned layers within
SDTs [28,29]. In addition to these publications, some important stud-
ies on the nonlinear vibration of mono and multi-layer shallow shells
made of functionally graded materials should be highlighted
[30-371].

A comprehensive review of the literature by the authors revealed
that the problem of nonlinear vibrations of thin and moderately thick
multilayer shell-type structural elements with double curvature con-
sisting of CNT patterned layers has not been studied to date, and the
study under discussion is devoted to solving this problem within the
framework of different theories.

2. Formulation of the problem
2.1. Description of model

The multilayer shell-type structure with double curvature consist-
ing of CNT patterned layers with side lengths a; and a5, curvature radii
r1 and r, and total thickness h is shown in Fig. 1. It is assumed that the
multilayer shell with double curvature is moderately thick, composed
of CNT patterned nanocomposite layers of equal thickness (§) and con-
sists of N layers. The layers of the shell-type structure with double cur-
vature consisting of CNT patterned nanocomposites are perfectly
bonded to each other, they do not slip, and all layers remain elastic
during deformation. The main axes of elasticity of each lamina are
assumed to be parallel to the coordinate axes on the reference surface.
The curvilinear coordinate system x;x»Xx3 is located on the reference
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surface and left corner of the shell with double curvature; where x;
and x, axes are on the reference surface x; = 0 and the x; axis is in
the normal direction to the reference surface and is directed inward.
The reference surface x3 = 0 is located at the interface of the layers
for even values of N, while the reference surface for the odd values
of N is located in the mid-surface of the middle lamina.

2.2. Material properties of multilayer shell-type structural elements
The effective material properties of each lamina with various CNT

patterns, based on the expanded rule of the mixture are expressed as
follows [20]:

(k) (k) (k) (k) (k) (k)

k) _ (0 (k) (k) ® gk 1y Em By (k) 13 Gm Gy
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where E® G® p® 0 are the elasticity modulus, density and Pois-

son's ratio in the lamina k", and Efj’z;, Gg?n,

pl), N5en(ij =1,2,3) are
the corresponding mechanical properties for the pattering CNT phase
in the lamina k™, respectively, nl@k) (i=1,2,3) are the efficiency param-
eters in the lamina k™. Here V¥ and V¥ are the volume fraction (VF)
of CNTs and lamina k™, that obey the rule of V& + v — 1. The esti-

mation of total VF of CNTs are expressed as:
(k)
(k) _ - Mcr,i (2)
MY + (ot [ (1 — M)

cn

where Mg;) is the mass fraction of CNTs.

The pattern of the VF for CNTs over the thickness of lamina k™ as
uniform pattern (U) and three types of linear functions is shown in
Fig. 2.
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3. Basic equations
3.1. Constitutive equations
The constitutive relations for lamina k™ patterned by CNTs in mul-

tilayer shell-type structural elements within first order shear deforma-
tion theory (FSDT) can be expressed by the following form [10,36]:

Fig. 1. (a) Multilayer shell-type structural elements with double curvature consisting of CNT patterned layers and (b) cross-section.
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Fig. 2. Patterns of the VF for CNTs over the thickness of lamina k™.
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e;(i,j=1,2,3) denote the strains and Qijis, (i,j=1,2,6), denote Ian;kz, v, (1)

material properties of CNT patterned lamina k™ and expressed as:
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in which —1 w<z<7§+%, k=1,2,..

Qk)(' i,j=1,2,3) are Young and shear

,N, in which N is
the number of lamina, E,
moduli of CNT patterned materials in the lamina k* , 1% and 0§ are
Poisson ratios in the lamina k™ that are not dependent on location
and satisfied the followmg equation EQu\¥) = EW.,.

The shear stresses a ) ( =1,2) in the lamina k™ are expressed as

[1]:
df® (x. _
o) :%ﬁwl,xz,r» (i=1.2) (©)

where y;(x1,%2,7), (j =1,2) are functions of rotation angles, fj(f;

are shear stress functions in the lamina k™ and r is a time.
3.2. Kinematic relations

Based on the Donnell-Mushtary type nonlinear shell theory and
using relations (4), the strain components of any point not on the
mid-surface of multilayer shell-type structural elements with double
curvature consisting of CNT patterned layers can be expressed as
follows:

0 u3 Oy
€1 — X3 + le3
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where displacements in the x;, x, and x3 directions are indicated
by w(i=1,2,3), respectively, the strains containing nonlinear terms
on the mid-surface are indicated by ef(i,j = 1,2), the functions associ-
ated with the transverse shear stresses in the lamina k” of multilayer
shell-type structural elements with double curvature consisting of
CNT patterned layers are indicated by m(’ =1,2), and are described
as [39]:

2 2
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The force and moment components of multilayer shell-type struc-

tural elements with double curvature consisting of CNT patterned lay-
ers are found from the following integrals [1,35]:

n ~h/2+kh/N ®
(Tijs Qj) =X / (UU 701]1)dX3
k=1 J—h/2+(k—1)h/N
n h/2+kh/N «
M;=Y / oy xadxs, (i,j=1,2,j; =2,3) (11)
k h/2+(k=1)h/N

where the in-plane and shear forces are indicated by T; and Q,
respectively, and moments are indicated by M;(i,j = 1, 2).

The relationship of force components with the Airy stress function,
Y is performed by the following equations [39]:

v Y o d
(T11,T22, T12) = h(a—x%’ %A —m)

(12)

3.3. Governing equations

The governing equations of multilayer shell-type structural ele-
ments with double curvature consisting of CNT patterned layers are
derived by using Hamilton principle as follows [1,5,38]:
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where p, and p;(i = 1,2, 3) are expressed as:
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=2/
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P2 = k; Z I 1/2++k 1)/N InyD( X3dxs.

(15)



M. Avey et al.

To express the basic equations with the ¥, us, y;, y,, the relations
(10) are substituted into integrals (11) and then resulting expressions
with (12) are taken into account in the Egs. (13) and (14), we obtain
the nonlinear governing equations of multilayer shell-type structural
elements with double curvature consisting of CNT patterned layers as:

L1 (¥) + Lia(uz) + Las(y) + Lia(yz) = 0

Lo1 (W) + Laa(uz) + Las(yy) + Laa(yz) =

L1 (¥) + Laa(us) + Las(yy) + Laa(ya) + Las(‘{’ uz) =0
Lg1 (‘W) + Lag(uz) + Laz(w1) + Laa(wz) + Las(uz,u3) =0

(16)

where
L (V) = h[(su —Sa1) ﬁ + S12 5%}
Lyz(us) = p;h® m SlBW (S14 + Ssz),,K ool
Lis(yy) = S1s 2 7X% + S35 555 3X13x — Ly~ poh® dx?%y
Lia(wy) = (S1s + Ss3s) 77 ;x2ox2 Lu(¥)=h [821 ox3 + (82 —53) "X;]:”‘z}
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where Sy, By and Ix(k = 3, 4) are described in Appendix A.
4. Solution method

The functions us, w; and y, of multilayer shell-type structural ele-
ments with double curvature that the layers with CNT patterns are
sought as follows [1,10]:

Uz = uz3(7) sin(A1x1) sin(42X2), Wy = w1 (7) cos(d1Xq) sin(A2x2),
W = Wa(7) sin(dix1) cos(d2x2) (18)

where uz3(7), yi,(7) and yoy,(7r) are time dependent functions,
M= a and Ay = %’, in which (m,n) is the vibration mode.

The deflection and angle functions of multilayer shell-type struc-
tural elements with double curvature consisting of CNT patterned lay-
ers in the form of (18), mathematically satisfies the following simply
supported boundary conditions:

uz =0, Mj; =0, wy; =0, asx; =0and x; = 19
u3; =0, My =0, y; =0, as xo =0 and xp = ay (19)

To find the Airy stress function (¥) depending on the function
u33(7) from particular solution of the fourth inhomogeneous differen-
tial equation of system (16), the expression (18) is substituted into
the fourth equation of system (16), and it takes the following form:

25} [;T\é‘ + g 0%4—;(% + a3 gx\r = 0.5(11411%3(’[) [COS<211X1) + COS(2}»2X2)]

(20)
+011U33( )Sil’l(}qxl)sin(lz)(fg)
The symbols used here are defined as follows:
=Buh; a; = (Bia +B2x +Ba1)h; a3 = Bah, 1)

2 2
a1y = Byadi + (Baa + Bis — Ban) 3% + Brady + 2+ 2, ang = 1342
The particular solution of the inhomogeneous differential equation

(20) is sought according to the shape of the right-hand side as follows:

Composite Structures 275 (2021) 114401

Y = Acos(241x1) + Bcos(242X2) + Csin(A1x1 )sin(4zx2) (22)

where A, B and C are unknown coefficients.
Substituting the expression (22) on the left-hand side of Eq. (20), it
becomes:

ay 3)3‘ + ay (,)fg—gxg + a3 ?;T\‘}‘ = 16A/1‘1‘II3COS(2}.1X1) + 16/‘[33(11 COS(2/12X2)

+C(ondg + a2A303 + azly)
(23)
From the equality of the left sides of (20) and (23), the coefficients

A, B and C are found as follows:

2 2
apal (‘L’) a4l (‘L') a11Uss (‘L’)
A= 343 , B= 343 , C= ) 2,2 3 (24)
32},1(13 3212111 (11/12 + (12/12/11 -+ (1311

Substituting (23) into (21) and then by taking (24), the following
expression for the Airy stress function is obtained:

W = 112, (7)c0s(201X1) + Bolid,(7)c0s(242x2)
+ ﬂ3ﬂ33 (T)Sil’l(}.lxl)sil’l(ﬂzxz) (25)

where

P = 32322}1( ) P = 32311h (Al)zy

2 a2
by = B3] +(B24 +B13—Bs2) 1143 +B1ad3 +71+:2
3 h[B1173+(B1o+Bo1 +B31 )2 43 +Bp2 1} ]

(26)

By using Galerkin method to first three equations of set (16) in
intervals of 0 < x; < a; and 0 < x» < a,, we obtain,

NL 2 d*u dy
H11Us3 + i TUss + pi; T3> + oW + Mg g3t + e = 0,

& r
Ha1lisa + Py WSy + sy T3+ HooWiy + HasWay + K5y d'gz =0, (27)

e
PR+ pgyiss + PSTUS, + pgpU3s + pasyryy + paaWap = 0

where p;(i=1,2,3,j = 1,2,3,4) are parameters that characterize
the properties of multilayer shell-type structural elements with double
curvature consisting of CNT patterned layers and are given in Appen-
dix B.

By ignoring from set of Eq. (27), because of the smallness of the
inertia terms with the top index r and eliminating the functions w1,
and y,, from the obtained equations, Considering this matter
(.e.,uly = pi, = py = ph3 = 0) in Eq. (27), and excluding y,; and
Yy, from Eq. (27), one gets

dZ
P (@27)*w + Kw? + Kw? = 0 (28)

where w = uz3/h and det is the linear frequency (LF) of multilayer

shell-type structural elements with double curvature consisting of CNT
patterned layers within SDT and defined as:

H11M23 —H21M13 H21 H22 H11M23—H21M13
o+ g T o o2 it i
st H31 T H33 gy 34\ gy T s wamins —piasiins

Wlin = - (29)
p~h
and
—NL

stt __ H31 str __ H32

11 = L, 2 T
e — M3 =M M3 Ho1 | H22 H11H23—H21#13 30
Har = P31 a3 i s T Haa (#23 T #zzmruzzm) (30)

—NL NL

NL NL
_ _ 33 (“11”23 7“13“21) _ H3akby | paauny WYTH23—M13MGY
H31 = M3

H12H23 —H13H22 H23 H23  Hi12H23—H13H22

By applying the variation principle to Eq. (28) and using the semi-
inverse method, let's construct the following integral [39-41]:

/4 1 [dw?(z) 2 sy 2 | WA (2) a W(7) a WD)
F(W):./o {_5{ dr ] +(wL?n) {T"’Kldlt:s( sdt) +K1dl 4(ws4t)2:| }dT

Dlin Lin
(1)
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where, the symbol T = 2z/03& indicates the large amplitude vibra-
tion period and wi& indicates the nonlinear vibration frequency of mul-
tilayer shell-type structural elements with double curvature consisting
of CNT patterned layers.

The initial conditions for the movement of multilayer shell-type
structural elements with double curvature consisting of CNT patterned
layers are mathematically defined as follows [40,41]:
w(r)|t =0 =wp and dv(vi—ir)h:O:O (32)

To satisfy the initial conditions (36), in the first approximation,
w(t) is expressed as:

w(r) = weos(wyir) (33)

where w = wy,, is the maximum amplitude of the deflection w.
When the expression (33) is substituted into the Eq. (31) and the trans-
formation t = widz is made, it turns into the following form after inte-

gration [39-41]:

_ o _ _
I, 0t = — Wt (wiji‘[) w? 2k12w32 3kis ,,w42 (34
8 o | 8 9(wif)”  64(wil)
9 W sdt
When the function (34) is examined, can be seen that Awary) <0,

St
g

T (w,a’dt —
(2)—;”’) =0, the w dependence of non-

therefore, from the condition
linear frequency for multilayer shell-type structural elements with
double curvature consisting of CNT patterned layers becomes as
follows:
8 - 3 w2l

off = | ()" + g et SR 3)

The w dependence of nondimensionalized non-linear frequency of
multilayer shell-type structural elements with double curvature con-
sisting of CNT patterned layers is expressed as:

(k)
wifh, = ofith [ (36)
m
The w dependence of the ratio of non-linear frequency to linear fre-
quency for multilayer shell-type structural elements with double cur-
vature consisting of CNT patterned layers is obtained as follows:
(w%’i)z 1. 8 Kiw  3Kfw

wif) 3% ()’ 4 ()

(37)

If we neglect the influence of shear deformations, the obtained for-
mulas for linear and nonlinear frequencies for multilayer shell-type
structural elements with double curvature consisting of CNT patterned
layers turn into formulas within the classical shell theory (CST)
framework.

The expressions (29), (35)-(37) for multilayer shell-type structural
elements with double curvature also apply to multilayer spherical
shells as r; = r,, multilayer hypar shells as r; = —r,, multilayer cylin-
drical panels as r; — oo and multilayer plates as r, =r; — oo.

5. Discussion

In this section, after confirming the accuracy of obtained results by
comparisons, the effect of changing the r; /a; and a; /a; ratios, number
and arrangement of layers on the dependence w of the nonlinear free
vibration frequency for multilayer shell-type structural elements with
double curvature consisting of CNT patterned layers are presented.
The shear stresses of multilayer shell-type structural elements with
double curvature consisting of CNT patterned layers are used as,

f}k)(xg) =x3(1 — 4x2/3h%), (j=1,2) [1]. Arrangement and number
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of layers of multilayer shell-type structural elements made of patterned
CNT layers are plotted in Fig. 3.

The Young'smodulus, Poisson ratio and density of the lamina k™ made
of polymethyl methacrylate (PMMA) are as follows: EX = 2.5GPa,
1% =0.34 and p® = 1150kg/m®. The material properties of single-
walled CNTSs in the lamina k™ are defined as: EX = 5.6466 TPa, ES), =
7.08TPa,GY%) —1.9445TPa, 1§ —0,175 and p* =1400kg/m>. The
efficiency parameters and total volume fraction (VF) of CNTs in the
lamina k™ are given in Table 1 [20].

5.1. Comparisons

The purpose of this subsection is to show the accuracy of the results
obtained in accordance with the results reported in the literature. Ali-
jani et al. [31] and Bich et al. [32] performed numerical calculations
within the scope of FSDT for the nondimensional linear frequency
parameters of homogeneous isotropic monolayer shell-type structural
elements using different solution methods (see, Table 2). In these
studies, values of linear vibration frequencies of monolayer spherical
and hypar shells, and plate for E\) = ESY — E{) = 70GPa, oY) =
) =0.3177, p{V = 2702kg/m3, a1/az =1, a; = 10h and ViV =0
data are included. The expression (29) is used for the calculation of lin-
ear frequency values in our study. Using these data and taking into
account k =1 in expression (29), a comparison is made with the
results of these studies. It can be seen from Table 2 that the results
are in agreement with the results of refs. [31,32].

In the second example, the nondimensional frequency parameter

Qi = Qu(a?/h)y/piy’ JEV values of different CNT patterned monolayer
spherical and hypar shells, cylindrical panels and plates are compared
with the study of Pouresmaeeli and Fazelzadeh [21] for
(m, n) = (1,1), a;/h =20, a;/az =1 and presented in Table 3.
The expression (29) is used for the calculation of linear frequency
values. Young's modulus, Poisson ratio and density of the lamina k™
made of PMMA are as follows: E{}) = 2.1GPa, /) = 0.34 and p{}) =
1150kg/m°. In addition, the mechanical properties of CNT, is defined
as follows: E\!. =5.6466TPa, ESy, = 7.08TPa, G\}., = 1.9445TPa,
A =0.175 and p) = 1400kg/m>. The CNT efficiency parameters
in the monolayer shells are used in ref. [21] as: 7{" =0.149,
A =) =0.934 for ViV =0.11, 5\ = 0.15, 5" = #{" = 0.941
for Vi) = 0.14 and 4{" = 0.149, 5 = 5 = 1.381 for V:(V = 0.17.
As can be seen from Table 3, the results are in good agreement.

5.2. Specific analysis

In this subsection, the influences of number and arrangement of
layers, CNT patterns and volume fractions on the nondimensional non-
linear frequencies of multilayer spherical and hypar shell consisting of
CNT patterned layers are investigated in detail for different sizes
depending on the dimensionless amplitude parameter, w. Fig. 4 pre-
sents the multilayer hypar shell consisting of CNT patterned layers.

w dependence of the nondimensional nonlinear frequency (NDNLF)
values of multilayer spherical (ML-SSs) and hypar (ML-HSs) shells con-
sisting of U and X type CNT patterned layers for a;/a, =1, 1.5, 2,
r/a =2, ay/h=15; (myn) = (1,1) and V:¥ =0.28 are given in
Table 4. As seen from Table 4, six different consecutive layer arrange-
ments,(0°), (90°), (0°/90°/0°), (90°/0°/90°), (0°/90°/90°/0°) and
(90°/0°/0°/90°), are considered with U and X patterns. As a;/a
increases, NDNLF values increase in both shells, for both SDT and
CST cases and as w increases, they increase when w > 0.5, while

decreasing when w < 0.5. When the two shells are compared with each
other, both for SDT and CST cases, NDNLF values obtained for ML-SSs
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Fig. 3. Arrangement and number of layers of multilayer shallow shells with double curvature, made of patterned CNT layers.

Table 1
Efficiency parameters and total VF of CNTs in the lamina k™.
Vi ) ng) g’
1.2 x 107 1.37 x 107! 1.022 7.15 x 107!
1.7 x 10 1.42 x 10" 1.626 1.138
2.8 x 107 1.41 x 10! 1.585 1.109

being larger for each of a;/a; =1 and w< 1.5, a;/a; = 1.5 and
w < 1.25, a;/a, = 2 and w < 1, cases, for cases other than those, they
are larger for ML-HSs. When (0°/90°/0°) and (0°/90°/90°/0°) layer
order is compared with (0°), for both shells, NDNLF values for CST
case in three and four layered shells being larger, for SDT case, while

they are larger in the range 0.25 < w < 0.75 for three layered shells
they are smaller for all w in the four layered ones. When
(90°/0°/90°) and (90°/0°/0°/90°) layer order is compared with
(90°) for both shells, in the CST case, NDNLF values are smaller for
the three layered shells, while they are larger for the four layered ones,
whereas, in the SDT case, they are larger for the three layered shells in
the range 0.25 < w < 0.75 and smaller in the four layered ones for all
w values. Furthermore, even only a change of the angle of direction
causes an increase in the NDNLF values, meaning that, in all cases
NDNLF values in layered shells with (90°) outer layers are larger than
the values in the ones with (0°) outer layers. Besides, while the NDNLF
values for the shells with (0°) outer layers are smaller for the four lay-
ered ones than those for the three-layered ones, in the case of the shells
with (90°) outer layers, they are larger for the shells with four layers
than those with three.

In both shells, the effect of shear deformation (SD) on the NDNLF
values decrease with increasing a;/a, ratios and when w < 0.5 they
increase, whereas, when w > 0.5 they decrease. Additionally, SD effect
is greater for the X pattern. For example, with (0°/90°/0°) layer order
and a;/a; = 1 in the U pattern for ML-SSs and ML-HSs, respectively,
while increasing from (19.66%) to (23.49%) and from (22.59%) to
(25.94%) when w < 0.5, decreases from (23.49%) to (14.31%) and
from (25.97%) to (14.07%) when w > 0.5. Likewise, in the X pattern,
for both shells in the same order, the foregoing ranges, when w < 0.5
are from (22.13%) to (24.97%) and from (24.53%) to (26.78%) and
when w > 0.5 from (24.97%) to (17.76%) and from (26.78%) to

Table 2

Comparison of nondimensional linear frequency parameter of structural elements.

(17.52%), respectively. Again with (0°/90°/0°) layer order but when
w = 0 or a linear frequency, as a; /a, passes from 1 to 2 for both shells,
in the foregoing sequence, decreases, respectively, in the U pattern
from (19.66%) to (17.67%) and from (22.59%) to (19.96%) and in
the X pattern from (22.13%) to (20.78%) and from (24.53%) to
(22.91%).

When the two shells are compared with each other, for the cases,
a/a; =1 and w< 15, a/b=15 and w<1.25, a;/a; =2 and
w < 1, the SD effect is greater for ML-HSs, but for all other cases it
is greater for ML-SSs. Considering both shells, the greatest SD effect
difference (2.94%) is obtained for (0°/90°/90°/0°) layer order. When
(0°/90°/0°) and (0°/90°/90°/0°) layer orders are compared with (0°),
when w < 1 the SD effect is greater in the three- and four-layer cases in
both shells. On the other hand, when (90°/0°/90°) and
(90°/0°/0°/90°) layer orders are compared with (90°), when w < 1
the SD effect is less in the three- and four-layer cases in both shells.
For example, for a;/a; =1 in the X pattern, the maximum SD effects
for ML-SSs and ML-HSs, respectively, in (0°) (24.84%) and
(26.61%), in (90°) (29.19%) and (30.96%), in (0°/90°/0°) (24.97%)
and (26.78%), in (90°/0°/90°) (29.04%) and (30.80%), in
(0°/90°/90°/0°) (25.38%) and (27.21%) and in (90°/0°/0°/90°)
(28.68%) and (30.42%). As a;/a, increases, the X pattern effect on
the NL-FVF values, increase when w < 0.5 and decrease when
w > 0.5 in both shells. This increase or decrease are more important
in ML-HSs for SDT when w > 0.5 and a, /a; < 1.5. On the other hand,
this effect takes greater values for CST. For example, in the
(0°/90°/90°/0°) layer order for SDT when a;/a; =1 in ML-SSs and
ML-HSs, respectively, it increases from (15.22%) to (19.71%) and from
(17.73%) to (22.24%) when w > 0.5, while decreasing from (19.71%)
to (8.75 %) and from (22.24%) to (8.64%) when w > 0.5. Likewise, in
the (0°/90°/90°/0°) layer order for CST when a; /a; = 1, in ML-SSs
and ML-HSs , respectively, increases from (18.78%) to (21.91%) and
from (20.67%) to (23.44%) for w < 0.5, while decreasing from
(21.91%) to (13.29%) and from (23.44%) to (13.15%) when
w > 0.5. For (0°/90°/90°/0°) layer order, this time, keeping w = 0.5
fixed, as a; /a; passes from 1 to 2 in ML-SSs and ML-HSs, respectively,
decreases from (19.71%) to (15.90%) and from (22.24%) to (16.67%)
for SDT, while from (21.91%) to (18.30%) and from (23.44%) to
(28.90%) for CST.

Structural elements a/r as /r: ~
1/r1 2/T2 G = /oD /ED
Ref. [31] Ref. [32] Present study
Spherical shell 0.5 0.5 7.79 x 102 7.67 x 102 7.69 x 102
Hypar shell 0.5 -0.5 5.97 x 102 5.92 x 102 5.84 x 102
Plate 0 0 5.97 x 102 5.81 x 102 5.84 x 102
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Comparison the dimensionless linear frequency parameter of CNT patterned monolayer spherical and hypar shells, cylindrical panels and plates.

a/n afr: Ve Qu = 0 (a /W)l /R
18} \% X
Ref. [21] Present study Ref. [21] Present study Ref. [21] Present study
0.5 0.5 0.11 20.238 20.286 18.543 18.685 22.432 22.493
0.14 21.655 21.756 19.779 19.966 23.997 24.064
0.17 25.021 25.158 22951 23.165 27.883 27.893
0.5 —-0.5 0.11 17.106 17.332 14.809 15.114 19.588 19.853
0.14 18.626 18.924 16.181 16.544 21.225 21.512
0.17 21.093 21.423 18.225 18.645 24.274 24.524
0.5 0 0.11 18.126 18.116 16.060 16.150 20.548 20.545
0.14 19.628 19.670 17.391 17.524 22.179 22.178
0.17 22.380 22.415 19.799 19.949 25.488 25.408
0 0 0.11 18.008 17.332 15.701 15.113 20.624 19.853
0.14 19.608 18.924 17.147 16.544 22.349 21.512
0.17 22.207 21.424 19.315 18.645 25.557 24.524

Fig. 4. Multilayer hypar shell consisting of CNT patterned layers.

The variation of NDNLF values of ML-SSs and ML-HSs consisting of
(¢} type CNT patterned layers with w for
a;/ay =05, ri/a; =2, ay/h=15, (mn)=(1,1) and Vg, =0.12
are given in Fig. 5. As seen from Fig. 5a and b six different layer orders
(0°), (90°), (0°/90°/0°), (90°/0°/90°), (0°/90°/90°/0°) and
(90°/0°/0°/90°) are considered with O pattern. In both shells for both
SDT and CST, as w increases, while NDNLF values decrease when
w < 0.5, they increase when w > 0.5. When the two shells are com-
pared with each other, for both SDT and CST the NDNLF values for
ML-SSs are greater and in both shells the greatest NDNLF value is
obtained for (90°) monolayer shell at w = 1.5, while the least for
(0°) monolayer shell at w = 0.5. It is observed that in both shells
and for both SDT and CST, the NDNLF values for three and four lay-
ered shells are greater, when (0°/90°/0°) and (0°/90°/90°/0°) layer
orders are compared with (0°) monolayer shell, and smaller when
(90°/0°/90°) and (90°/0°/0°/90°) are compared with (90°). As w var-
ies the SD effect on the NDNLF values increase for w < 0.5, but
decrease for w > 0.5. When the two shells are compared with each
other, the SD effect is about (%2) less for ML-SSs. In both shells, when

(0°/90°/0°) and (0°/90°/90°/0°) layer orders are compared with (0°)
monolayer shell, and (90°/0°/90°) and (90°/0°/0°/90°) layered shells
are compared with (90°) monolayer shell, respectively, in the former
case in three layered shells about (0.7%) and in four layered shells
about (1.2%) greater SD effect, whereas, in the latter in three layered
shells about (0.7%) and in the four layered shells about (1.2%) less SD
effect is observed. The SD effect is greater for layered shells having 90°
outer layers than those having (0°) outer layers. In this context, in both
shells, the maximum SD effect differences between (90°) and (0°);
(90°/0°/90°) and (0°/90°/0°); (90°/0°/0°/90°) and (0°/90°/90°/0°)
are, respectively, (%3.3), (1.9%) and (0.9%) .

The variation of the NDNLF values of ML-SSs and ML-HSs with w
for r/a; =2,25,3, a;/ax=1, a;/h=15, (m,n)=(1,1) and
V:® = 0.17 are given in Fig. 6. As seen from Fig. 6a-d two different
layer orders, (90°) and (90°/0°/0°/90°), are considered with U and
V patterns. In both shells depending on the increase in w and the three
values of r; /a; the variation of NDNLF values have different features.
In ML-HSs for both layer orders, they decrease in the range w < 0.5
and increase in the range w > 0.5 when r; /a; < 2.5 and decrease in

the range w<0.25 and increase in the range w > 0.25 when
ri/a; > 2.5. In ML-SSs, for both layer orders, they decrease in the
range w < 0.5 and increase in the range w > 0.5 when r; /a; < 3 and
decrease in the range w < 0.25 and increase in the range w > 0.25
when r;/a; = 3. In ML-HSs the NDNLF values increase with the
increase of r;/a; and in ML-SSs with the increase of r;/a;, decrease
in the range w < 0.5 and increase in the range w > 0.5. The foregoing
increase and decrease are faster for high values of w. When the two
shells are compared with each other, for both SDT and CST, in the
ranges r/a; =2 at 0<w<125 r/a =25 at w>1, and
ri/a; = 3 at w > 1, while the NDNLF values for ML-SSs being greater,
the difference between the values for them decreases as w or r/a
increase. If the layer orders are compared with each other, in both
shells NL-FVF values found for (90°/0°/0°/90°) are smaller.

In both shells, as w increases the SD effect on the NDNLF values
starts increasing about (%2) and later decreases about (3.5%) and
the increase and decrease are more pronounced for r;/a; =3 and
(90°) in the U pattern. When w = 0.5 in the U pattern as r;/a;
increases from 2 to 2.5, SD effect in ML-SSs and ML-HSs with V pat-
tern, respectively, decreases (%0.11) and (1.69%) in the (90°) layer
order and (0.05%) and (1.14%) in the (90°/0°/0°/90°) layer order,
whereas, as r;/a; increases from 2.5 to 3, increases (4.84%) and
(4.65%) in the (90°) layer order and (4.63%) and (4.44%) in the
(90°/0°/0°/90°) layer order. The SD effect difference between the
two shells being highest (3.03%) for (90°) and (%2.9) for
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w dependence of NDNLF for (a) ML-SS and (b) ML-HS consisting of U and X type CNT patterned layers with different arrangements and a; /a, ratio.

a/b w Multilayer spherical shells (VZ,(Ik) =0.28)
0° 90° 0°/90°/0°
18 X 18} X 18} X
SDT CST SDT CST SDT CST SDT CST SDT CST SDT CST
1 0 1.031 1.281 1.193 1.530 1.082 1.408 1.252 1.690 1.033 1.285 1.193 1.532
0.5 0.915 1.189 1.093 1.453 0.950 1.310 1.139 1.608 0.910 1.189 1.091 1.454
1.002 1.257 1.165 1.509 1.060 1.392 1.231 1.674 1.006 1.264 1.166 1.511
1.5 1.249 1.462 1.383 1.682 1.354 1.626 1.490 1.873 1.272 1.485 1.390 1.690
1.5 0 1.137 1.380 1.303 1.631 1.182 1.499 1.356 1.782 1.139 1.384 1.303 1.633
0.5 1.014 1.280 1.195 1.546 1.045 1.393 1.236 1.692 1.009 1.280 1.193 1.546
1 1.092 1.343 1.261 1.597 1.145 1.470 1.321 1.755 1.096 1.349 1.262 1.600
1.5 1.337 1.548 1.478 1.774 1.434 1.705 1.578 1.956 1.358 1.570 1.484 1.781
2 0 1.335 1.568 1.515 1.828 1.372 1.675 1.560 1.965 1.336 1.572 1.515 1.830
0.5 1.221 1.472 1.413 1.744 1.245 1.572 1.446 1.876 1.217 1.472 1.411 1.745
1 1.316 1.552 1.496 1.813 1.358 1.663 1.546 1.954 1.319 1.557 1.497 1.815
1.5 1.582 1.783 1.739 2.017 1.664 1.921 1.823 2.180 1.600 1.802 1.744 2.023
90°/0°/90° 0° /90°/90°/0° 90° /0°/0°/90°
1 0 1.080 1.404 1.252 1.688 1.037 1.297 1.195 1.541 1.077 1.393 1.251 1.681
0.5 0.956 1.310 1.141 1.608 0.911 1.198 1.090 1.461 0.956 1.301 1.142 1.601
1.057 1.385 1.230 1.672 1.011 1.277 1.168 1.520 1.052 1.374 1.228 1.664
1.5 1.332 1.605 1.484 1.867 1.287 1.504 1.399 1.704 1.319 1.587 1.475 1.854
1.5 0 1.181 1.495 1.356 1.780 1.143 1.395 1.305 1.641 1.178 1.485 1.355 1.773
0.5 1.050 1.394 1.238 1.692 1.010 1.289 1.193 1.553 1.050 1.385 1.239 1.686
1 1.142 1.464 1.320 1.753 1.101 1.361 1.264 1.608 1.138 1.453 1.318 1.745
1.5 1.414 1.685 1.572 1.950 1.372 1.588 1.493 1.794 1.401 1.668 1.564 1.937
2 0 1.371 1.671 1.559 1.963 1.339 1.582 1.516 1.837 1.369 1.662 1.559 1.956
0.5 1.250 1.573 1.448 1.876 1.217 1.480 1.411 1.751 1.249 1.565 1.449 1.870
1 1.356 1.658 1.545 1.952 1.323 1.568 1.499 1.822 1.352 1.648 1.544 1.944
1.5 1.646 1.903 1.818 2.174 1.612 1.818 1.751 2.035 1.636 1.888 1.811 2.163
Multilayer hypar shells V¥ = 0.28
a/b w 0° 90° 0°/90°/0°
1 0 0.934 1.204 1.106 1.463 0.990 1.339 1.169 1.629 0.936 1.209 1.106 1.465
0.5 0.850 1.139 1.035 1.411 0.887 1.265 1.084 1.570 0.844 1.139 1.034 1.412
1 0.981 1.241 1.146 1.494 1.041 1.377 1.213 1.662 0.985 1.248 1.147 1.497
15 1.263 1.474 1.396 1.693 1.366 1.637 1.502 1.883 1.286 1.496 1.403 1.700
15 0 1.039 1.300 1.214 1.560 1.088 1.426 1.270 1.718 1.041 1.305 1.214 1.562
0.5 0.958 1.236 1.145 1.508 0.991 1.353 1.188 1.658 0.953 1.236 1.144 1.508
1 1.089 1.340 1.258 1.595 1.142 1.468 1.318 1.753 1.093 1.347 1.259 1.598
1.5 1.373 1.579 1.512 1.802 1.467 1.733 1.610 1.982 1.394 1.601 1.519 1.809
2 0 1.249 1.496 1.435 1.763 1.289 1.607 1.482 1.904 1.250 1.500 1.436 1.765
0.5 1.185 1.443 1.381 1.719 1.210 1.545 1.415 1.852 1.181 1.443 1.379 1.719
1 1.335 1.568 1.515 1.828 1.377 1.679 1.563 1.967 1.338 1.574 1.515 1.830
1.5 1.640 1.835 1.795 2.066 1.719 1.969 1.877 2.225 1.658 1.854 1.800 2.072
90°/0°/90° 0° /90°/90°/0° 90° /0°/0°/90°
1 0 0.988 1.334 1.169 1.627 0.941 1.222 1.108 1.474 0.984 1.323 1.168 1.620
0.5 0.893 1.265 1.086 1.569 0.845 1.149 1.033 1.419 0.893 1.256 1.087 1.563
1.037 1.371 1.212 1.659 0.991 1.261 1.150 1.506 1.032 1.359 1.211 1.651
1.5 1.345 1.616 1.496 1.877 1.300 1.515 1.412 1.715 1.332 1.598 1.488 1.864
1.5 0 1.087 1.422 1.270 1.716 1.045 1.316 1.215 1.571 1.083 1.411 1.269 1.708
0.5 0.996 1.354 1.190 1.657 0.954 1.245 1.143 1.515 0.996 1.345 1.191 1.651
1 1.139 1.462 1.318 1.751 1.098 1.359 1.261 1.606 1.135 1.451 1.316 1.743
1.5 1.448 1.713 1.604 1.976 1.407 1.619 1.527 1.823 1.436 1.696 1.596 1.964
2 0 1.288 1.603 1.482 1.902 1.254 1.510 1.437 1.772 1.285 1.594 1.482 1.895
0.5 1.215 1.545 1.417 1.851 1.182 1.451 1.379 1.725 1.215 1.537 1.418 1.846
1 1.374 1.674 1.563 1.965 1.342 1.584 1.517 1.837 1.371 1.664 1.561 1.958
1.5 1.703 1.952 1.872 2.219 1.669 1.869 1.807 2.083 1.692 1.937 1.865 2.208

(90°/0°/0°/90°), this difference decreases as r;/a; increases. The two
profiles being compared with each other, the SD effect in the V profile
is less and the SD effect difference between the two profiles is maxi-
mum about (9%) for (90°) and about (%9.35%) for (90°/0°/0°/90°).
As w increases, the V pattern effect on the NDNLF values in both shells
at first increases about (1.6%) but later decreases about (2.4%) and
this increase and decrease in CST gains more relevance for
(90°/0°/0°/90°) when r;/a; = 1. When w = 1 as r;/a; passes from 2
to 3, in ML-SSs and ML-HSs, respectively, the V pattern effect
decreases (0.72%) and (1.69%) for SDT and (1.1%) and (2.08%) for
CST in the (90°) layer order and (0.67%) and (1.79%) for SDT and

(1.02%) and (2.13%) for CST in the (90°/0°/0°/90°) layer order.
The V pattern effect difference between the two shells is maximum
for SDT and CST, respectively, (3.36%) and (3.23%) in the (90°) layer
order and (3.77%) and (3.61%) in the (90°/0°/0°/90°) layer order and
this difference decreases as r,/a; increases. For both shells and for
both layer orders the SDT case decreases the V profile effect about
(6.4%).

The variation of NDNLF/NDLF ratios of ML-SSs and ML-HSs with w
forri/ay = 1.5, a1/az; = 1, a3 /h =15, (m,n) = (1,1) and V:¥ =0.12
is given in Fig. 7. As seen from Fig. 7a and b six different layer orders,
(0°), (90°), (0°/90°/0°), (90°/0°/90°), (0°/90°/90°/0°) and
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Fig. 5. w dependence of NDNLF values of ML-SSs and ML-HSs consisting of O
type CNT patterned layers starting with (a) (0°) and (b) (90°) sequences.

(90°/0°/0°/90°) and the V pattern are considered. As w increases,
while the NDNLF/NDLF ratios decrease for all layer orders in both

SDT and CST cases for w < 0.75 in ML-SSs and for w < 0.5 in ML-
HSs, they increase in ML-SSs for w > 0.75 and in ML-HSs for
w > 0.5. When the two shells are compared with each other, for all
layer orders, the NDNLF/NDLF ratios are greater when w > 0.75 for
SDT and when w > 0.5 for CST in ML-HSs. On the other hand, for all
layer orders, while the maximum NDNLF/NDLF ratio is obtained in
ML-SSs for CST and in ML-HSs for SDT when w = 1.25 and the mini-
mum ratio in ML-SSs for SDT when w = 0.75 and in ML-HSs for SDT
when w=0.5. In both shells for both SDT and CST cases the
NDNLF/NDLF ratios in three and four layered shells are smaller when
(0°/90°/0°) and (0°/90°/90°/0°) layer orders are compared with (0°),
whereas, larger when (90°/0°/90°) and (90°/0°/0°/90°) layer orders
are compared with (90°). As w increases, the SD effects on the
NDNLF/NDLF ratios for (0°), (90°), (0°/90°/0°), (90°/0°/90°),
(0°/90°/90°/0°) and (90°/0°/0°/90°), respectively, increase
(4.65%), (6.16%), (5.09%), (5.69%), (5.35%) and (5.43%) in ML-
SSs, when w < 0.75, and (6%), (7.96%), (6.69%), (7.26%), (7.06%)
and (6.9%) in ML-HSs when w < 0.5. On the other hand, the same
effects with the same conditions are decrease of (2.52%), (3.84%),
(2.2%), (3.39%), (3.16%) and (3.18%) for ML-SSs, when w > 0.75
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and (4.42%), (6.76%), (5.54%), (6.1%), (5.89%) and (5.76%) for
ML-HSs, when w > 0.5. The maximum SD effect difference is
(2.61%) for monolayer shell with the laminate (90°) and minimum
(1.01%) for monolayer shell with the laminate (0°). In both shells,
the SD effect obtained for V:®) = 0.12 is greater than that for
V;fl’” = 0.17, whereas, smaller than the one for V;(l” = 0.28. The max-
imum SD effect differences between V%) = 0.12 and V:¥' = 0.17 are
in ML-HSs and ML-SSs, respectively, (1.53%) and (1.18%) for (90°)
and (1.40%) and (1.08%) for (90°/0°/90°). The maximum SD effect
differences between V:¥ = 0.12 and V¥ = 0.28 are in ML-HSs
and ML-SSs, respectively, (1.48%) and (1.26%) for (90°) and
(1.38%) and (1.16%) for (90°/0°/90°).

The variations of NDNLF/NDLF ratios in ML-SSs and ML-HSs with
w for ry/a; = 1.5, 2, 2.5, a;/ay = 0.5, a;/h = 15, (m,n) = (1,1) and
V:® = 0.17 are presented by curves in graphical form in Fig. 8. As
seen from Fig. 8a and b, two-layer orders, (0°) and (0°/90°/90°/0°),
and two patterns, U and O, are being considered. In both shells,
depending on the increase in w and the three values of r; /a; the vari-
ation of NDNLF/NDLF ratios have different features. In ML-HSs for
both layer orders, while they decrease in the range w < 0.5, increase
in the range w > 0.5 when r;/a; < 2.5 and while they decrease in
the range w<0.25, increase in the range w > 0.25 when
ri/a; = 2.5. On the other hand, in ML-SSs for both layer orders, while
decreasing in the range w < 0.5, increase in the range w > 0.5 when
ri/a; > 1.5 and while decreasing in the range w < 0.75, increase in
the range w > 0.75 when r;/a; = 1.5. In both shells, NDNLF/NDLF
ratios increase as R;/a increases. When the two shells are compared
with each other, in both profiles, the NDNLF/NDLF ratios are greater
in ML-HSs for r;/a; > 1.5 and in ML-SSs for r;/a; =1.5 with
w = 0.25. Moreover, in both shells and for both layer orders for
ri/a; > 1.5 and w > 1 the NDNLF/NDLF ratios obtained for the O pat-
tern are greater. As w increases O pattern effect on the NDNLF/NDLF
ratios in both shells for r; /a; < 2 at first increases and later decreases
but for r; /a; > 2 at first increases and later decreases but even later
increases again. On the other hand, the maximum O pattern effects
in both shells and for both layer orders are obtained for r;/a; = 2.5
with w = 1.25. In the end, the maximum O pattern effect for (0°)
and (0°/90°/90°/0°), respectively, are in ML-SSs (%2.73) and (%
2.59) while in ML-HSs (%4.44) and (%4.09).

The variation of NDNLF/NDLF ratios with w in ML-SSs for
nm=1)=1,2,3 and mn=1)=1,2,3,;r;/a; =2, a;/a, =0.5,
a;/h =15 and V¥ = 0.28 are presented in Fig. 9. As seen from
Fig. 9a-d two different layer orders, (0°) and (0°/90°/90°/0°), and
the U and X patterns are considered. Depending on the variation of
w and the range of the number of waves, n(m = 1) and m(n = 1),
the variation of NDNLF/NDLF ratios have different features. While
the NDNLF/NDLF ratios increase as n(m = 1) and m(n = 1) pass from
1 to 2 and decrease as n(m = 1) passes from 2 to 3 both for SDT and
CST, as n = 1 and m passes from 2 to 3 they decrease for CST, but
increase for SDT. The NDNLF/NDLF ratios increase, as n(m=1)
changes, for (n,m) = (1,1) when w increases in the range w > 0.5,
for (m,n) = (1,3) in the range w > 0.25 and for (m,n) = (1,2) with
all w, and as m(n = 1) changes, for (m,n) = (2,1) and (m,n) = (3,1)
for all values of w. On the other hand, the values obtained for X pattern
are smaller than those for SDT whennim=1)>2and m(n=1) > 2,
but vice versa in the range w < 1, when (n,m) = (1,1). However,
the NDNLF/NDLF obtained for SDT are larger when n(m=1) > 2
and m(n=1)>2, but smaller in the range w<1 when
(n,m) = (1,1). When the two layer orders are compared with each
other for (n,m)=(1,1) in the range w < 0.75 the values obtained
for (0°/90°/90°/0°) layer order are less than those for (0°) shell and
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Fig. 6. w dependence of NDNLF values of ML-SSs and ML-HSs consisting of U and V type CNT patterned layers with the arrangements (90°/0°/0°/90°) within (a)

SDT and (b) CST, and for single layer (90°) within (c) SDT and (d) CST.

outside that range and if only one of the wave numbers is equal to and
the other larger than one, it is vice versa. While the NDNLF/NDLF
ratios increase as n (m 1) and m (n 1) pass from 1 to 2 and
decrease as m = 1 and n pass from 2 to 3 both for SDT and CST, as
n = 1 and m passes from 2 to 3 they decrease for CST, but increase
for SDT. The NDNLF/NDLF ratios increase, as m = 1 and n changes,
for (m,n)=(1,1) when w increases in the range w > 0.5, for
(m,n) = (1,3) in the range w > 0.25 and for (m,n) = (1,3) with all
w, and as n = 1 and m changes, for (m,n) = (2,1) and (m,n) = (3,1)
for all values of w. As w increases, the SD effect on NDNLF/NDLF
increases steadily whenn(m = 1) > 2 and m(n = 1) > 2, but decreases,
and then increases again, in that order, when n = m = 1. As the wave
number n(m = 1) passes from 1 to 2, the SD effect increases, whereas,
when the wave number passes from 2 to 3 it decreases. As the wave
number m(n = 1) passes from 1 to 2 and n(m = 1) passes from 2 to

3, the SD effect increases in the range w < 1. For example, for
nim=1)=2 as w increases from O to 1.5 about (13%) and (14%)
and for m(n=1) = 2 about (57%) and (60%) increases take place,
respectively, in (0°) and (0°/90°/90°/0°) layer orders. When w = 1
as n(m = 1) passes from 1 to 3 for (0°) and (0°/90°/90°/0°) layer
orders, respectively, at first increases of about (8%) and (9%) and later
decreases of about (3.6%) and (4%) and as m(n = 1) passes from 1 to 3

increases of about (43%) and (45%) take place. The SD effect differ-
ences between the two-layer orders are about (3.5%) for
m(n=1) =2 and about (1.0%) for all other wave numbers. As w
increases, the X pattern effect on NDNLF/NDLF increases for
n(m=1)>2 and m(n=1) > 2, whereas, increases, decreases, and
increases again for n = m = 1. As the wave number n(m = 1) passes
from 1 to 2 effect of X pattern increases, but as n(m = 1) passes from
2 to 3 it decreases. As the wave number m(n = 1) passes from 1 to 3,
the X pattern effect increases. As w increases, the maximum X pattern
effect change is (9.8%) for n(m = 1) and (14.09%) for m(n = 1) , both
being obtained for (0°/90°/90°/0°) layer order and as the wave num-
bers increase, the maximum X pattern effect change for n(m =1) is
(7%) and for m(n =1) is (13.14%), which are also obtained for the
same layer order.

6. Conclusions

In this article, the vibration of multilayer shell-type structural ele-
ments with double curvature consisting of CNT patterned layers at
finite deflection is investigated within different shell theories. The
FSDT has been generalized for the vibration problem of multilayer
shell-type structural elements with double curvature consisting of
CNT patterned layers for the first time. After creating the models of

10
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Fig. 7. w dependence of NDNLF values of ML-SSs and ML-HSs consisting of V
type CNT patterned layers starting with sequences (a) (0°) and (b) (90°)
within SDT and CST.

multilayer shell-type structural elements with double curvature con-
sisting of CNT patterned layers, basic relations and dynamic equations
in finite deflections are derived. Then, by applying Galerkin and semi-
inverse perturbation methods to motion equations of multilayer shell-
type structural elements with double curvature consisting of CNT pat-
terned layers based on Airy stress function, deflection function and
rotation angle functions frequency-amplitude relationship is obtained.
From these formulas, the expressions for nonlinear frequencies of mul-
tilayer spherical and hyperbolic-paraboloid shells, rectangular plate
and cylindrical panels patterned by CNTs within shear deformation
and classical shell theories are obtained in special cases. The safety
of the proposed formulation has been confirmed by comparison with
the results available in the literature. The effects of CNT patterns in
layers, volume fractions, sequence and number of layers on nonlinear
frequency are discussed in detail in the framework of SDT and CST,
and the changes of these effects in terms of quantity and quality are
presented.
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Appendix A

By, S(i=1,2,..,4,j=1,2,...,5) and I} (k = 3,4) are defined as:
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within (a) SDT and (b) CST, and for single layer 0° within (c) SDT and (d) CST.
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Appendix B

The parameter y; are defined as
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