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A B S T R A C T   

The classical three-dimensional bin packing problem (3D-BPP) orthogonally packs a set of rectangular items with 
varying dimensions into the minimum number of three-dimensional rectangular bins. While ensuring the min-
imum number of bins used, the safety of the logistic operations is addressed with the complementary load- 
balancing objective for which concepts such as orientation and stability are used in the literature though not 
at the same time. In this study, we extend the load-balanced 3D-BPP by combining both orientation and stability, 
and introducing a new concept called family unity which encourages packing a family of products (e.g., from the 
same order and with the same destination) together. Although item related concerns are very common in 
practice, there are no multi-objective studies in the bin packing literature that includes family unity concept. 
Therefore, this is the first study that proposes a multi-objective mixed integer programming model for the 
extended problem to determine the optimal packing plan that minimizes the number of bins used and the de-
viation of balance from the ideal barycenter while maximizing family unity ratio via a weighted objective 
function. A numerical example is provided to analyze the performance of the proposed model. Furthermore, a 
real-life container loading problem is solved and outputs of the study implies the practical advantages of 
including family unity and load-balance considerations in solving 3D-BPP problems.   

1. Introduction 

The 3D-BPP is a real-world driven combinatorial optimization 
problem with a strong impact on the economy, on the environment, and 
safety (Ramos, Silva, & Oliveira, 2018). It is one of the prominent con-
cerns in logistics where companies consolidate the goods into appro-
priate bins and deliver them to different locations along their supply 
chain. Inefficient planning methods for packing and shipping increase 
costs without adding value to the supply chain. To achieve high levels of 
economic efficiency, researchers have proposed a variety of mathe-
matical models and solution methods for the NP-hard bin packing 
problem. Numerous publications in the literature attempt to low-
er transportation costs by orthogonally and completely packing multiple 
items into bins without overlapping (Moon & Nguyen, 2014). 

In classical 3D-BPP, the objective is to pack rectangular items into 
the minimum number of three-dimensional rectangular bins. In addition 
to this objective, there are several factors to be considered in practice, 
such as load stability and load balance, besides other item and order- 

related concerns such as stacking requirements and packing the items 
within the same destination together. Load stability ensures that the 
minimum acceptable percentage of the base area of each item is sup-
ported, i.e., sits either on the floor or on top of another item. This 
maintains the stability of items for handling and transportation during 
internal and external logistics operations. The second factor, load- 
balance, is related to the weight of the items to be evenly distributed 
along the bin floor. Based on the mode of transportation, improper 
displacement from the ideal barycenter, which is defined as an ideal 
point such as the center of the bin, can increase the risks on cargo safety. 
Despite the apparent significance, load stability and balance factors are 
generally not considered explicitly in bin packing literature (Bortfeldt & 
Wäscher, 2013). Hence, the literature on the practical extension of 3D- 
BPP that takes these factors into account, namely load-balanced 3D-BPP, 
is relatively scarce. 

In this paper, we first introduce a practical concept, namely family 
unity, into the bin packing problem. The concept of family has been 
defined as a new feature to represent related concerns (delivery, 
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product, or customer-specific) that can be attached as a characteristic to 
each item individually. We introduce the family concept to describe a 
more comprehensive set of features while the product family is used to 
represent items of the same size or the same characteristic in the liter-
ature. This new concept addresses the items that need to be packed into 
the same bin due to practical considerations such as having the same 
destination, handling requirements, storage conditions and so on. 
Improving family unity provides better solutions both in reducing the 
scheduling complexity of handling equipment and execution of handling 
operations. Fig. 1 provides an illustrative example which shows a simple 
packing plan with two bins. While more than one type of handling 
equipment may be required in order to load/unload both bins in Fig. 1 
(a), each bin requires a single type of handling equipment in Fig. 1 (b). 
Furthermore, both bins can be sent to the final destination without any 
further handling at the transfer center where the first setup requires re- 
assigning items to bins based on the destination. 

Note that the concept of family unity differs from the compatibility 
concept readily available in the bin packing literature which allows or 
restricts the items to be packed into the same bin. The family concept 
can be considered as a specific feature that is assigned to each item to be 
packed into a number of bins. In the literature, item related concerns are 
considered under allocation constraints which can further be catego-
rized as connectivity constraints and multi-drop constraints. These 
constraints, however, do not exactly match the concept of family unity 
that we introduce. Connectivity constraints are used in single bin 
packing problems to ensure that the items belonging to the same 
customer are located close to each other in the same bin. (Gime-
nez Palacios, Alonso, Alvarez Valdes, & Parreño, 2020; Liu, Yue, Dong, 
Maple, & Keech, 2011; Terno, Scheithauer, Sommerweiß, & Riehme, 
2000). Another attempt for considering item-related constraints in sin-
gle bin packing problem is presented by Egeblad, Garavelli, Lisi, and 
Pisinger (2010), and aim to pack irregular items of same shape close 
together. Furthermore, in routing problems, multi-drop constraints are 
encountered. Regarding the order of delivery to the customers and the 
space required for the delivery, items are positioned in the bins so that 
the customer’s items become accessible without relocating another 
customer’s items. The items are located on a customer basis using 
strategies such as LIFO, according to the distribution order. (Ceschia & 
Schaerf, 2013; Bortfeldt, 2012; Christensen & Rousøe, 2009; Tarantilis, 
Zachariadis, & Kiranoudis, 2009; Gendreau, Iori, Laporte, & Martello, 
2006). In this study, we focus both on assigning the items in the same 
product family to the same bin and packing them within the bin taking 
balance constraints into account while the studies in literature generally 
focus on the close packaging of the products belonging to the same 
customer within the same bin. 

Family unity, on the other hand, helps to take the additional distri-
bution cost that is likely to emerge when the items with the same 
destination are packed within different bins into account implicitly. 
Thus, the overall cost is likely to decrease with the addition of this new 
practical concept though the total cost in the bin packing phase might 
increase. 

Next, we introduce a multi-objective mathematical model for the 
load-balanced 3D-BPP where the orientation of the items is allowed and 

item-related concerns are considered. To the best of our knowledge, this 
is the first work that proposes a mixed integer programming (MIP) 
model with a comprehensive set of constraints addressing three- 
dimensional replacement, stability and orientation, and a set of objec-
tive functions composing minimizing the number of bins used and the 
deviation from the ideal barycenter, along with maximizing the family 
unity ratio by using a weighted objective function. 

The remainder of this paper is organized as follows. We first provide 
a literature review on 3D-BPP in Section 2. In Section 3, we give a formal 
definition for the load-balanced 3D-BPP and family unity. Next, we 
propose a new mathematical model for 3D-BPP with orientation, sta-
bility, and family unity in Section 4. In the next section, we present a 
numerical example, comparative analysis, and discussion on the ad-
vantages of the proposed model. Also, the real case application, which 
led and inspired this work, is provided in Section 5. Finally, we present 
concluding remarks and suggestions for future research in Section 6. 

2. Literature review 

The packing problem has attracted research interest in the cutting 
and packing research community. Although the 3D-BPP can be modeled 
and solved as a mixed-integer program, there are few exact solution 
methodologies available (Elhedhli, Gzara, & Yildiz, 2019). In addition to 
exact methods, several studies have focused on developing heuristics for 
practical aspects of the problem (Chen, Lee, & Shen, 1995). Also, many 
heuristics, meta-heuristic and hybrid methods have been proposed to 
solve single and multi-bin packing problems (Elhedhli et al., 2019; 
Bortfeldt & Wäscher, 2013). We refer the reader to Zhao, Bennell, 
Bektaş, and Dowsland (2016) for a comparative review of recent liter-
ature on 3D-BPPs. 

In this section, we review the studies that correspond to the solution 
method we have considered. Therefore, we will provide a comprehen-
sive literature review on mathematical models in single and multiple bin 
packing problems. 

2.1. Single bin packing problem 

The most common objective in single bin packing problem is to 
maximize the space utilization (Kang, Moon, & Wang, 2012; Junqueira, 
Morabito, & Yamashita, 2012; Moon & Nguyen, 2014; Araya, Guerrero, 
& Nuñez, 2017), or equivalently, to minimize the total unused space 
(Chen et al., 1995). Egeblad and Pisinger (2009) have proposed a MIP 
model that packs a maximum profit subset of items into a bin with fixed 
dimensions. Although the mathematical model does not include orien-
tation, the authors have developed a well-performing packing heuristic 
which allows the orientation of the items for medium size instances. 
Baldi, Perboli, and Tadei (2012) have proposed a more efficient MIP 
formulation for the three-dimensional single bin packing problem with a 
profit-maximizing objective function and balancing constraints. Their 
model outperforms Egeblad and Pisinger (2009)’s using deriving both 
lower and upper bounds to the single bin packing problem. The results 
show that they obtain the optimal solution for small size instances. Moon 
and Nguyen (2014) have extended the work of Baldi et al. (2012) 
considering the maximization of volume utilization. The proposed al-
gorithm takes the trade-off between volume utilization and weight 
balance into consideration and handles the balance constraints to in-
crease the efficiency of oceanic transport while achieving superior vol-
ume utilization. Furthermore, Junqueira et al. (2012) present MIP 
models for the single bin packing problem with the issues of cargo sta-
bility and load-bearing. 

2.2. Multiple bin packing problem 

Bortfeldt and Wäscher (2013) have revealed that the practical con-
siderations in multiple bin packing problems have almost been neglec-
ted completely compared to the vast single bin packing literature. 

(a)Packing Plan without family unity       (b) Packing Plan with family unity

Fig. 1. The effect of Family Unity packing plans.  
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Although there is increasing momentum, the studies on the multiple bin 
case are still very scarce (Alonso, Alvarez-Valdes, Iori, & Parreño, 2019). 

Prior work on optimal packing of items into the minimum number of 
bins is based on a two-dimensional bin packing model which is formu-
lated by Martello and Vigo (1998). Liu, Tan, Huang, Goh, and Ho (2008) 
have further proposed a mathematical model for solving the two- 
dimensional bin packing problem regarding two objectives: mini-
mizing the number of bins used and balancing the load in each bin. 
However, the orientations and the stability of items are not considered. 
While it is practical to solve the two-dimensional bin packing problem 
for some types of cargo, 3D-BPP models are particularly important for 
container loading problems. However, 3D-BPP is strongly NP-hard and 
extremely difficult to solve in practice (Martello, Pisinger, & Vigo, 
2000). 

To our knowledge, the first analytical model of 3D-BPP considering 
orientations, multiple item sizes, multiple bin sizes, avoidance of item 
overlapping, and space utilization constraints is presented by Chen et al. 
(1995). Pedruzzi, Nunes, Rosa, and Arpini (2016) extended Chen et al. 
(1995)’s model by defining additional support constraints and a novel 
objective function minimizing the sum of the coordinates in order to 
yield compact arrangement of the items in the bins. Alonso, Alvarez- 
Valdes, Iori, Parreño and Tamarit (2017) present mathematical models 
for 3D-BPP, starting from a simple model to more complex models by 
adapting several extensions such as the weight and volume of pallet 
bases, the position of the center of gravity and the minimization of the 
number of pallets. 

A comprehensive study of Bortfeldt and Wäscher (2013) have 
reviewed 163 publications considering practical constraints in bin 
packing literature Table 1 summarizes the supplementary constraints in 

the proposed MIP models for multiple bin packing problem in the 
literature. 

Recent studies on 3D-BPP models reveal that the issue of satisfying 
several constraints simultaneously has not been satisfactorily addressed. 
Soft constraints have also not been substantially discussed, despite the 
fact that they are of considerable significance in practice (Bortfeldt & 
Wäscher, 2013). Even the smallest industry instances cannot be solved 
in reasonable times with current exact methodologies, and medium- and 
large-size 3D-BPP instances are only solved heuristically and remain out 
of reach of exact methods (Elhedhli et al., 2019). Elhedhli et al. (2019) 
have proposed an optimization model with layer-based column-gener-
ation approach that addresses practical constraints in order to distribute 
items in layers evenly for better spacing and increased support. 
Furthermore, Bortfeldt and Wäscher (2013) have stressed that multi- 
objective approaches appear to be a promising class of methods for 
solving these problems. Yet, bin packing problem with multiple objec-
tives has been studied very rarely in the literature. To the best of our 
knowledge, the first multi-objective mathematical model for solving bin 
packing problems is proposed for two-dimensional problems by Liu et al. 
(2008). The only study that utilizes multiple objectives in 3D-BPP be-
longs to Trivella and Pisinger (2016). They propose a MILP model for a 
multi-dimensional bin packing problem where the sum of displacements 
from the desired barycenter over the smallest number of used bins is 
minimized. 

3. Problem description 

The multiple bin packing problem seeks for the minimum number of 
bins used to pack three-dimensional rectangular-prism-shaped items. 
There are n items to be packed and each item ihas its lengthli, widthwi, 
height hi and weight ai wherei = {1,2,⋯, n}. We define the family of 
products to incorporate the delivery step of the items into the packing 
problem implicitly. Here, each family can be thought as a set of items 
with the same destination. An item can be a member of only one family 
of products f , which corresponds to the items that need to be packed 
together in the same bin. A binary parameter αif expresses whether itemi 
belongs to family f or not. A family can have only a single item, as well as 
all the items, can be in a single-family. In the best case, all the items in 
the product family will be fitted in a single bin and family unity, a 
measure of how good we perform to keep the items in the same family 
together, will be at its maximum. If this cannot be done, then the number 
of bins that the items in the family are scattered should be kept as 
minimum as possible to reduce the number of potential visits to the 
destination. 

Moreover, for orthogonal packing, every face of the items is 
considered to be parallel to the faces of the bin. The items are loaded into 
the bins with length Lj, width Wj and heightHj. The total weight of the 
items packed into a bin j cannot exceed load bearing capacityAj. For 
each binj, we define a three-dimensional cartesian coordinate system 
with the left-bottom-back vertex in the coordinate origin. The directions 
in x-axis, y-axis and z-axis are considered parallel with the width, height 
and length of the bin, respectively. Regarding load balancing consider-
ations, the ideal barycenter of a bin is assumed to be at its midpoint at 

Table 1 
Constraints in multiple bin packing mathematical models.  

Publication Bins Balance 
Constraints 

Stability 
Constraints 

Orientation 
Constraints 

Identical Variable 

Chen et al. 
(1995)  

+ + +

Eley (2003)  +

Trivella and 
Pisinger 
(2016) 

+ +

Pedruzzi 
et al. 
(2016)  

+ + +

Crainic, 
Gobbato, 
Perboli, 
and Rei 
(2016)  

+

Alonso, 
Alvarez- 
Valdes, 
Iori, 
Parreño, 
and 
Tamarit 
(2017) 

+ +

(a) Coordinate system of a bin (b) Allowed orientations of items in a bin 

Fig. 2. Bin Coordinates and possible item orientations.  
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the bottom which corresponds to 
(

Lj
2 ,

Wj
2 ,0

)

on the x-axis, y-axis and 

z-axis, respectively. The coordinate system for each bin is defined in 
Fig. 2(a). 

In 3D-BPP problems, the items can be packed into bins with 6 
possible orientations. However, in the majority of loading operations 
items are only allowed to be rotated on their base and overhead rotation 
is not allowed. In accordance with, common practice, we allow items to 
be loaded into bins in only two possible orientations as depicted in Fig. 2 
(b). 

In this study, we introduce a comprehensive extension of 3D-BPP 
including packing, stacking, orientation, capacity, and stability con-
straints with load-balancing and item-related concerns. The objective of 
the problem is to pack a set of items into the smallest number of bins 
while ensuring the load balance and family unity for families of items. 
Besides the additional complexity of load balance consideration on the 
already NP-hard packing problems (Trivella & Pisinger, 2016), we 
incorporate item-related constraints and a new conflicting objective on 
the problem which will further be explained in detail in the following 
chapter. The problem was already NP-hard, and by incorporating 
additional constraints and implementing new objective functions, we 
make it even more complicated. The main focus of this study is to 
examine the behavior of the mathematical model when family unity is 
included, rather than exhibit the model’s ability to solve large-scale 
problems. 

4. Proposed mathematical model-formulation 

In this section, we present a multi-objective MIP model for 3D-BPP 
with item-related and load-related constraints. We propose a compre-
hensive extension of the mathematical models in the literature that deal 
with multiple objectives as in Chen et al. (1995), Liu et al. (2008), 
Trivella and Pisinger (2016). Table 2 provides a brief overview of the 
distinguishing features of these studies. 

The proposed model addresses the fundamental constraints inherent 
in 3D-BPP, as presented by Chen et al. (1995), but differs in terms of 
stability, balance, orientation and family unity respects. The proposed 
model also differs from the work of Liu et al. (2008), which proposes 
two-dimensional bin packing model with multiple objectives: mini-
mizing wasted space and minimizing center of gravity deviation of all 
bins. Trivella and Pisinger (2016) expand their work to solve 3D-BPPs. 
In this study, we present a multi-objective mathematical model, 
inspired by Trivella and Pisinger (2016), by defining supplementary 
stability constraints and family unity constraints. We also introduce a 
novel objective function that maximizes the number of products from 
the same product family packed in every bin, addressing family unity. 

4.1. Decision variables 

The decision variables of the comprehensive 3D-BPP model are 
summarized in Table 3. 

The binary variables can be classified as assignment variables (pij,uj), 
position variables (x+

ik, x−
ik, y+ik, y−ik, z+ik, z−ik), orientation variables (lxi ,lyi , wx

i , 
wy

i ) and others (βjf ). The continuous variables indicate the coordinates of 

items 
(
xi, yi, zi

)
and barycenter of bins

(
gx

j , g
y
j , gz

j

)
. The position variables 

denote the position of items relative to each other wherei < k. 

4.2. The objectives 

The proposed 3D-BPP with multiple objectives aims to pack all items 
into bins with three goals:  

• Use fewest bins possible,  
• Keep items from the same product family together while allocating to 

bins,  
• Maintain load balance in bins. 

Therefore, we define three objective functions that minimizes the 
total number of bins used, maximizes family unity and minimizes total 
deviation from the ideal barycenter of each bins. 

The first objective function addresses the most common objective 
function of minimizing the total number of bins in 3D-BPP as in (1). 

Table 2 
Similarities and differences between the models for bin packing problems.  

Publication Objective Function Bins 
Dimensions 

Constraints 

Single Multi Identical/ 
Variable 

Orientation Balance Stabilty Family 
Unity 

Chen et al. (1995) minimize the total 
unused space  

Variable 
3D 

6 way  +

Liu et al. (2008)  OBJ1: minimize wasted space 
OBJ2: minimize center of gravity deviation 

Variable 
2D  

+

Trivella and 
Pisinger (2016)  

OBJ1: minimize the total number of bins used 
OBJ2: minimize center of gravity deviation 

Identical 
3D  

+

Proposed model  OBJ1: minimize the total number of bins used 
OBJ2: minimize deviation from the center of gravity 
OBJ3: maximize the number of items from the same product 
family packed in any bin which addresses family unity 

Variable 
3D 

2 way + + +

Table 3 
Decision variables in the formulation of 3D-BPP.  

Symbol Definition 

pij  1 if item i is packed into bin j, 0 otherwise.  
uj  1 if bin j is utilized, 0 otherwise.  

x+
ik  1 if item i is placed to the left of item k in the same bin, 0 otherwise.  

x−
ik  1 if item i is placed to the right of item k in the same bin, 0 otherwise.  

y+ik  1 if item i is placed behind of item k in the same bin, 0 otherwise.  

y−ik  1 if item i is placed in front of item k in the same bin, 0 otherwise.  

z+ik  1 if item i is placed below of item k in the same bin, 0 otherwise.  

z−ik  1 if item i is placed above of item k in the same bin, 0 otherwise.  
lxi  1 if the length of item i is parallel to X-axis, 0 otherwise.  

lyi  1, if the length of item i is parallel to Y-axis, 0 otherwise.  

wx
i  1, if the width of item i is parallel to X-axis , 0 otherwise.  

wy
i  1, if the width of item i is parallel to Y-axis, 0 otherwise.  

βjf  1 if at least one item in family f is packed in bin j , 0 otherwise.  
xi,yi, zi  continuous nonnegative variables denoting the left-bottom-back 

coordinate of item i in a bin  

gx
j ,g

y
j ,gz

j  continuous variables denoting barycenter of bin j on the x-, y- and z- axes 
respectively   
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Minimize
∑|J|

j
uj (1) 

The second objective aims to maximize the number of items from the 
same product family packed in any bin which addresses family unity. 

Minimize
∑|F|

f=1

∑|J|

j=1
βjf (2) 

Thus, the assignments of items in the same family of products to the 
same bin are encouraged by (2). Keeping all the items from the same 
family of products in the same bin may not be achievable for the ma-
jority of the cases. However, the model promotes such solutions to 
ensure that the items assigned to the bins to be from the same family of 
products as much as possible. In the best-case scenario, each bin may 
have items only from the same product family, where 

∑
f βjf = 1(∀j ∈ J)

and
∑

jβjf ≤
∑

juj(∀f ∈ F). In the worst-case scenario, each bin has at 
least one item from each product family, where 

∑
j
∑

f βjf = |F|*|J|. 
The third objective is the load-balance objective function that min-

imizes the total deviation of the actual barycenter from the ideal center 
of gravity for all bins, as in (3). 

Minimize
∑|J|

j=1

⃒
⃒
⃒
⃒g

x
j −

Lj

2

⃒
⃒
⃒
⃒+

⃒
⃒
⃒
⃒g

y
j −

Wj

2

⃒
⃒
⃒
⃒+

⃒
⃒
⃒gz

j − 0
⃒
⃒
⃒ (3) 

Consequently, we formulate the weighted objective function of (1), 
(2) and (3) by defining parametersθ1, θ2, θ3 ≥ 0 respectively for relative 
importance interests. For scaling, we employ a typical proportion-based 
normalization procedure. In order to normalize each objective in the 
entire range of the pareto-optimal region, the nadir and ideal objective 
vectors can be used (Deb, 2001). Each objective function is normalized 
to be in the interval of [0,1] by computing differences of optimal func-
tion values in the nadir and utopian objective function values that gives 
the length of the intervals where the optimal objective functions vary 
within the Pareto optimal set. Let oU

i is the utopian objective value and 
oN

i is the nadir objective value, then objective function fi(x) is normalized 

as fi(x)− oU
i

oN
i − oU

i
. 

4.3. Constraints 

The 3D-BPP seeks the optimal packing plan for a given set of items 
assuming that the number of bins is not limited. Constraints (4) ensure 
that an item i can be assigned to a bin j only if bin j is used. 

pij ≤ uj ∀i ∈ I,∀j ∈ J (4) 

Constraints (5) ensure that each item i is packed. 

∑|J|

j=1
pij = 1 ∀i ∈ I (5) 

Constraints (6) and (7) ensure that items are placed into bin without 
exceeding the length/width of bin where M is a large scalar. Note again 
that we consider only two possible orientations. Therefore, rotation in 
the z-axis is not taken into account in constraints (8) which ensures that 
the height of the bin is not exceeded. 

xi + lilx
i +wiwx

i ≤ Ljuj +(1 − pij)M ∀i ∈ I,∀j ∈ J (6)  

yi + lily
i +wiwy

i ≤ Wjuj +(1 − pij)M ∀i ∈ I, ∀j ∈ J (7)  

zi + hi ≤ Hjuj +
(
1 − pij

)
M ∀i ∈ I,∀j ∈ J (8) 

Constraints (9)–(14) prevents overlapping of items i and k, if they are 
packed in the same bin. 

xi + lilx
i +wiwx

i ≤ xk +(1 − x+ik)M ∀i, k ∈ I, i < k (9)  

xk + lklx
k +wkwx

k ≤ xi +(1 − x−ik)M ∀i, k ∈ I, i < k (10)  

yi + lily
i +wiwy

i ≤ yk +(1 − y+ik)M ∀i, k ∈ I, i < k (11)  

yk + lkly
k +wkwy

k ≤ yi +(1 − y−ik)M ∀i, k ∈ I, i < k (12)  

zi + hi ≤ zk +
(
1 − z+ik

)
M ∀i, k ∈ I, i < k (13)  

zk + hk ≤ zi +
(
1 − z−ik

)
M ∀i, k ∈ I, i < k (14) 

Constraints (15) ensure that if item i and k are in the same bin, then at 
least one of the relative positions (left, right, above, under, behind or in- 
front-of) should hold. 

x+ik + x−ik + y+ik + y−ik + z+ik + z−ik ≥ pij + pkj − 1 ∀i, k ∈ I, i < k (15) 

Constraints (16)–(19) define the proper orientations for each item. 

lx
i + ly

i = 1 ∀i ∈ I (16)  

lx
i +wx

i = 1 ∀i ∈ I (17)  

wx
i +wy

i = 1 ∀i ∈ I (18)  

ly
i +wy

i = 1 ∀i ∈ I (19) 

Constraint (20) ensures that the total weight of items in bin j does not 
exceed the capacity of the bin. 

∑|I|

i=1
aipij ≤ Ajuj ∀j ∈ J (20) 

Constraints (21)–(23) computes the barycenter of each bin in x-axis, 
y-axis and z-axis. 

gx
j

∑|I|

i=1
aipij =

∑|I|

i=1
aipij

(

xi +
1
2
lilx

i +
1
2
wiwx

i

)

∀j ∈ J (21)  

gy
j

∑|I|

i=1
aipij =

∑|I|

i
aipij

(

yi +
1
2

lily
i +

1
2

wiwy
i

)

∀j ∈ J (22)  

gz
j

∑|I|

i=1
aipij =

∑|I|

i
aipij

(

zi +
1
2
hi

)

∀j ∈ J (23) 

Since βjf represents the existence of a family in a bin j, constraints 
(24) connect family existence and used bins. Constraints (25) determine 
if at least one item exists in a bin j from family f , i.e. βjf = 1, for each bin 
considering the families of the items, αif . 

βjf ≤ uj ∀j ∈ J, ∀f ∈ F (24)  

∑|I|

i=1
αif pij ≤ βjf M ∀j ∈ J, ∀f ∈ F (25) 

Finally, the binary variables and non-negativity constraints are given 
in constraints (26) and (27), respectively. 

pij, uj, x+ik , x
−
ik , y

+
ik , y

−
ik , z+ik , z

−
ik , l

x
i , l

y
i ,w

x
i ,wy

i , βjf ∈ {0, 1} (26)  

xi, yi, zi, gx
j , gy

j , gz
j ≥ 0 (27)  

4.4. Linearization for load-balance formulations 

In this section, we linearize the model by defining new auxiliary 
variables and additional constraints in the model. The load-balance 
objective function (3) uses a rectilinear metric to calculate the dis-
tance between the actual barycenter and the ideal barycenter of a bin. 
We introduce additional nonnegative variables for each absolute value 
term in (3) and replace the absolute term with the summation of new 
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nonnegative variables. We employ Eq. (28) for load balance objective 
function as in: 

Minimize
∑|J|

j

(
ex+

j + ex−
j + ey+

j + ey−
j + ez+

j + ez−
j

)
(28)  

where 
⃒
⃒
⃒
⃒g

x
j −

Lj
2

⃒
⃒
⃒
⃒ = ex+

j − ex−
j , ex+

j ≥ 0, ex−
j ≥ 0, 

⃒
⃒
⃒
⃒g

y
j −

Wj

2

⃒
⃒
⃒
⃒ = ey+

j − ey−
j ey+

j ≥ 0ey−
j ≥ 0,

⃒
⃒
⃒gz

j

⃒
⃒
⃒ = ez+

j − ez−
j ez+

j ≥ 0ez−
j ≥ 0.

Consequently, the linearized objective function (29) can be defined 
as; 

In the mathematical model, also constraints (21)–(23) computing the 
barycenter of each bin j are nonlinear equations. The terms in Eq. (21) 
are rearranged as in Eq. (30). 
∑

i
aipijgx

j −
∑

i
aipijxi −

∑

i
aipij

1
2
lilx

i −
∑

i
aipij

1
2
wiwx

i = 0 (30) 

There are two types of nonlinear terms in Eq. (30), where two terms 
appear to be the multiplication of one binary variable and one contin-
uous variable, and the remaining two terms are depicted as the multi-
plication of two binary variables. 

For linearizing the term including multiplication of one binary var-
iable and one continuous variable, we introduce a new nonnegative 
variable dij with dij = pijgx

j and add the inequalities given in Eqs. (31)– 
(33) to the mathematical model. 

dij ≥ gx
j − M

(
1 − pij

)
(31)  

dij ≤ Mpij (32)  

dij ≤ gx
j (33) 

By setting the same linearization method, we define a nonnegative 
variable eij, where eij = pijxi, and add the following inequalities, in Eqs. 

(34)–(36), to the mathematical model. 

eij ≥ xi − M
(
1 − pij

)
(34)  

eij ≤ Mpij (35)  

eij ≤ xi (36) 

For linearizing the multiplication of two binary variables in the 
proposed model, we introduce binary variable bij with bij = pijlxi , and add 
Eqs. (37)–(39) to the mathematical model. 

bij ≤ lx
i (37)  

bij ≤ pij (38)  

bij ≥ lx
i + pij − 1 (39) 

Similarly, we employed the same procedure to linearize 
(

pijwx
i

)

multiplication and introduce nonnegative variable cij with cij = pijwx
i and 

add Eqs. (40)–(42) to the mathematical model. 

cij ≤ wx
i (40)  

cij ≤ pij (41)  

cij ≥ wx
i + pij − 1 (42) 

Consequently, we replace Eq. (21) with Eq. (43) in the proposed 
model and add the constraints in Eqs. (31)–(42) to mathematical model. 
∑

i
aidij −

∑

i
aieij −

∑

i

1
2

ailibij −
∑

i

1
2

aiwicij = 0 (43) 

Similarly, we utilize the same transformation procedures to linearize 
constraint (22) and replace it with the constraints (44)–(56) in the 
mathematical model. 
∑

i
aitij −

∑

i
aivij −

∑

i

1
2

ailirij −
∑

i

1
2

aiwisij = 0 (44)  

tij ≥ gy
j − M

(
1 − pij

)
(45) 

Table 4 
3D-BPP instance with 16 items (Trivella & Pisinger, 2016).  

Item 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

wi  9 3 6 6 5 2 7 4 2 7 8 1 2 5 6 3 
li  7 5 6 1 3 3 3 8 7 10 6 2 4 4 9 7 
hi  2 8 5 8 9 10 8 3 6 3 9 2 1 5 3 3  

Table 5 
Comparative results for the mathematical models.   

(Trivella & Pisinger, 2016) The proposed model (with no orientation) The proposed model (with orientation) 

Bin 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 

gx
j  5 5 5 5 5 5 5 5 5.071 

gy
j  5 5 5 5 5 5 5 5 5.031 

gz
j  3.716 3.341 4.265 3.716 3.341 4.265 3.933 2.613 4.244 

Total deviation 11.322 11.322 10.892  

Minimize θ1

∑|J|

j
uj + θ2

∑|F|

f=1

∑|J|

j=1
βjf + θ3

∑|J|

j=1

(
ex+

j + ex−
j + ey+

j + ey−
j + ez+

j + ez−
j

)
(29)   
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tij ≤ Mpij (46)  

tij ≤ gy
j (47)  

vij ≥ yi − M
(
1 − pij

)
(48)  

vij ≤ Mpij (49)  

vij ≤ yi (50)  

rij ≤ ly
i (51)  

rij ≤ pij (52)  

rij ≥ ly
i + pij − 1 (53)  

sij ≤ wy
i (54)  

sij ≤ pij (55)  

sij ≥ wy
i + pij − 1 (56)  

where tij = pijgy
j , vij = pijyi, rij = pijlyi and sij = pijwy

i hold. 
Finally, we introduce new variables as mij = pijgz

j and nij = pijzi and 
linearize constraints (23) by substituting constraints (57)–(63) into the 
mathematical model. 
∑

i
aimij −

∑

i
ainij −

∑

i

1
2

aihipij = 0 (57)  

mij ≥ gz
j − M

(
1 − pij

)
(58)  

mij ≤ Mpij (59)  

mij ≤ gz
j (60)  

nij ≥ zi − M
(
1 − pij

)
(61)  

nij ≤ Mpij (62)  

nij ≤ zi (63) 

Summarizing the previous concerns, the resulting multi-objective 
MILP model aims to minimize functions in Eq. (29). The proposed 
model contains the constraints in Eqs. (4)–(20), (24)–(27) and (31)– 
(63). Therefore, by eliminating the nonlinear expressions, we highlight 
the advantages of MILP formulation due to the increasing size of the 
mathematical model. 

5. Application 

In this section, we present a numerical study by using the instances 
used in Trivella and Pisinger (2016) to verify our model and a real-case 
study that stimulates this work to include item-related concerns in 
solving 3D-BPPs. 

5.1. Numerical study 

For the verification and validation of the comprehensive 3D-BPP 
model, we present a comparative analysis with Trivella and Pisinger 
(2016), as this is the first and only study that discusses the outputs of the 
proposed load-balanced multi-dimensional bin packing MIP formulation 
in the literature. Martello et al. (2000) present 8 data classes for three- 
dimensional multiple bin packing problems which have been widely 
accepted in the literature. Trivella and Pisinger (2016) further incor-
porate a new dimension, item weight, to the datasets. The data instance, 
in Table 4, is employed for presenting an explanatory example by Ta
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e 
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2- Family Case

3- Family Case (a)

3- Family Case (b)

Bin 1 Bin 2 Bin 3 

Bin 1 Bin 2 Bin 3 

Bin 1 Bin 2 Bin 3 Bin 4 

Fig. 3. Optimal Packing Plans.  

Table 7 
Comparative Results for Different Weight Combinations.  

Weights Case 1 
θ1 = 1, θ2 = 0,θ3 = 0  

Case 2 
θ1 = 0, θ2 = 0,θ3 = 1  

Case 3 
θ1 = 0, θ2 = 1,θ3 = 0  

Bin 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 4th 

gx
j  5.164 4.299 5.261 5 5 5 3.977 4.18 4.266 4.863 

gy
j  5.483 5.103 4.691 5 5 5 3.919 4.269 4.968 5.011 

gz
j  5.021 5.591 4.22 4.282 2.976 4.309 4.256 6.838 4.247 4.262 

Family (%) 80 %A 
20 %C 

20% A 
40% B 
40% C 

12% A 
50% B 
33% C 

20 %A 
60 %B 
20 %C 

40 %B 
60 %C 

83 %A 
17 %C 

100 %B 100 %C 100 %B 100 %A 

FUR 80% 40% 50% 60% 60% 83% 100% 100% 100% 100% 
Total deviation 16.853 11.567 24.172  

Weights Case 4 
θ1 = 0.5, θ2 = 0.5,θ3 = 0  

Case 5 
θ1 = 0.5, θ2 = 0,θ3 = 0.5  

Case 6 
θ1 = 0, θ2 = 0.5,θ3 = 0.5  

Case 7 
θ1 = 0.33, θ2 = 0.33,θ3 = 0.33  

Bin 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 

gx
j  5.195 5.276 5.219 5 5 5 5 5 5 5 5 5 

gy
j  5.558 4.939 4.491 5 5 5 5 5 5 5 5 5 

gz
j  5.729 4.929 4.687 2.280 4.710 4.242 4.193 3.851 4.119 4.193 3.795 4.119 

Family (%) 67 %B 
33 %C 

100 %A 100 %C 67 %B 
33 %C 

50% A 
50% C 

33% A 
50% B 

100 %B 29 %B 
71 %C 

100 %A 100 %B 29 %B 
71 %C 

100 %A 

FUR 67% 100% 100% 67% 50% 50% 100% 71 %C 100 %A 100% 71% 100% 
Total deviation 17.163 11.232 12.163 12.107  
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Trivella and Pisinger (2016). This data instance containing 16 items is 
generated according to the 6th class of Martello et al. (2000)’s datasets 
and item densities are assumed to be 1. The bins are identical to each 
other and each in the shape of a cube with a side of 10 units. 

To be consistent with Trivella and Pisinger (2016), we restricted our 
model with two assumptions: (i) orientation of items is not allowed and 
(ii) family unity related components are omitted. The model is coded in 
GAMS 22.8 on an Intel i5 2.50 GHz computer with 8.0 GB RAM and 64- 
bit operating system and solved for optimality. Then, we allowed the 
orientation of items in x- and y-axis as in our proposed model and ob-
tained better results as expected. The coordinate of the ideal barycenter 
is (5, 5, 0) and the total deviation is computed by using the formulation 
as in (2). The results are summarized in Table 5 where the total deviation 
is calculated using (2). 

It is not a coincidence that the objective function is improved when 
we allow the orientation of items. For this dataset, about a 4% 
improvement is achieved on the objective function, even when rotation 
is allowed only on its base. 

Subsequently, we incorporate the family unity concept into load- 
balanced 3D-BPP. According to our knowledge, this study is the first 
work in the literature that introduces the product family concept for 3D- 
BPP. Therefore, we use the numerical example of Trivella and Pisinger 
(2016) as a testbed to better emphasize the significance of the concept. 
We generate cases by assigning items to families to represent the results 
for three different cases in addition to Single Family Case, as in Table 6. 
In 2-Family Case, for ease of control, we define two types of product 
family where the first 8 items (1–8) are assumed to be in family A and 
the remaining items (9–16) are in family B. In order to examine the 
implications of higher the family variety, we briefly represent two 
different 3-Family Cases. The difference between these two cases is only 
related the item-family assignments. The items (1–6) belong to Family A, 
the items (7–11) belong to Family B and the remaining items belong to 
Family C in the 3-Family Case (a) where 5 items (1,5,6,8,12) belong to 
Family A, 5 items (3,7,9,14,16) belong to Family B and remaining items 
(2,4,10,11,13,15) belong to Family C in the 3-Family Case (a). 

We introduce the concept of family unity ratio (FUR) to evaluate the 
packing of items from the same family into the same bin. Let A be the set 
of items packed in a bin, F be the set of product families and v is an 
injective function that maps distinct subsets of A to distinct elements of 
its codomain set F . Suppose A 1,A 2⋯.,A f denote the collection of 
distinct subsets of A where A = A 1 ∪ A 2⋯ ∪ A f holds. Then, A f is one 
of the subsets of A and is associated with a product family f in set F as 
in (64) 

A f = {i|i ∈ A ∧ v(i) = f } ∀f ∈ F (64) 

The family unity ratio is the ratio of the cardinality of the subset with 
the highest cardinality to the cardinality of A . 

FUR =

max
f

⃒
⃒A f

⃒
⃒

|A |
(65) 

FUR values are calculated using (65). Under single family case, FUR 
values will not give any insight as they all will be calculated as 100%. 

The result of the numerical study shows that three objectives in the 
mathematical model are conflicting objectives and ignoring the family 
unity objective may prevent to determine superior solutions without 
disrupting the objectives of minimizing the number of bins used but not 
a deviation from the ideal barycenter. For |F| = 2 and |F|(b) = 3 cases, all 
items are packed in 3 bins, as in Single Family Case. Despite the increase 
in item variety, the number of bins used has not changed, but the family 
unity ratio of each bin cannot be achieved at 100%. Additionally, for 
three family cases, 3-Family Case (b) is better than 3-Family Case (a) in 
terms of family unity objectives, but sacrifices from the load-balance 
objective, considerably. The load-balance objective may result in infe-
rior values as family diversity increases. By presenting these cases, we 
show possible consequences of including/ignoring one of these objective 
functions. Therefore, we emphasize the importance of evaluating solu-
tions in terms of more than one objective function. Fig. 3 illustrates the 
optimal packing plans for 2-Family case and 3-Family case which are 
visualized by using EasyCargo software. 

When the packing plans in the Fig. 3 are examined, it is clearly seen 
that in 2- Family Case and 3- Family Case (a), the two bins are 
completely homogeneous in terms of product family, and all bins used in 
3- Family Case (b) are homogeneous. 

We present the outputs for various combinations of θ values in order 
to analyze the potential consequences of changes in the importance 
weights of objective functions. Table 7 shows seven cases, each of which 
accounts for a single objective function in the first three cases, the 
outcomes of a two-combination of the three objectives in Cases 4–6, and 
the final case (Case 7) demonstrates the simultaneous consideration of 
the three objective functions. 

While the number of bins used in Case 1 and 2 is 3, when the weight 
of objective 2 is taken as 1, the number of bins increased to 4, and the 
FUR value is found to be 100% in all bins. However, the deviation from 
the center of gravity was dramatically high. In other combinations, 
uniform changes observed according to the weights. 

The optimal packing decision is affected regarding the importance 
weight of family unity, the number of bins used and the total deviation 
from the ideal barycenter. The proposed model can increase the 
awareness of decision makers on the tradeoffs of these objective func-
tions. This study anticipates the disadvantages that may arise from 
ignoring the product family concept. 

Table 8 
Filter Types.  

Filter Type Number Width (cm) Length (cm) Height (cm) 

Air filter 8 145 145 175 
Oil filter 8 145 145 175 
Fuel filter 12 138 138 158  

Table 9 
Case study results.   

Solution for the real problem without product family (Case I) Solution for the real problem with product family (Case II) 

Bin 1st 2nd 3rd 4th 5th 6th 1st 2nd 3rd 4th 5th 6th 

gx
j  152.00 152.00 152.00 152.00 152.00 152.00 152.00 152.00 152.00 152.00 152.00 152.00 

gy
j  152.00 152.00 152.00 152.00 152.00 152.00 152.00 152.00 152.00 152.00 152.00 152.00 

gz
j  81.46 85.68 87.50 81.46 83.68 165.79 87.50 145.83 87.50 87.50 79.00 158.00 

Air filter  3 2 1 1 1 2 6     
Oil filter 1  2  1 4   4 4   
Fuel filter 3 1  3 2 3     4 8 
FUR 75% 75% 50% 75% 50% 50% 100% 100% 100% 100% 100% 100% 
Total Deviation 585.57 645.33  
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5.2. Real case study 

This work is motivated by a real problem from a Turkish filter 
company that produces several types of filters for local and international 
markets, especially in Europe, Russia and the Middle East regions. The 
company outsources logistics operations for overseas regions and uses 
its trucks for road transportation. The company makes three main 
classes of filters: air filters, oil filters and fuel filters. Regarding the 
specific requirements of handling, loading and storing, the company 
realizes the advantages of packing similar items together and reducing 
the item variety in bins. In Table 8, we summarize the dimensions and 
the quantities for three filter types. The filters are packed into identical 
bins with dimensions 305 × 305 × 365 cm. 

We note that the data has been slightly modified in accordance with 
the confidentiality agreement. As depicted in Table 8, the air filters and 
the oil filters are the same in size and quantity but they have different 
handling requirements. When the family unity aspect of the problem is 
ignored, the mathematical models and methods generate layouts 
regardless of family unity requirements. Therefore, in order to observe 
the effect on results, we introduce Case I which neglects product family 
aspect and Case II includes real data of product families. We summarize 
the results for both cases in Table 9. 

For the real problem, Case I provides the perfect value of the total 
deviation and the number of bins because the product family aspect is 
neglected. When the results of Case I is compared to Case II, the items 
from the same family can be packed into same bin without increasing the 
number of bins used. Regarding the outputs of the mathematical model 
for this problem, the minimum number of used bins is 6 for both Case I 
and Case II, and the product family unity in each bin in Case II is better 
than the bins in Case I. However, the deviation from the ideal barycenter 
has increased when the product family unity is encouraged. The results 
show that there exists a tradeoff between product family unity and load- 
balance objectives. 

Lastly, the company’s feedbacks on the quality of problem outputs 
can be addressed. Their business strategy is based primarily on on-time 
delivery and accurate order fulfillment. The use of analytical approach 
to solve 3D-BPP mainly improve their operations strategy and the family 
unity aspect allow them to create better loading plans and better 
handling operations in terms of time and cost. Using the proposed 
approach to ensure bin homogeneity reduces the need for various 
handling equipment at the same time simplifies delivery operations 
planning and reduces transportation costs as multiple visits to a single 
customer is minimized. 

6. Conclusions and future research 

Nowadays, as the competitive conditions between businesses in-
crease, businesses improve themselves to reduce the costs of their pro-
cesses and to provide more efficient service to customers. One of the 
most important processes in the order and delivery phase of the cus-
tomers is the logistics process. In the logistics process, businesses are 
primarily concerned with loading boxes into bins more efficiently. 
Furthermore, it is known that effective packaging plans not only 
significantly reduce logistics and transportation costs but also increase 
customer satisfaction. In the literature, mostly, boxes are placed in bins, 
while the constraints used in real-life problems are ignored. Therefore, 
considering the constraints of real-life problems, it has been introduced 
a mathematical model for the load-balanced 3D-BPP where the orien-
tation of the items is allowed and item-related concerns are considered 
via product family vision. 

Firstly, in the proposed mathematical model, constraints (20)–(22) 
and objective function (3) are linearized and solved. For validating the 
model, Trivella and Pisinger (2016)’s problem is solved with the pro-
posed model without allowing rotation of items and assuming the items 
are from the same family. Next, the comparative results are examined 
when we allow orientation of items in both x- and y-axis as in our 

proposed model. It is not a coincidence that the objective function is 
improved when we allow the 3D orientation of items. For the used 
dataset, about a 4% improvement has been achieved on the objective 
function, even when only rotation is allowed only on its base. Lastly, by 
changing the number of product families, the cases are created and it is 
observed that items belonging to the same family are assigned to the 
same bin as much as possible. However, as the number of families 
increased, deviation from the ideal barycenter increased. 

Furthermore, a real 3D-BPP, which arises as a container loading 
problem with specific requirements, is presented and solved with the 
proposed mathematical model. The company has three types of product 
family and operates its packing activities by neglecting the specific re-
quirements of these families. Ignoring the differences between product 
families increases complexity in loading operations and causes implicit 
logistic costs. Therefore, the packing decision is made by considering the 
product family in order to take the advantage of similar items being 
packed together in handling, loading and storage operations. The out-
puts of the real case study shows that the number of bins obtained in 
both cases remain same. However, the deviation from the ideal bary-
center has increased when the product family unity is encouraged. The 
results show that there exists a tradeoff between product family unity 
and load-balance objectives. 

Consequently, the purpose of this study is, we introduce a mathe-
matical model for the load balanced 3D-BPP where orientation of the 
items is allowed and item-related concerns are considered via product 
family vision. According to our knowledge, we first propose a MIP model 
with a comprehensive set of constraints addressing three-dimensional 
replacement, stability and orientation, and a set of objective functions 
minimizing the number of bins used, the product family unity and the 
deviation from the ideal barycenter. The proposed mathematical model 
is promising, showing that effective load balancing and efficient family 
unity can be obtained. For solving large scale problems, the mathe-
matical modelling approach may be considered unsatisfactory. Future 
work may seek to develop an efficient metaheuristic algorithm that 
addresses all the constraints and concepts proposed in this study. 
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Bortfeldt, A., & Wäscher, G. (2013). Constraints in container loading–A state-of-the-art 
review. European Journal of Operational Research, 229(1), 1–20. 

Ceschia, S., & Schaerf, A. (2013). Local search for a multi-drop multi-container loading 
problem. Journal of Heuristics, 19(2), 275–294. 

Chen, C. S., Lee, S. M., & Shen, Q. S. (1995). An analytical model for the container 
loading problem. European Journal of Operational Research, 80(1), 68–76. 

Christensen, S. G., & Rousøe, D. M. (2009). Container loading with multi-drop 
constraints. International Transactions in Operational Research, 16(6), 727–743. 

Crainic, T. G., Gobbato, L., Perboli, G., & Rei, W. (2016). Logistics capacity planning: A 
stochastic bin packing formulation and a progressive hedging meta-heuristic. 
European Journal of Operational Research, 253(2), 404–417. 

Deb, K. (2001). Multi-Objective Optimization Using Evolutionary Algorithms. USA: John 
Wiley & Sons, Inc. (ISBN: 978-0-471-87339-6). 

Gendreau, M., Iori, M., Laporte, G., & Martello, S. (2006). A tabu search algorithm for a 
routing and container loading problem. Transportation Science, 40(3), 342–350. 

EasyCargo [Computer Software]. (2021). Retrieved from https://www.easycargo3d. 
com/. 

Egeblad, J., & Pisinger, D. (2009). Heuristic approaches for the two-and three- 
dimensional knapsack packing problem. Computers & Operations Research, 36(4), 
1026–1049. 

Egeblad, J., Garavelli, C., Lisi, S., & Pisinger, D. (2010). Heuristics for container loading 
of furniture. European Journal of Operational Research, 200(3), 881–892. 

S. Erbayrak et al.                                                                                                                                                                                                                               



Computers & Industrial Engineering 159 (2021) 107518

11

Eley, M. (2003). A bottleneck assignment approach to the multiple container loading 
problem. OR Spectrum, 25(1), 45–60. 

Elhedhli, S., Gzara, F., & Yildiz, B. (2019). Three-dimensional bin packing and mixed- 
case palletization. Informs Journal on Optimization, 1(4), 323–352. 

Gimenez Palacios, I., Alonso, M. T., Alvarez Valdes, R., & Parreño, F. (2020). Logistic 
constraints in container loading problems: the impact of complete shipment 
conditions. Top, 29, 177–203. 

Junqueira, L., Morabito, R., & Yamashita, D. S. (2012). Three-dimensional container 
loading models with cargo stability and load bearing constraints. Computers & 
Operations Research, 39(1), 74–85. 

Kang, K., Moon, I., & Wang, H. (2012). A hybrid genetic algorithm with a new packing 
strategy for the three-dimensional bin packing problem. Applied Mathematics and 
Computation, 219(3), 1287–1299. 

Liu, D. S., Tan, K. C., Huang, S. Y., Goh, C. K., & Ho, W. K. (2008). On solving 
multiobjective bin packing problems using evolutionary particle swarm 
optimization. European Journal of Operational Research, 190(2), 357–382. 

Liu, J., Yue, Y., Dong, Z., Maple, C., & Keech, M. (2011). A novel hybrid tabu search 
approach to container loading. Computers & Operations Research, 38(4), 797–807. 

Martello, S., & Vigo, D. (1998). Exact solution of the two-dimensional finite bin packing 
problem. Management science, 44(3), 388–399. 

Martello, S., Pisinger, D., & Vigo, D. (2000). The three-dimensional bin packing problem. 
Operations Research, 48(2), 256–267. 

Moon, I., & Nguyen, T. V. L. (2014). Container packing problem with balance constraints. 
OR spectrum, 36(4), 837–878. 

Pedruzzi, S., Nunes, L. P. A., Rosa, R., & Arpini, B. (2016). A mathematical model to 
optimize the volumetric capacity of trucks utilized in the transport of food products. 
Gest. Prod, 23, 350–364. 

Ramos, A. G., Silva, E., & Oliveira, J. F. (2018). A new load balance methodology for 
container loading problem in road transportation. European Journal of Operational 
Research, 266(3), 1140–1152. 

Tarantilis, C. D., Zachariadis, E. E., & Kiranoudis, C. T. (2009). A hybrid metaheuristic 
algorithm for the integrated vehicle routing and three-dimensional container- 
loading problem. IEEE Transactions on Intelligent Transportation Systems, 10(2), 
255–271. 

Terno, J., Scheithauer, G., Sommerweiß, U., & Riehme, J. (2000). An efficient approach 
for the multi-pallet loading problem. European Journal of Operational Research, 123 
(2), 372–381. 

Trivella, A., & Pisinger, D. (2016). The load-balanced multi-dimensional bin-packing 
problem. Computers & Operations Research, 74, 152–164. 
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