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SUMMARY 

This thesis will exhibit the adverse effects of relying on fossil fuels, accompanied by 

data from international organizations documenting losses inflicted by fuel combustion. 

The common renewable energy sources are then listed, with a focus on solar as a 

sustainable substitute and an explanation of why it is in its current state insufficient to 

replace commonly used carbon-based fuels. 

 

 The methods and technologies used to mend solar energy drawbacks will be 

mentioned; then light will be shed on Genetic Algorithm Optimization as a form of an 

overview containing essential facts and information regarding GAs alongside 

mentioning notable studies that have used various types of GAs to model Photovoltaic 

Cells. 

 

Next, the mathematical modeling for PV cells will be introduced alongside their 

equivalent circuits, topologies, and equations. The burdens that held PV cells back will 

be clarified. PV cell parameters estimation methods will be justified to solve some of 

the difficulties facing solar energy, specifically metaheuristics, with its vast catalog of 

optimization algorithms. 

 

 Afterward, the Coronavirus Herd Immunity Optimization algorithm will be presented, 

along with its inspiration circumstances. The algorithm procedure will be explained 

by listing all its steps in the form of text, chart, and Pseudocode. Concluding with use 

case scenarios and behavioral analysis of the algorithm. 

 

Following that, three of the most popular photovoltaic cell models’ data will be used 

to test the viability of coronavirus herd immunity optimization to extract unknown 

photovoltaic parameters; the properties of these cells will be detailed with respect to 

the circumstantial elements at the time their data was captured.  

 

The methodology for obtaining the results will be listed in detail. The extracted PV 

cell parameters will be listed and graphed, then analyzed and compared to parameters 
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extracted by other state-of-the-art meta-heuristic optimization algorithms which have 

been used in literature. 

 

The final judgment of the findings will then be made, along with the criteria that were 

chosen, and will be followed by a recommendation for future work to further enhance 

the outcomes or to broaden the scope of the used algorithm. 

Keywords: Genetic Algorithms, Corona virus herd immunity optimization, 

photovoltaiac cell parameters estimation, parameters extraction  
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ÖZET 

Bu tez, yakıt yanmasından kaynaklanan kayıpları belgeleyen uluslararası 

kuruluşlardan alınan veriler eşliğinde fosil yakıtlara güvenmenin olumsuz etkilerini 

ortaya koyacaktır. Daha sonra, sürdürülebilir bir ikame olarak güneş enerjisine 

odaklanılarak ve mevcut durumunda yaygın olarak kullanılan karbon bazlı yakıtların 

yerini almak için neden yetersiz olduğuna dair bir açıklama ile ortak yenilenebilir 

enerji kaynakları listelenir. 

Güneş enerjisinin dezavantajlarını gidermek için kullanılan yöntem ve 

teknolojilerden bahsedilecektir; Daha sonra, Fotovoltaik Hücreleri modellemek için 

çeşitli GA'ları kullanan önemli çalışmalardan bahsetmenin yanı sıra GA'larla ilgili 

temel gerçekleri ve bilgileri içeren bir genel bakış biçimi olarak Genetik Algoritma 

Optimizasyonuna ışık tutulacaktır. 

Daha sonra, eşdeğer devreler, topolojiler ve denklemlerle birlikte PV hücreleri 

için matematiksel modelleme tanıtılacaktır. PV hücrelerini geride tutan yükler açıklığa 

kavuşturulacaktır. PV hücre parametreleri tahmin yöntemleri, geniş optimizasyon 

algoritmaları kataloğu ile güneş enerjisinin, özellikle meta-sezgisellerin karşılaştığı 

bazı zorlukları çözmek için gerekçelendirilecektir. 

Daha sonra Coronavirüs Sürü Bağışıklığı Optimizasyonu algoritması ilham 

koşulları ile birlikte sunulacaktır. Algoritma prosedürü, tüm adımları metin, grafik ve 

Pseudocode şeklinde listelenerek açıklanacaktır. Kullanım senaryoları ve algoritmanın 

davranışsal analizi ile sonuçlanmaktadır. 

Bunu takiben, bilinmeyen fotovoltaik parametreleri çıkarmak için koronavirüs 

sürü bağışıklığı optimizasyonunun canlılığını test etmek için en popüler fotovoltaik 

hücre modellerinden üçü kullanılacak; bu hücrelerin özellikleri, verilerinin alındığı 

andaki durumsal unsurlara göre detaylandırılacaktır. 

Sonuçları elde etme metodolojisi ayrıntılı olarak listelenecektir. Çıkarılan PV 

hücre parametreleri listelenecek ve grafiklendirilecek, daha sonra analiz edilecek ve 

literatürde kullanılan diğer son teknoloji meta-sezgisel optimizasyon algoritmaları 

tarafından çıkarılan parametrelerle karşılaştırılacaktır. 
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Daha sonra, seçilen kriterlerle birlikte bulguların nihai kararı verilecek ve bunu, 

sonuçları daha da geliştirmek veya kullanılan algoritmanın kapsamını genişletmek için 

gelecekteki çalışmalar için bir tavsiye izleyecektir. 

Anahtar Kelimeler : Genetik Algoritmalar, Corona virüs sürü bağışıklığı 

optimizasyonu, fotovoltaik hücre parametreleri tahmini, parametre çıkarma 
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INTRODUCTION 

Fossil fuels are currently the world’s number one source of energy, these 

resources are not going to suffice in the future, they are finite and bound to be 

depleted(Korpela, 2006). Furthermore, 4.2 million deaths occur worldwide by 

exposure to ambient air pollution every year, there are 3.8 million deaths caused by 

household exposure to smoke induced by combustible fuels ,about 90% of humans live 

in environments exceeding the World Health Organization (WHO) guidelines (World 

Health statistics 2021: A visual summary, 2021). Therefore, pollution by combustible 

fuels is not just a hot topic to be trending online or circulated in the media; it is a 

disaster that keeps worsening each second if not halted by using alternative, 

environmentally friendly energy sources such as solar and geothermal energy. 

The dilemma with green energy sources was always efficiency and cost; it is way less 

effective than fossil fuels and is very expensive to manufacture. For example, the 

maximum average efficiency of commercial solar panels is approximately 20%(Zekry 

vd., 2018), which cannot cover the current or future needs. However, on the brighter 

side, researchers have found an impressive theoretical improvement in solar panels’ 

efficiency of around 50%(Green vd., 2022).  

Many research breakthroughs were achieved by the advancement of computer systems 

and their software. Artificial Intelligence (AI), Neural Networks (NN), and Genetic 

Algorithms (GA)  are essential for simplifying matters of massive complexity. GAs 

are Optimization methods that can find optimized solutions for the complicated, non-

conventional, and nonlinear types of problems. (Callier & Sandel, 2021; Katoch vd., 

2021) 

Holland introduced Genetic Algorithms in his book “Adaptation in natural and 

artificial systems” in 1975. He explained how nature’s rules of natural selection could 

be applied to solve optimization equations. Since then, his creation has evolved to 

become today’s robust optimization and search tool(Sivanandam & Deepa, 2008). 

Generally, there are five phases of GAs:  

 Initialization 

  Fitness Calculation 
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 Selection 

  Crossover 

 Mutation 

 

There are four types of GAs(Jenkins vd., 2019): 

 Generational GA 

 Steady State GA 

 Steady-Generational GA 

 (µ+µ)-GA 

As for the inspiration side of creating these algorithms, it could be broadly categorized 

into: 

 Physics-Based Algorithms 

  Swarm-Based Algorithms 

  Human-Based Algorithms (Bhattacharyya vd., 2020) 

 

Numerous studies have employed optimization algorithms to find the unknown 

parameters of PV cells, achieving promising results, thus reducing designing costs 

while increasing efficiency at the same time. These papers will be discussed, and their 

outcomes will be used as a reference to benchmark the results obtained by this 

research. 

PV cells will be explored in the following sections, and their equivalent circuits will 

be defined. Subsequently, Corona Virus Herd Immunity Optimizer (CHIO) will be 

described and utilized to guess the unknown parameters in the equivalent circuit of the 

PV cells. 

  



 

3 

PROBLEM STATEMENT 

In our ever-expanding world, the need for more energy sources is increasing 

rapidly. Despite the fact that burnable fuels are a sufficient energy supply, they lack 

two crucial elements: sustainability and environmental neutrality. 

An existential question arises when discussing sustainability: will fossil fuels 

last indefinitely? The obvious answer is no. Furthermore, the energy demand is 

continuously increasing.  

As for fossil fuels’ Environmental neutrality, it is impossible due to the carbon 

emissions released as a by-product of combustion, which causes severe harm to the 

planet, and the challenge of mitigating such damage is burdensome and costly.  

Enter solar power that solves many of the issues associated with conventional 

energy sources; however, its high production cost accompanied by its low efficiency 

compared to fossil fuels hinders its wide adoption.  

 

SCOPE 

This thesis aims to advance photovoltaics by extracting the unknown parameters 

of photovoltaic (PV) cells, which can help alleviate some designing expenses and grow 

the PV cell competence; the PV cell parameters will be extracted using the 

Coronavirus Herd Immunity Optimizer. The algorithm has never been tested to date 

in the PV cell parameters estimation field. Therefore, this thesis will gauge the 

algorithm’s ability and compare its results with other state-of-the-art algorithms used 

by researchers in the literature in recent years.  
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RELATED WORKS 

 Genetic algorithm was used to identify the unknown parameters of PV cells 21 

years prior to this work, and it has also studied the effects of varying the temperature 

for three PV cells (monocrystalline (HIT-215), multi-crystalline (KC200GT), and thin-

film (ST40). The absolute error between the extracted results and the data sheets 

ranged from 0.009 to 0.016. (Jervase vd., 2001) 

Ten years later, Differential Evolution (Ishaque & Salam, 2011) has followed a 

three-parameter equivalent circuit design of the single diode model for three 

commercial PV cells (thin-film (ST40), monocrystalline SM55, and multi-crystalline 

s75). 

Improved Adaptive Differential Evolution (Jiang vd., 2013) was employed a 

while after to produce enhanced results, the new version of Differential Evolution 

autonomously applies control parameters on the go, which had parameters more 

desirable than the previous version. 

The Flower Pollination Algorithm (Alam vd., 2015) is inspired by plants’ 

propagation methods, where pollen is transferred via insects from one plant to another. 

The researchers extracted PV cell parameters for the single diode model equivalent 

circuit of the RTC France and Power Watt PWP-201; the research also included the 

double diode model equivalent circuit of the RTC France solar cell model. The 

algorithm has achieved results so impressive; that is still viable to be used seven years 

after its publishing. However, the hindrances of FPA were converging prematurely, 

and it is not intuitive to implement.   

The Chaotic Optimization Approach (COA) by (Ćalasan vd., 2019) is simple to 

implement and is not time-consuming; the result came out accurately, at an average of 

RMSE only slightly lacking in comparison with other algorithms. 

Next, The Coyote Optimization Algorithm (COA) (Chin & Salam, 2019) the 

algorithm is inspired by the social behavior of Coyote packs. The researchers have 

found very successful results; however, the improved version of COA has more 

benefits, is faster, and is more stable. 
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The Improved Cuckoo Search Optimization (ICSO) (Gude & Jana, 2020) 

followed the reproduction of some cuckoo species and was used to presume the 

parameters of the single and double diode variants of  RTC France solar cell and the 

single diode model of the Power Watt PWP-201. 

 Diversification-enriched Harris hawks’ optimization with chaotic drifts (HHO) by 

(Chen, Jiao, Wang, Heidari ve Zhao, 2020), inspired by the hawks’ hunting 

mechanism, where hawks surround the prey from all directions shocking it into awe, 

like the hawks, the algorithm encompasses the solution by its exploration/exploitation 

stages till reaching a satisfactory result.  

Random reselection particle swarm optimization (PSOCS) by (Fan vd., 2022) 

Cuckoo Search imitates a bird flock’s food-seeking behavior mixed with the particle 

swarm optimization ability, making it a hybrid algorithm that has pros from both 

merged algorithms.  

Triple-Phase Teaching-Learning-Based Optimization (TPTLBO) by (Liao vd., 

2020) the algorithm works similarly to the teaching-learning process used in schools. 

The researchers have tested it to extract PV cell parameters with remarkably consistent 

results. 

Grey Wolf Optimizer with Dimension Learning-Based Hunting Search Strategy 

(IGWO) by (Yesilbudak, 2021) is one of the newest modifications of the widely 

popular algorithm, and it has several upgrades that include a more diverse population 

of solutions, local optima avoidance strategy, and sound exploration/exploitation 

balancing ability.  

Whippy Harris Hawks Optimization Algorithm (WHHO) by (Naeijian, 

Rahimnejad, Ebrahimi, Pourmousa ve Gadsden, 2021); is a new modification to the 

harris hawks’ optimization algorithm. It solves some drawbacks of the algorithm by 

adding a phase at which the worst candidates are terminated, and better ones are added 

in their place, which has helped the algorithm with its issues of getting stuck into local 

optima and failing to converge.  
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CHAPTER ONE 

PV CELLS MODULE MODELING 

An accurate PV Cell model representation is crucial to analyzing the cell’s 

performance. Therefore, this section will shed light on the modeling methods of  PV 

cells, and the materials PV cells are made-of will be briefly discussed. 

The most used material for PV Cell manufacturing is crystalline silicon which 

can be categorized into three primary forms: thin film, monocrystalline silicon, and 

multi-crystalline silicon (Ishaque & Salam, 2011). 

Also, the high concentrating photovoltaic (HCPV) method has to be mentioned 

for its effectiveness and low manufacturing costs with the introduction of Fresnel 

lenses(Mi vd., 2016). 

 

1.1. Mathematical Modeling and Equivalent Circuit 

The equivalent circuit of a PV cell usually consists of a PV constant current 

source (Iph, which represents the photocurrent, a series resistance (Rs) that represents 

materials resistance, and a shunt resistance (Rsh) that occurs at the junction of the diode 

due to electron and hole trapping (Zekry vd., 2018). 

Based on the number of parallel diodes in the circuit, PV cells can be divided 

into three main models: Single Diode Model (SDM)(Moshksar & Ghanbari, 2017), 

Double Diode Model (DDM)(Humada vd., 2016), and Triple Diode Model 

(TDM)(Allam vd., 2016; Khanna vd., 2015). 

The single diode model shown in figure 1 is the most popular amongst the bunch due 

to its simplicity and reliability of results. By utilizing Kirchhoff’s Current Law 

(KCL), it can be represented by equation 1: 

𝐼𝐿 = 𝐼𝑝ℎ − 𝐼𝐷 − 𝐼𝑠ℎ   … (1) 

Where 𝐼𝐿 denotes the resultant current of the circuit, 𝐼𝐷  is the diode current can 

be found by Shockley’s Equation, and 𝐼𝑠ℎ stands for the shunt current. 

The diode current can be found using the equation below: 
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𝐼𝐷 = 𝐼𝑆𝐷 [exp (
𝑞(𝑉𝐿 + 𝐼𝐿𝑅𝑆)

𝑛𝑘𝑇
) − 1]  … (2) 

Where 𝐼𝑆𝐷 is the diode’s reverse saturation current, 𝑞 is the electron charge, 𝑉𝐿 

Is the load voltage, 𝑛 represents the ideality factor, 𝑘 is Boltzmann’s constant, and 𝑇 

is the cell’s temperature measured in Kelvin. 

Moreover, the shunt current is obtained using equation 3: 

𝐼𝑠ℎ =
(𝑉𝐿+𝐼𝐿𝑅𝑆)

𝑅𝑠ℎ
   … (3) 

By combining the three previous equations, the total SDM current equals: 

𝐼𝐿 = 𝐼𝑝ℎ − 𝐼𝑆𝐷 [exp (
𝑞(𝑉𝐿 + 𝐼𝐿𝑅𝑆)

𝑛𝑘𝑇
) − 1] −

(𝑉𝐿 + 𝐼𝐿𝑅𝑆)

𝑅𝑠ℎ
  … (4) 

 

 

Figure 1:The equivalent circuit of the Single Diode Model. 

 

The second variant is the Double Diode Model, which has two parallel diodes; 

as the name suggests, the second diode was added to count for the losses caused by the 

recombination failure in the PN junction(Ishaque, Salam ve Taheri, 2011). 

Characterized in Figure 2, DDM is also famous for being straightforward and intuitive. 

Moreover, it can be mathematically described in equation (5) using KCL: 
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𝐼𝐿 = 𝐼𝑝ℎ − 𝐼𝐷1 − 𝐼𝐷2 − 𝐼𝑠ℎ   … (5) 

Where 𝐼𝐷1 and 𝐼𝐷2 signify the current for diodes 1 and 2 separately. By employing 

equations (2) and (3), the entire current of the DDM can be found as follows: 

𝐼𝐿 = 𝐼𝑝ℎ − 𝐼𝑆𝐷1 [exp (
𝑞(𝑉𝐿 + 𝐼𝐿𝑅𝑆)

𝑛1𝑘𝑇
) − 1] − 𝐼𝑆𝐷2 [exp (

𝑞(𝑉𝐿 + 𝐼𝐿𝑅𝑆)

𝑛2𝑘𝑇
) − 1]

−
(𝑉𝐿 + 𝐼𝐿𝑅𝑆)

𝑅𝑠ℎ
  … (6) 

Where 𝐼𝑆𝐷1 and  𝑛1 represent the reverse saturation current and ideality factor for the 

first diode, respectively. As for the second diode 𝐼𝑆𝐷2 and 𝑛2  will also represent the 

reverse saturation current and ideality factor correspondingly. 

 

  

 

Figure 2: The equivalent circuit of the Double Diode Model. 

 

 

The last model presented in figure 3 differs from the others for its complex nature, as 

seen in its mathematic equation (induced by: 𝐼𝐿 = 𝐼𝑝ℎ − 𝐼𝐷1 − 𝐼𝐷2 − 𝐼𝐷3 − 𝐼𝑠ℎ   ) 

below, and its behavior is more challenging to predict; therefore, it will not be used in 

this thesis to assure reliability and consistent outcomes. 
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𝐼𝐿 = 𝐼𝑝ℎ − 𝐼𝑆𝐷1 [exp (
𝑞(𝑉𝐿 + 𝐼𝐿𝑅𝑆)

𝑛1𝑘𝑇
) − 1] − 𝐼𝑆𝐷2 [exp (

𝑞(𝑉𝐿 + 𝐼𝐿𝑅𝑆)

𝑛2𝑘𝑇
) − 1]

− 𝐼𝑆𝐷3 [exp (
𝑞(𝑉𝐿 + 𝐼𝐿𝑅𝑆)

𝑛3𝑘𝑇
) − 1] −

(𝑉𝐿 + 𝐼𝐿𝑅𝑆)

𝑅𝑠ℎ
…(7)   

 

 

 

Figure 3: The equivalent circuit of the Triple Diode Model. 
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CHAPTER TWO 

CORONAVIRUS HERD IMMUNITY OPTIMIZER (CHIO) 

 

In August 2020, a research paper was published (Al-Betar vd., 2021) announcing 

a new meta-heuristic algorithm based on humans’ herd immunity concept as a method 

to combat the COVID-19 pandemic.  

 

2.1. Algorithm inspiration  

Viruses usually spread rapidly amongst the population; most viruses also evolve 

to spread faster, more incognito, thus affecting their victims with more severity. 

To combat the spread of viruses, health providers usually treat the infected cases and 

keep them and their contacts in quarantine conditions. Herd immunity must be 

achieved to avoid the pandemic, either by vaccination or recovery of infected cases. 

Wuhan, 2019, The Novel Corona Virus (2019-nCoV) started its spread through the 

globe; the World Health Organization named the new disease COVID-19. 

Herd immunity is a term used for a population with a sizeable immune group 

(either by vaccination or by recovery from infection); thus, the disease’s spread will 

be hindered. The exact threshold should be 60%, immune members. 

Social distancing is the void that must be held between humans to avoid the 

transfer of the disease; this distance has been set at 1.8 meters. 

An individual that is not infected or immune is denoted as susceptible. Once 

infected, the individual becomes a transmitter of the disease based on several factors; 

there will be two possible outcomes for an infected case the first one is being 

recovered, and the second one happens to be, unfortunately, dead. 

As indicated by researchers, there are three primary levels to achieving herd immunity: 

 a large proportion of the population gets infected and transfers the 

disease to another large portion of the population. 
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 Most cases are recovered, whereas the remaining minority does not 

survive. 

 After some time, most of the population would have immunity from the 

disease.(Al-Betar vd., 2021) 

 

2.2. Algorithm Procedure 

The algorithm follows the strategy of herd immunity; the flowchart in figure 4 

represents its procedures; it has six core steps:  

Step 1: Initialization  

Initialization of the algorithm parameters and the optimization equation: 

in this step, the problem to be optimized is transformed into an objective 

function as follows: 

𝑚𝑖𝑛 𝑓(𝑥) 𝑥 ∈ [𝑢𝑏, 𝑙𝑏] … (8) 
x 

where  𝑓(𝑥) is the immunity rate,𝑥 is the decision variable (or Gene) indexed by 

𝑖, and 𝑛 which represents the entirety of genes; the value for each gene value ranges 

from 𝑙𝑏𝑖 to 𝑢𝑏𝑖 .  

CHIO has four algorithmic parameters: 

 𝐶𝑂: representing the initial infection count that usually starts with one. 

 Max_Itr stands for the maximum allowed iterations. 

 HIS: a number denoting the total population count. 

 𝑛: the equation dimensions. 

 

Additionally, CHIO has two control parameters: 

 𝐵𝑅𝑟: basic reproduction rate. 

 𝑀𝑎𝑥𝐴𝑔𝑒: maximum age at which the case must be determined as 

recovered or dead.  
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Step 2: Population Generation 

The startup population of the herd immunity is created heuristically; the quantity 

of the population, as mentioned earlier, is defined by 𝐻𝐼𝑆. The resultant genes are 

stored in a two-dimensional matrix denoted by HIP. 

HIP=[

𝑥1
1 𝑥2

1 𝑥𝑛
1

𝑥1
2 𝑥2

2 𝑥𝑛
2

𝑥𝑛
𝐻𝐼𝑆 𝑥𝑛

𝐻𝐼𝑆 𝑥𝑛
𝐻𝐼𝑆

]        … (9) 

Each row 𝑗 represents an individual gene 𝑥𝑗  that is created by the following: 

𝑥𝑖
𝑗
= 𝑙𝑏𝑖 + (𝑢𝑏𝑖 − 𝑙𝑏𝑖) ∗ 𝑈(0,1)     … (10) 

∀𝑖 1,2… , 𝑛. ∀𝑗 =  1, 2, . . . , 𝐻𝐼𝑆.   

The immunity rate is determined using equation (8); the status vector (𝑆) is 

capped by 𝐻𝐼𝑆 length and can be used as a reference to indicate each case status in 

HIP (0 for a susceptible case or 1 for an infected case) (𝑆) is initialized randomly with 

the length value identical to 𝐶𝑜. 

Step 3: Gene Evolution 

This is the primary gene transformation loop in CHIO; each gene will either 

remain untouched or will be affected by social distancing and according to the 

percentage of 𝐵𝑅𝑟 where: 

𝑥𝑖
𝑗
 (t+1) ←

{
 
 

 
 𝑥𝑖

𝑗(𝑡)       𝑟 ≥ 𝐵𝑅𝑟

𝐶 (𝑥𝑖
𝑗(𝑡))       𝑟 <

1

3
𝐵𝑅𝑟      // 𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑 

𝑁 (𝑥𝑖
𝑗(𝑡))       𝑟 <

2

3
𝐵𝑅𝑟      //  𝑠𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑙𝑒

𝑅 (𝑥𝑖
𝑗(𝑡))       𝑟 < 𝐵𝑅𝑟      //𝑖𝑚𝑚𝑢𝑛𝑒𝑑

     … (11) 

The value of 𝑟 is a random value that ranges from 0 to 1 

For an infected case, the new gene will be calculated as follows: 

𝐶 (𝑥𝑖
𝑗(𝑡))= 𝑥𝑖

𝑗(𝑡) + 𝑟 ∗ (𝑥𝑖
𝑗(𝑡) − 𝑥𝑖

𝑐(𝑡))   … (12) 

Note that (𝑥𝑖
𝑐)  is chosen heuristically from within the infected cases indicated by the 

status vector (𝑆) where:  

𝑐 = {𝑖|𝑆𝑖 = 1}     … (13) 
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For a susceptible case, the gene will be replaced according to equation (14):  

𝑁 (𝑥𝑖
𝑗(𝑡))= 𝑥𝑖

𝑗(𝑡) + 𝑟 ∗ (𝑥𝑖
𝑗(𝑡) − 𝑥𝑖

𝑚(𝑡))   … (14) 

Where 𝑥𝑖
𝑚(𝑡) is chosen at random from the susceptible genes marked by (𝑆) such as: 

𝑚 = {𝑖|𝑆𝑖 = 0}     … (15) 

Lastly, for an immune case, the gene will be updated as follows: 

𝑅 (𝑥𝑖
𝑗(𝑡))= 𝑥𝑖

𝑗(𝑡) + 𝑟 ∗ (𝑥𝑖
𝑗(𝑡) − 𝑥𝑖

𝑣(𝑡))  … (16) 

 

𝑥𝑖
𝑣(𝑡) is chosen from within any of the cases indicated as immune by (𝑆) and can be 

represented by: 

𝑓(𝑥𝑣) =arg min
𝑗~{𝑘|𝑆𝑘=2}

𝑓(𝑥𝑗)  … (17) 

Step 4: Population Update  

In this step, the gene population will be updated; each case will be evaluated and 

changed into a new value if the new value is improved. In addition, in case of an 

update, the age 𝐴𝑗 and status 𝑆𝑗 vectors will be updated by increasing the age vector 

by one if the status vector 𝑆𝑗 value was one. 

Step 5: Gene Termination  

If a gene becomes stagnant for some iterations and its current value is not within 

the desired outcome, it will be terminated (dead case), and a new gene will be 

generated using equation (10); both 𝑆𝑖 and 𝐴𝑗 it will be set to zero. This process is 

crucial to vary the population and avoid having a local optima.  

Step 6: Halt Criteria 

The algorithm will loop steps three to six until reaching a termination condition, 

usually achieving the predetermined maximum number of iterations. After the 

termination, the gene population should split between susceptible and immune cases 

and has an absence of infected cases.  

The following text represents CHIO Pseudocode: 
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 Step 1: Initialize CHIO parameters  

Appoint values to (𝐻𝐼𝑆, 𝑆𝑟, 𝑎𝑛𝑑 𝑀𝑎𝑥𝐴𝑔𝑒).  

 Step 2: Generate Herd-Immunity Population  

𝑥𝑖
𝑗
= 𝑙𝑏𝑖 + (𝑢𝑏𝑖 − 𝑙𝑏𝑖) ∗ 𝑈(0,1), ∀𝑖 =  1, 2, . . . , 𝑛, 𝑎𝑛𝑑 ∀𝑗 =  1, 2, . . . , 𝐻𝐼𝑆.  

Calculate the fitness of each search agent  

Set 𝑆𝑗 =  0 ∀𝑗 =  1, 2, . . . , 𝐻𝐼𝑆.  

Set 𝐴𝑗 =  0 ∀𝑗 =  1, 2, . . . , 𝐻𝐼𝑆.  

 Step 3: Herd immunity evolution  

while (𝑡 ≤  𝑀𝑎𝑥 𝑖𝑡𝑟) do  

for 𝑗 =  1 𝑡𝑜 𝐻𝐼𝑆 do  

𝑖𝑠 𝐶𝑜𝑟𝑜𝑛𝑎 (𝑥 𝑗 (𝑡 +  1)  =  𝑓𝑎𝑙𝑠𝑒  

for 𝑖 =  1 𝑡𝑜 𝑁 do  

if (    𝑟 <
1

3
𝐵𝑅𝑟 ) then  

𝑥𝑖
𝑗
 (t+1) = 𝐶 (𝑥𝑖

𝑗(𝑡)) Eq. (12) 

𝑖𝑠 𝐶𝑜𝑟𝑜𝑛𝑎(𝑥 𝑗 (𝑡 +  1)  =  𝑡𝑟𝑢𝑒  

else if (𝑟 <
2

3
𝐵𝑅𝑟) then  

𝑥𝑖
𝑗
 (t+1)= 𝑁 (𝑥𝑖

𝑗(𝑡)) Eq. (14)  

else if (𝑟 < 𝐵𝑅𝑟) then  

𝑥𝑖
𝑗
 (t+1)=  𝑅 (𝑥𝑖

𝑗(𝑡)) Eq. (16) 

else  

𝑥𝑖
𝑗
 (t+1)= 𝑥𝑖

𝑗
 (t) 

end if  

end for  

 Step 4: Update herd immunity population  

if (𝑓(𝑥𝑗  (𝑡 +  1))  ≤  𝑓( 𝑥𝑗  (𝑡))) then  
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𝑥𝑗 (𝑡) = 𝑥′𝑗 (𝑡 +  1)  

else  

𝐴𝑗 = 𝐴𝑗  + 1  

end if  

if 𝑓 (𝑥𝑗  (𝑡 +  1)) <   
𝑓 (𝑥)𝑗 (𝑡+1)

△𝑓(𝑥)
 ∧  𝑆𝑗 =  0 ∧  𝑖𝑠 𝐶𝑜𝑟𝑜𝑛𝑎(𝑥𝑗  (𝑡 +  1)) then  

𝑆𝑗= 1  

𝐴𝑗= 1  

end if  

if 𝑓(𝑥𝑗  (𝑡 +  1))  >  
𝑓 (𝑥)𝑗 (𝑡+1)

△𝑓(𝑥)
 ∧ 𝑆𝑗 = 1 then  

𝑆𝑗= 2  

𝐴𝑗= 0  

end if  

 Step 5: Fatality condition  

if ((𝐴𝑗 ≥ 𝑀𝑎𝑥𝐴𝑔𝑒) ∧ (𝑆𝑗== 1)) then  

𝑥𝑖
𝑗
= 𝑙𝑏𝑖 + (𝑢𝑏𝑖 − 𝑙𝑏𝑖) ∗ 𝑈(0,1), ∀i = 1, 2, . . ., N.  

𝑆𝑗 = 0  

𝐴𝑗= 0  

end if  

end for  

𝑡 =  𝑡 +  1  

end while 

 

Here lies the end of the CHIO’s Pseudocode; the flow chart below illustrates the 

abovementioned steps in visually represented details.(Al-Betar vd., 2021) 
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Figure 4:The Flow Chart For CHIO  

 

2.3. Algorithm Use Case Scenarios 

The newfound algorithm was used to optimize a very significant number of 

functions, whether by the creators or other researchers; in this section, the spotlight 

will be focused on the algorithm’s creators’ tests. Some of these functions were 

unimodal (with one optimum) to test the algorithm’s exploitation ability. In contrast, 

others were multimodal (with multiple optimums) to gauge CHIO’s exploration 
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ability; the sphere function, Rosebrock function, Ackley function, Branin function, and 

Hartman function are some of the examples used by the introductory paper for CHIO. 

 It should be noted that basic reproduction rate 𝐵𝑅𝑟, and maximum age 𝑀𝐴𝑋𝑎𝑔𝑒 

are the two control parameters for CHIO, where 𝐵𝑅𝑟 decides the proportion of the 

population that gets hit by the pandemic, and, 𝑀𝐴𝑋𝑎𝑔𝑒 overlooks the number of 

iterations the candidate solution remains constant in value before it gets replaced by 

another.  

With all that said, the overall number of equations used to test the ability of the 

newfound algorithm was 23, and each test was run 30 times. It was noticed that 

increasing the 𝐵𝑅𝑟 has caused an increase in the algorithm’s ruggedness which 

induced a better average of results due to increasing the exploration ability, although 

that required more processing time; On the other hand, decreasing the 𝐵𝑅𝑟 has caused 

a faster convergence rate but decreased the algorithm’s exploration ability. 

As for 𝑀𝐴𝑋𝑎𝑔𝑒, it affects CHIO’s exploration if changed, theoretically, but 

after concluding all the test runs, the algorithm creators did not notice an improvement 

to both the best and average results, thus recommended not changing the default value 

of 100 for the control parameter. 

After finalizing the control parameters, it is important to discuss social 

distancing principles, where it identifies each of the candidates with three possible 

statuses: immune (cannot be infected), susceptible (could be infected), and infected. 

Testers have used three different social distancing strategies:  

 Random-random-random, where the new solution is varied by the value of the 

difference between the current and a random variable for all types of intrants. 

 Random-random-best, here the immune candidate gets updated with a value 

equal to the difference between the current and the best solution, while the 

other two types of candidates have a change amounted to the difference 

between the present solution and a random value.  

 Random-best-random, in this strategy, the susceptible case is changed 

according to the value of the variance between the current and the best 

available solution, while the other two variants of candidates update to a new 



 

18 

value that is amounted to the difference between the instant result and a random 

value. 

 Random-best-best, the last strategy suggested that the infected case’s new 

value would be the alteration between the current candidate and a randomized 

entry while the remaining cases have their new value changed by the amount 

of difference between the existing solution and the best output. 

based on 30 repetitions of the algorithm for each strategy, it was determined that 

the first strategy (random- random- random) had induced the best possible results, 

proving that the stochastic approach has resulted in an improved convergence in 

general.(Al-Betar vd., 2021) 

 

2.4. Application for PV Cell Parameter Estimation  

The CHIO algorithm will be utilized to find the unknown parameters for the PV Cell 

equivalent circuit. 

 CHIO’s results will be compared to actual extracted results and with results predicted 

by numerous algorithms studied in the literature, thus verifying the reliability of 

CHIO’s results.  

For the single diode model, the following equation, which is derived from equations 

1, 2,3, and 4, represents the error function: 

𝐸𝐹 = 𝐼𝑝ℎ − 𝐼𝑆𝐷 [exp (
𝑞(𝑉𝐿 + 𝐼𝐿𝑅𝑆)

𝑛𝑘𝑇
) − 1] −

(𝑉𝐿 + 𝐼𝐿𝑅𝑆)

𝑅𝑠ℎ
− 𝐼𝐿   … (18) 

For the double diode model, the error function listed below was taken from equations 

5 and 6: 

𝐸𝐹 = 𝐼𝑝ℎ − 𝐼𝑆𝐷1 [exp (
𝑞(𝑉𝐿 + 𝐼𝐿𝑅𝑆)

𝑛1𝑘𝑇
) − 1] − 𝐼𝑆𝐷2 [exp (

𝑞(𝑉𝐿 + 𝐼𝐿𝑅𝑆)

𝑛2𝑘𝑇
) − 1]

−
(𝑉𝐿 + 𝐼𝐿𝑅𝑆)

𝑅𝑠ℎ
− 𝐼𝐿   … (19) 

As for the root mean square error for both models: 

RMSE=√
1

𝑘
∑ (𝐸𝑓)2𝑘
𝑖=1   … (20)  
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CHAPTER THREE 

SIMULATION & OUTCOMES 

3.1. Simulation 

In this chapter, to test the viability of CHIO, three PV cell model parameters 

were extracted: RTC France (single and double diode models) and the Power Watt 

PWP-20; these specific models were chosen due to their popularity among the papers 

published in the field of study. 

CHIO will be utilized to extract the five unknown parameters (Iph Isd, Rs, Rsh, and a) 

of the RTC France (Single Diode model and the Power Watt PWP-201 PV cells), as 

for the double diode model of the RTC France solar cell the unknown parameters are 

(Iph, Isd1, Isd2, Rs, Rsh, a1 and a2).  

The results were acquired using a laptop computer made by Lenovo, with an AMD 

Ryzen 7 4000 series processor, 16 GB of RAM, and an Nvidia RTX 2060 GPU. The 

main software used was MATLAB (2018 Version), installed on a Windows 10 64-bit 

operating system.  

 

3.2. Test Subject PV Cells 

The PV cell models that will be worked on are well trusted in the science 

community and used as a standard in numerous research projects. The data numbers 

are provided by (Easwarakhanthan vd., 1986) 

RTC France PV cell is a 57mm diameter silicone, and its data was measured at 

the temperature of (33° Celsius) with an irradiance of (1000 W/m2); this PV cell’s 

parameters are going to be extracted for both the single and double diode models. 

Additionally, the Power Watt PWP-201 PV cell is a Polycrystalline Silicone; its 

known variables were taken at an irradiance of (1000 W/m2), and the temperature of 

the measurement environment was (45° Celsius), and this model consists of 36 series-

connected cells, the single diode model equation will be utilized to obtain the unknown 

parameters. 
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3.3. Results 

The CHIO algorithm was run multiple times with various setting combinations; 

the reason was to ensure that the algorithm’s final run was done using the most 

appropriate settings, giving the algorithm a chance to extract the best possible results. 

In addition, limits have been set for each extracted parameter to limit the algorithm 

from deviating; these limits are identical to the limits set by the works used in the 

comparison section, thus ensuring fairness and accuracy—these bounds are listed in 

Table 1 below. 

 

Table 1: The bounds used in the simulation 

 

Parameter  

RTC France PowerWatt PWP-201 

SDM DDM SDM 

Lower Bound Upper Bound Lower Bound Upper Bound 

Iph (A) 0 1 0 2 

Isd,Isd1,Isd2 (µA) 0 1 0 50 

Rs (Ω) 0 0.5 0 2 

Rsh (Ω) 0 100 0 2000 

n,n1,n2 1 2 1 50 

 

Each setting combination was run 30 times, and the average RMSE of each 

variety was recorded; the optimal mix was chosen based on the best average RMSE, 

as exhibited in table 2. 
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Table 2: The parameters extracted by CHIO for each PV cell model accompanied by 

the RMSE 

 

Parameter  

RTC France  

Power Watt PWP-201 SDM DDM 

Iph (A) 7.61*10-1 7.61*10-1 1.03 

Isd, Isd1,Isd2 (µA) 3.06*10-7 9.33*10-7, 9.74*10-8 3.16*10-6 

Rs (Ω) 3.66*10-2 3.74*10-2 1.22 

Rsh (Ω) 52.6 57.6 1.38*103 

n, n1, n2 1.48 1.81, 1.39 1.34 

RMSE  7.75*10-4 7.48*10-4 2.27*10-3 

 

It was observed that for the RTC France Single Diode Model, with four solutions 

infected with the virus that spread with the rate of 0.1 amongst the population of 25 

possible solutions that had a maximum age of 100 at which the desired RMSE 7.75*10-

4 (listed in table 3), was reached with 5000 maximum allowed iterations, however, in 

figure 5 it can be noticed that the convergence rate was very high, the algorithm has 

made a considerable leap within only 1000 iterations, and that puts CHIO within the 

top performers reviewed by the literature in terms of convergence speed.  
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Figure 5: RMSE value over the best run’s iterations 

 

Table 3: literature algorithms RMSE and their settings compared to CHIO for the 

Single Diode Model of RTC France PV Cell. 

Method Population Size Iterations Runs 

CHIO 25 5000 30 

FPA  25 1000 Unspecified 

COA 1 Unspecified Unspecified Over 20 

COA 2 100 10000 50 

ICSO  15 5000 100 

HHO  Unspecified 1000 30 

PSOCS  10,20,30,40,50,60 12000-14000 20000 

TPTLBO  50 - 30 
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IGWO  15 25000 50 

WHHO  30 5000 30 

1 Chaotic Optimization Approach  
2 Coyote optimization algorithm 

 

 

Table 3 shows the algorithmic parameters as stated in the respective paper for 

each algorithm; these settings are usually varied until reaching the combination that 

will get the best result possible from an optimization algorithm. 

As for the Double Diode Model variant, CHIO had one infected candidate at the 

spreading rate of 0.25 amongst the population of 25 possible solutions permitted to the 

maximum age of 120; the RMSE was 7.48*10-4 (as listed in table 4) with maximum 

iterations limit set similar to the Single Diode Model at 5000 iterations, nonetheless, 

figure 6 suggests that the algorithm needed almost fifth the number of iterations to 

converge towards optimal results.  

 

Figure 6: The most optimal run made by CHIO for the RTC France double diode 

model. 
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Table 4: CHIO algorithm Double Diode Model of the RTC France PV Cell 

estimated parameters’ RMSE and settings listed alongside the other state-of-the-art 

algorithms. 

Method Population Size Iterations Runs 

CHIO 25 5000 30 

FPA  25 1000 Unspecified 

COA1 Unspecified Unspecified Over 20 

COA2  100 10000 50 

ICSO  15 5000 100 

HHO  Unspecified 1000 30 

PSOCS  10,20,30,40,50,60 12000-14000 20000 

TPTLBO  50 - 30 

IGWO  15 25000 50 

WHHO  30 5000 30 

1 Chaotic Optimization Approach  
2 Coyote optimization algorithm 

 

In the table above, the settings made for each algorithm were very similar, if not even 

identical, to the algorithmic parameters set for the SDM variant, which confirms the 

reliability of the algorithms, if the results extracted for the latter model were as optimal 

as the formal, given that the DDM model has more elements that need to be extracted. 
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Lastly, the Power Watt PWP-20 had an equal number of infected solutions to the 

previously mentioned Single Diode; the virus dispersed at the rate of 0.75 midst the 

25 possible solutions that had only 10% of the maximum age of the Single Diode 

Model of the RTC France PV cell, settings in table 5 displays double the number of 

iterations allowed, due to the model’s more challenging parameters limits, which 

required more intense processing to exsert the respectable RMSE of 2.27*10-3 at less 

than 4000 iterations as seen in figure 7. 

 

Figure 7: RMSE’s convergence rate for the Power Watt PWP-201. 

 

Overall the deep RMSE dives in figures 5,6 and 7 are indications of CHIO’s 

excellent exploitation ability, which is confirmed by the nearly vertical slope dip in 

the predicted parameters’ error fitness function; the same could be said about each 

predicted parameter’s line chart listed in the figures below, it should be noted that the 

values of each extracted parameter are not supposed to have a decrease in value to be 

considered successful, unlike the RMSE case, the rating of an optimization algorithm 

in terms of extracted PV parameters should be measured by the accuracy of the 

extracted data which can be confirmed by how constant the value is in the iterations 

that occur beyond the desired results iteration as shown in figures 8, 9, and 10. 
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Figure 8: The parameters’ values predicted for the SDM of the RTC France solar 

cell through the iterations. 

 

The figure above illustrates the convergence of each extracted parameter for the 

RTC France SDM; for the photocurrent, figure 8 (a), CHIO has started in a median 

position and then explored down value till it hit a stop by the 𝑀𝐴𝑋𝑎𝑔𝑒 control 

parameter, returned to the previous level with a few trips exploring options till it 

reached the desired value within nearly a thousand iterations, kept a steady value till 
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deciding to study again finding the final result within an additional near one thousand 

iterations. 

As for the Isd value, figure 8 (b) started at a neutral position, took an upwards 

exploration trip, then dipped back down where it found a better result, and within a 

few minor ups and downs, found the desired position near the one thousand marker. 

The series resistance chart, figure 8 (c), seemed eerily like the Ipv’s flipped upside 

down chart, where the algorithm took an early exploratory jump up high, followed by 

a deep dive, then returned to the wanted location followed by some minor adjustments 

and stopped at an iteration not that far from the previous two stops. 

The shunt resistance line, figure 8 (d), tells a different story, where CHIO has weaved 

its way through the candidates back and forth, causing the delay of a few hundred 

iterations, but that didn’t stop it from converging with an impressive two thousand 

iterations that were followed by little value inflation to reach the optimal resistance. 

Finally comes the ideality factor for the diode, figure 8 (e), where the algorithm took 

a one-way down the value of candidates till reaching the nearly perfect result at less 

than one thousand iterations.  

Next comes the figure showing the results road map for the DDM version of the same 

model discussed above. 
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Figure 9: The seven extracted variables for the RTC France DDM over the iterations 

of the best CHIO run. 
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In the charts above, it could be noticed that the algorithm has taken one lucky 

dip for the values of both Ipv and Rs, figure 10 (a & e), where it almost immediately 

found the wanted results.  

On the other hand, the algorithm’s searching abilities were well tested for the 

case of both diode currents. For the first one, figure 11 (b), it took several fluctuations 

up high, then checked the lower values for a while, decided to go back up and accept 

the near average of the initial exploration ripples. For the second diode, figure 12 (d), 

the algorithm exhibited a short burst of exploration followed by a massive jump in 

value that wasn’t favorable, forcing CHIO to return to the previous quadrant, then 

marking the position of the best value available within one thousand tries. 

For the shunt resistor, in figure 9 (f), CHIO has scanned within substantial values 

and slid down to find the right place near the same spot for the parameters mentioned 

earlier.  

Lastly, the algorithm didn’t show wild trips for the last two parameters, A1 and 

A2, figure 13 (g & h); it found the desired results at adjacent positions, with the second 

ideality factor being found slightly quicker than the first. The following figure shows 

the very steady CHIO’s convergence rate concerning the last PV model.  

 

  



 

30 

  

 
 

Figure 14: The line charts for the five values produced by CHIO representing the 

Power Watt PWP-201’s properties. 

 

For the Power Watt PWP-201 equivalent circuit elements, figure 10 (a-e), the 

algorithm’s journeys didn’t increase overall drastically. Instead, for all the parameters, 

CHIO has taken an exponential exploration drop followed by a vertical one downward, 

reaching a plateau right before the 4000th try; the algorithm did not want to change the 

value again till reaching near double the number of iterations, settling into the final 

output at about 80% of the allowed iterations limit of ten thousand, which is very 

notable since the algorithm almost did not need that large number of guesses for RTC 

France’s two versions of models. 
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Table 5: Power Watt PWP-201 estimated parameters’ RMSE by CHIO followed by 

the most recent successful algorithms’ results RMSE accompanied by their setup 

specifications. 

Method Population Size Iterations Runs 

CHIO 25 10000 30 

FPA  25 1000 Unspecified 

COA1  100 10000 50 

ICSO  15 5000 100 

PSOCS  10,20,30,40,50,60 12000-14000 20000 

TPTLBO  50 Unspecified 30 

IGWO 2021 15 25000 50 

WHHO  30 5000 30 

1 Coyote optimization algorithm 

 

 

3.4. Statistical Analysis  

In table 6, a statistical overview of the previously mentioned results can be 

found; the minimum, average, and maximum RMSE values of each CHIO group of 

runs show a considerable convergence rate, which proves the algorithm’s flexibility. 

 

Table 6: The best, worst, and average RMSE from all the runs of CHIO 

 

RMSE 

RTC France  

Power Watt PWP-201 SDM DDM 

Minimum 7.75*10-3 7.48*10-4 2.27*10-3 

Maximum 1.02*10-3 9.98*10-4 8.32*10-3 

Average 8.36*10-4 7.97*10-4 4.66*10-3 
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The table shows an impressive minimum and average value that puts CHIO among 

the top-performing algorithms, although having a reduced maximum value would 

have made CHIO climb to the top of the charts in terms of ruggedness but at the 

same time would lessen the algorithm’s flexibility and exploration abilities. Figures 

11 and 12 illustrate CHIO’s best fitness function value for every one of the 30 runs. 

 

 

Figure 15: the average RMSE values exerted by CHIO over the total  30 runs made 

for the RTC France single and double diode models. 

 

The figure above shows a high variability resemblance for both the SDM and 

DDM models, which confirms CHIO’s reliability when confronted by a higher number 

of parameters to predict. 

On the other hand, the RMSE variability in figure 12 tells another story for the 

Power Watt PWP-201 model; the wider gaps between the  RMSE values over 30 runs 

were worrisome; astonishingly, the very deep dips seen below have exerted results 

very comparable to state-of-the-art algorithms’ results.  
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Figure 16: The fitness function for the parameters extracted by CHIO for the Power 

Watt PWP-201  model over the 30 runs. 

 

3.5. Performance and Runtime 

The following table demonstrates the total run time needed for achieving one 

complete run of CHIO estimating PV cell parameters, the algorithmic parameters set 

for each PV model were as specified in the results section with the exemption of the 

number of runs, and the timings below were taken from MATLAB by using the 

function “Run and Time”. 

 

Table 7: The timings are taken from MATLAB for one complete run of CHIO 

estimating PV cell models’ parameters. 

PV Cell Model RTC France SDM RTC France 

DDM 

Power-Watt 

PWP201 

Total Runtime 70.853s 95.633s 171.766s 
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The timings above show that CHIO has very efficient code that can achieve very 

impressive performance metrics, which would be timesaving and expands the horizon 

to optimize more complex functions without sacrificing the user time and with less 

energy consumption which is crucial. 

 

3.6. Literature Algorithms 

In this section, CHIO’s performance will be compared against some of the state-of-

the-art algorithms that have been studied in the literature in recent years, as presented 

in table 8. The main element of the comparison is the fitness function value, which is 

also known as the root mean square error (equation 20), of the following parameters 

extracted by each algorithm: 

 (Iph Isd, Rs, Rsh, & a) for the RTC France and the Power Watt PWP-201 single 

diode model equivalent circuits. 

 (Iph, Isd1, Isd2, Rs, Rsh, a1 & a2) for the RTC France double diode model 

variant.  

This comparison is essential to this study as it presents an opportunity to 

benchmark CHIO’s performance and the viability of its results. 

 

Table 8: RMSE of results extracted by CHIO and algorithms used in recent 

literature. 

Algorithm RTC France SDM RTC France 

DDM 

Power-Watt 

PWP201 

CHIO  7.75*10-4 7.48*10-4 2.27*10-3 

FPA 7.73*10-4 7.84*10-4 2.05*10-3 

COA1 9.86*10-4 9.82*10-4 4.66*10-3 

COA2 7.73*10-4 7.33*10-4 2.05*10-3 
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ICSO 9.86*10-4 9.83*10-4 2.43*10-3 

EHHO 6.43*10-4 9.74*10-4 7.21*10-4 

PSOCS 9.86*10-4 9.83*10-4 2.43*10-3 

TPTLBO 9.86*10-4 9.82*10-4 2.43*10-3 

IGWO 9.86*10-4 9.82*10-4 2.43*10-3 

WHHO 

9.86*10-4 9.82*10-4 2.42*10-3 

1 Chaotic Optimization Approach  
2Coyote optimization algorithm 

 

First, The Flower Pollination Algorithm (FPA) by ‘(Alam vd., 2015) FPA has 

achieved a remarkable RMSE for the RTC France Single Diode Model and the Power 

Watt PWP-201, which is slightly more optimal than CHIO’s result for the same diode 

model; as for the RTC France Double Diode Model, CHIO has achieved an excellent 

RMSE that even surpassed the very remarkable results predicted by FPA.  

Next on the list is the Chaotic Optimization Approach (COA) by (Ćalasan vd., 

2019) which has achieved outstanding results for the RTC France (Single & Double 

Diode Models), but these results were not as close to the desired outcome and have 

been lapped by CHIO’s RMSE regarding the two models mentioned above.  

At number three, The Coyote Optimization Algorithm (COA) (Chin & Salam, 

2019) sits with results nearly identical to the first algorithm (FPA), with the exemption 

of the Double Diode Model of the RTC France solar cell surpassing CHIO’s RMSE in 

all three models by a very slight margin.  

The fourth algorithm to compare is the Improved Cuckoo Search Optimization 

(ICSO) (Gude & Jana, 2020) which has produced results with RMSE like the second-

mentioned algorithm and has been passed by CHIO’s RMSE in all three PV Cell 

models. 
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As for diversification-enriched Harris hawks’ optimization with chaotic drifts (I-

HHO) by (Chen vd., 2020) had great success with the Single Diode Model of the RTC 

France surpasses CHIO’s RMSE a bit but lagged with regards to the Double Diode 

Model of the same manufacturer. 

Random reselection particle swarm optimization (PSOCS) by (Fan vd., 

2022)produced very consistent results for the single and double diode models of the 

RTC France but did not surpass CHIO’s results’ RMSE in all three models. 

Number Seven is the Triple-Phase Teaching-Learning-Based 

Optimization (TPTLBO) by (Liao vd., 2020) has given results with RMSE at the 

same level as numerous algorithms, and it was very homogenous to each other; CHIO 

has provided a better RMSE for all the tested diode models. 

IGWO is one of the most recent algorithms to be tested to extract PV Cell 

parameters; it stands for Grey Wolf Optimizer with Dimension Learning-Based 

Hunting Search Strategy by (Yesilbudak, 2021), and it provides parameters 

comparable to multiple other successful algorithms, and CHIO has slightly passed its 

results’ RMSE. 

Finally comes the Whippy Harris Hawks Optimization Algorithm (WHHO) by 

(Naeijian, Rahimnejad, Ebrahimi, Pourmousa ve Gadsden, 2021); it was also one of 

the new literature pieces to discuss the viability of an algorithm to extract PV Cell 

parameters and has resulted in a very equivalent RMSE to other algorithms and have 

also been outdone by CHIO’s RMSE but not by much. 

 

3.7. Statistical Analysis 

Table 9 analyzes the results’ RMSE for the generated PV Cell parameters by 

CHIO and other algorithms tested by the literature. 

  



 

37 

Table 9: The aggregated RMSE of all CHIO runs followed by the sample of 

algorithms to benchmark the performance. 

Algorithm RMSE RTC France SDM RTC France 

DDM 

Power-Watt 

PWP201 

CHIO  Min. 7.75*10-4 7.48*10-4 2.27*10-3 

Max. 1.02*10-3 9.98*10-4 8.32*10-3 

Avg. 8.36*10-4 7.97*10-4 4.66*10-3 

ICSO Min. 9.86*10-4 9.83*10-4 2.43*10-3 

Max. 9.86*10-4 1.10*10-3 2.43*10-3 

Avg. 9.86*10-4 9.95*10-4 2.43*10-3 

PSOCS Min. 9.86*10-4 9.83*10-4 2.43*10-3 

Max. 9.86*10-4 1.41*10-3 2.43*10-3 

Avg. 9.86*10-4 1.03*10-3 2.43*10-3 

TPTLBO Min. 9.86*10-4 9.82*10-4 2.43*10-3 

Max. 9.86*10-4 9.86*10-4 2.43*10-3 

Avg. 9.86*10-4 9.84*10-4 2.43*10-3 

EHHO Min. 6.43*10-4 9.74*10-4 7.21*10-4 

Max. 7.60*10-4 9.78*10-4 7.87*10-4 

Avg. 7.32*10-4 9.44*10-4 6.43*10-4 

WHHO Min. 9.8602*10-4 9.8248*10-4 2.4250*10-3 

Max. 9.8602*10-4 9.8250*10-4 2.4250*10-3 
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Avg. 9.8602*10-4 9.8249*10-4 2.4250*10-3 

 

For the total of 30 Runs, CHIO’s best result for each run did not deviate much, 

apart from the 10th run for the single diode model of the RTC France solar cell, where 

it had an anomaly RMSE of 1.02*10-3, it could have been an exploration run or could 

be a motive for future modification for the algorithm. 

As for the other algorithms, some of the papers used in the prior comparison did not 

include their largest and average RMSE; therefore, they will not be incorporated. 

It was observed that most of the algorithms in the table had very high robustness, 

although, for the most part, their best results did not exceed CHIO’s best RMSE 

results, which shows CHIO’s high flexibility and exceptional exploration ability. 
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CONCLUSION AND RECOMMENDATIONS 

The adverse effects of using fossil fuels have been discussed in this work, followed by 

alternative energy sources as solutions. Next, the drawbacks of solar energy alongside 

the possible solutions, specifically PV module modeling and parameter extractions 

using optimization algorithms. 

The CHIO algorithm and its many stages of operation were presented in the second 

chapter. The algorithm was then rigorously tested by being run with various 

combinations of algorithmic parameters; the best combination was then selected to 

demonstrate the algorithm's capacity to predict and extrapolate the unknown 

parameters of PV Cells, which are the constituents of the equivalent circuit 

representing the PV cells. 

In order to ensure the output was the most optimal, the fitness function, or RMSE, of 

the extracted results was obtained by running the algorithm with various settings for 

each set of runs. The RMSE was then compared to the RMSE of the results extracted 

by the state-of-the-art algorithms worked on recently in the literature. 

CHIO has demonstrated adaptability and an excellent balance between exploitation 

and exploration skills, producing outcomes that are quite competitive with the best 

metaheuristic optimization performance. 

Future research should test CHIO to simulate PV Cells with a wider variety of PV Cell 

efficiencies and different shading situations. 

It is strongly advised to investigate CHIO's capability to predict its parameters using 

physical PV cells. 

 Also, the algorithm could be modified or hybridized with another optimization 

algorithm that is also population-based; it could result in an even more impressive and 

groundbreaking outcome.  

It is well known that incorporating a TRIZ-inspired operator into any population-based 

algorithm could lead to even better results(Al-Betar vd., 2020); therefore, it is 

recommended that CHIO should be tested with an incorporated TRIZ-inspired 

operator. 
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